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The earthquakelike model with a continuous distribution of static thresholds is used to describe the
properties of solid friction. The evolution of the model is reduced to a master equation which can be
solved analytically. This approach naturally describes stick-slip and smooth-sliding regimes of tribolog-
ical systems within a framework which separates the calculation of the friction force from the studies of

the properties of the contacts.
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In spite of its crucial practical importance, friction is still
not fully understood [1]. It raises questions from the atomic
scale studied nowadays by atomic force microscopy to the
macroscopic scale of a solid block sliding on an other. A
simple mesoscopic model has been introduced to bridge
the gap in scales and describe the main experimental ob-
servations, such as stick slip or smooth sliding, in terms of
the properties of local contacts. This widely used Burridge-
Knopoff spring-block model [2], initially introduced to
study earthquakes (EQ model), has been developed by
Olami, Feder, and Christensen [3]. It describes the contacts
in terms of elastic springs and junctions that break at a
critical force. Computer simulations [4,5] showed that the
EQ model may reproduce the experimentally observed
stick-slip and smooth-sliding regimes, including the role
of velocity and temperature, if the model is at least two
dimensional and various assumptions on the properties of
the contacts are made.

The drawback of such a simulation approach is that
heavy calculations with different parameter sets or contact
properties are required to determine the main features of
the model, and it is hard to draw conclusions of general
validity. The calculations may be tedious because a large
number of contacts and investigations on very long evolu-
tion times are necessary to get meaningful statistics and to
make sure that the calculation has reached asymptotic
properties which have forgotten the initial conditions.
Moreover, almost all the studies based on the EQ model
assume that all contacts have identical properties for sim-
plicity, and to reduce the parameter space to explore.
However, as we show below, this limit is singular and
may lead to qualitatively incorrect conclusions.

Here we introduce a master equation (ME) approach
which is much more efficient than simulations and can
be solved analytically in cases which are particularly rele-
vant. It provides a deeper understanding of friction ana-
lyzed at the mesoscale in terms of the statistical properties
of the contacts. This splits the study of friction in two
independent parts: (i) the calculation of the friction force
given by the master equation provided the statistical prop-
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erties of the contacts are known, (ii) the study of the
contacts, which needs inputs from the microscopic scale.
Many aspects such as the interaction between the contacts
and their aging can be studied separately to determine their
role on the statistical properties of the contacts and then
accounted for by the master equation approach.

Earthquake-like model. —The EQ model describes the
contact interface, i.e., the interface between the bottom of
the solid block and the fixed substrate (Fig. 1). It assumes
that the interaction occurs through N, asperities that make
contacts with the substrate. Each asperity is characterized
by its contact area A; and an elastic constant k;, schema-
tized by an elastic spring on Fig. 1, which can be estimated
from k; ~ pc?\/A;, where p is the mass density and c is the
transverse sound velocity of the material which forms the
asperity [4]. When the bottom of the solid block is moved
by X, the stretching x; of an asperity, i.e., its elastic
deformation with respect to its relaxed shape, increases.
The force at the contact grows as f; = k;x; until it reaches
the threshold value f; & A; at x;; = f,;/k; « \/A;; at this
point the contact rapidly slides, and f; and x; drop to a
small value before a contact is formed again.

Let P (x,) be the normalized probability distribution of
values of the thresholds x,; at which contacts break. The
model is studied in the quasistatic limit where inertia
effects are neglected. The distribution P.(x) can be char-
acterized by its average value X, and standard deviation o;.
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FIG. 1 (color online). The earthquakelike model of friction.
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A typical example is a Gaussian distribution P.(x) =
G(x; %, o) [6].

To describe the evolution of the model, we introduce
the distribution Q(x;X) of the stretchings x; when the
bottom of the solid block is at a position X. It is normalized
by [®,dxQ(x;X) =1 for all X. Let all asperities be
initially relaxed or weakly stressed, e.g., let the distribution
0(x;0) = Qjyi(x) be the Gaussian Qjyi(x) = G(x; Xipj, Tini)
with ¥;,; = 0 and o;,; =< o,. Now, let us adiabatically
increase the displacement X of the bottom of the solid
block while the substrate remains fixed. The sum of the
elastic forces exerted on the bottom of the block by the
stretched asperities makes up the friction force

F(X) = No(ky) ] " x0( X)dx (1)

The evolution of the system, deduced from the numeri-
cal simulation of the EQ model is shown in Fig. 2(a). It
shows that, in the long term, the initial distribution ap-
proaches a stationary distribution Q(x) and the total force
F becomes independent on X. The final distribution is
independent of the initial one. An elegant mathematical
proof of this statement was presented in Ref. [7]. The
statement is valid for any distribution P.(x) except for
the singular case of P.(x) = &(x — x,).

Master equation.—Rather than studying the evolution of
the distribution Q(x; X) by a simulation of the EQ model it
is possible to describe it analytically. Let us consider a
small displacement AX > 0 of the bottom of the solid
block [8]. It induces a variation of the stretching x; of the
asperities which has the same value AX for all asperities if
the deformation of the bottom surface of the block can be
neglected. As discussed below, the general case where the
relative positions of the asperities on the surface are al-
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FIG. 2.

lowed to vary can be cast into a generalization of this
formalism. The displacement X leads to three kinds of
changes in the distribution Q(x;X): first, there is a shift
due to the global increase of the stretching of the asperities,
second, some contacts break because the stretching ex-
ceeds the maximum that they can stand, and third, those
broken contacts form again, at a lower stretching, after a
slip at the scale of the asperities, which locally reduces the
tension within the corresponding asperities. These three
contributions can be written as a master equation for

O(x; X):
O(x; X + AX) = 0(x — AX; X) — AQ_(x; X)
+ AQ,(x; X). )

The first term in the right-hand side of Eq. (2) is just the
shift. The second term AQ _(x; X) designates the variation
of the distribution due to the breaking of some contacts. It
can be written as

AQ_(x;X) = P(x)AXQ(x; X), 3)

where P(x)AX is the fraction of contacts that break when
the position changes from X to X + AX. According to the
definition of P_.(x) the total number of unbroken contacts
when the stretching of the asperities is equal to x is given
by N, [T P.(£)dé. The contacts that break when X in-
creases by AX, so that the stretching of all asperities
increases by AX, are those which have their thresholds
between x and x + AX, i.e., N.P.(x)AX. Thus,

P(x) = P.(x) / [ " agp, (&), (4)

The broken contacts relax and have to be added to the
distribution around x ~ 0, leading to the third term in
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(a) Evolution of the EQ model. The curves show the distribution Q(x; X) for incrementally increasing values of X (with the

step AX = 1.05). The distribution P.(x) is Gaussian with ¥, = 1 and o, = 0.05, the initial distribution Q;,;(x) is Gaussian with
Xini = 0 and o,; = 0.025 so that F(0) = 0. (b) Solution of the master equation with the increment AX = 1.09 for the same model
parameters. Panels (c) and (d) show the dependences F(X) for (k;) = 1 and K = oo for EQ and ME, correspondingly.
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Eq. (2). We denote by R(x) the normalized distribution of stretchings for the relaxed contacts. Writing that all broken
contacts described by AQ_ (x; X) reappear with the distribution R(x), we get

A0, (%) = RW) [ deAQ_(&:X). )

Equation (2) can be rewritten as [Q(x; X + AX) —

0(x:; X)) + [0(x: X) —

Olx — AX;X)] = —AQ_(x;X) + AQ, (x; X).

Taking the limit AX — 0, we finally get the integro-differential equation

00(x: X) BQ(x X)
dx 0X

which has to be solved with the initial condition Q(x;0) =
QOini(x). Notice that Q;,;(x) cannot be an arbitrary function,
because the contacts that exceed their stability threshold
must relax from the very beginning.

Once the distribution Q(x; X) is known, we can calculate
the friction force F(X) from Eq. (1). The static friction
force is the maximum of F(X), i.e., F; = F(X,), where X

a solution of the equation F'(X) = dF(X)/dX = 0. In
order to simplify the calculation, we will assume in what
follows that R(x) = 8(x); i.e., when the broken contacts
stick again the asperities are completely relaxed.

Analytical solutions of the master equation can be ob-
tained for some particular cases of contact properties [9],
such as a rectangular P.(x) distribution. Moreover, for one
particular but important choice of the initial distribution,
when all contacts are relaxed at the beginning, Q;,i(x) =
8(x), we can find analytically the initial part of the solution
in a general case [9]. For the rather general case of a
Gaussian distribution of thresholds, P.(x) = G(x; X,, o),
a numerical solution of the master Eq. (6) is presented in
Fig. 2(b). One can see that it is almost identical to that of
the EQ model [Fig. 2(a)], except for the noise on the EQ
distributions. The distribution Q(x; X) always approaches a
stationary distribution Q,(x). The final distributions of the
EQ model and the master equation approach are compared
in Fig. 3.

The steady-state, or smooth-sliding solution, i.e., the
solution of Eq. (6) which does not depend on X, can easily
be found [4]. It can be expressed as
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FIG. 3 (color online). The final distribution Q(x) for the pa-
rameters from Fig. 2 (solid curve; crosses show the averaged
final distribution for the EQ model). The red dotted curve shows
the distribution P.(x), and the blue broken curve shows P(x).

+ P()Q(x: X) = R(x) [ dEP(£)Q(£:X), ©)

[

0,(x) = CT'OM)Ep(x), )

where O (x) is the Heaviside step function, Ep(x) = e
Ux) = [(déP(§), and C = [7° dxEp(x).

In the general case, let the distribution P (x) be of bell-
like shape with the maximum at X, and the width ;. When
X shifts for the distance X,, due to the breaking and
reforming of contacts with a lower stretching, an initially
peaked distribution Q(x; X) broadens by the value ~o;
(Fig. 2). Therefore, any initial distribution tends to the
stationary one as |Q(x; X) — Q,(x)| = exp(—X/X*), where
X" ~x2/o,.

Thus, in a general case the solution of the master equa-
tion always approaches the smooth-sliding one given by
Eq. (7). However, there is one exception from this general
scenario. When all contacts are identical, i.e., all contacts
are characterized by the same threshold x,, P.(x) = 6(x —
X;), the model admits a periodic solution [9]. This singular
periodic solution has been found in simulations and ana-
lyzed as describing the stick slip [10], but actually it is
unphysical and ceases to exist as soon as nonequivalent
contacts are considered, whatever their precise properties.
As discussed below the stick slip can be deduced from the
solution of the master equation, but its origin is different
[11].

Stick slip and smooth sliding.—The master equation
allows us to compute the friction force F(X) when the
bottom of the solid block is displaced by X. But actually
we do not control X. The displacement is caused by a
shearing force F7 applied on the top of the solid block
which displaces the top surface by X7. As the strain on the
solid is generally small the deformation of the solid block
can be assumed to be elastic so that X7 is related to the
applied force by F; = K(Xy — X) where K is the shear
elastic constant of the solid block. The total force applied
to the bottom of the solid block, which determines its
displacement X, is the sum of the applied force and the
friction force

—U(x)

Fioq = KX7 — X) = F(X). ®)

It can be viewed as deriving from the potential
1 X
VO X) = KOG = X0+ [TF@dE o)

which determines the behavior of the solid block subjected
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to friction and applied force. A necessary condition for
smooth sliding is that X; and X grow together with X —
X = B, where B is a constant that measures the shear strain
of the solid block during the sliding. It is determined by the
condition dV/d(X; — X) = —aV/aX = 0, which simply
means that the total force on the interface vanishes. Smooth
sliding also requires this state be stable,
2 2
oV oy =0 or

XX ax F(X)=-K. (10)

If we start from relaxed asperities, in the early stage of the
motion F(X) is a growing function of X, and then it passes
by a maximum when some contacts start to break and
reform at lower asperity stress. As a result F/'(X) becomes
negative. Depending on the value of K two situations are
possible. For large K (stiff block) F'(X) never falls below
—K and the smooth sliding is a stable steady state. For
small K (soft block) F’(X) can become smaller than —K so
that the stability condition (10) is no longer valid. The
instability causes X; — X to change abruptly by a breaking
of all the contacts and a quick slip of the block before the
contacts reform with relaxed asperities. And the process
can repeat again, leading to the familiar stick-slip motion.
The master equation, which gives F(X) can be used to
compute the period of the stick slip, and, when the asper-
ities fully relax before the contacts reform, an analytical
solution can be obtained [9]. It should be noticed that the
existence of a stick slip is not only determined by the
stiffness K of the solid block. The properties of the asper-
ities, defined by the distribution P,(x) of the stretching for
which they break is also essential because it determines the
expression of F(X) and hence the minimal value of F'(X).

Discussion.—The ME formalism can be extended to
take into account various generalizations of the EQ model.
For instance one can, in principle, take into account the
elastic deformation of the interface by introducing a posi-
tion dependent distribution Q(x, X(7)) where 7 denotes the
position of an asperity on the interface, and X(7) the local
translation of the interface averaged over a mesoscopic
scale. The master equation must then be coupled to an
equation describing the elastic deformation of the inter-
face, subjected to the contact forces at each point 7. This
illustrates the new viewpoint introduced by the ME ap-
proach which describes the phenomena at an intermediate
scale between the microscopic scales of the contacts and
the macroscopic scale of the displacement of the solid
block. The ME equation only has a meaning if, on this
intermediate scale, there are many individual contacts,
allowing us to study them as a statistical distribution and
not individually.

Another aspect which can be introduced in the ME
formalism is the aging of the contacts [9]. Experiments
and MD simulations show that the static friction force
grows with time since a contact is formed. As a result, if

newly formed contacts are characterized by a distribution
P.;(x) this distribution evolves with time, moving to a
higher mean value and a smaller standard deviation.
Aging is a stochastic process which can be described by
a Smoluchowsky equation. The master equation for
O(x, X) must then be completed by an equation for the
evolution of P.(x), which in turns affects P(x) in the master
equation.

The ME formalism can also accommodate temperature
effects which enter again through their effect on the distri-
bution P(x) because thermal fluctuations allow an activated
breaking of contacts for asperities which are still below
their thresholds [4]. The main point that we would like to
stress is that this formalism introduces a new viewpoint on
the mescoscopic modeling of friction. Moreover it splits
the analysis of friction phenomena into problems that can
be studied separately, the statistical properties of the con-
tacts, and the evolution of the distribution Q which is
described by the master equation, coupled to additional
equations representing different effects such as the elastic
interactions between asperities, the aging of the contacts or
temperature fluctuations.
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