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Abstract

The local opening of DNA is an intriguing phenomenon from a statistical physics point of view,

but is also essential for its biological function. For instance, the transcription and replication of our

genetic code can not take place without the unwinding of the DNA double helix. Although these

biological processes are driven by proteins, there might well be a relation between these biological

openings and the spontaneous bubble formation due to thermal fluctuations. Mesoscopic mod-

els, like the Peyrard-Bishop-Dauxois model, have fairly accurately reproduced some experimental

denaturation curves and the sharp phase transition in the thermodynamic limit. It is, hence,

tempting to see whether these models could be used to predict the biological activity of DNA. In a

previous study, we introduced a method that allows to obtain very accurate results on this subject,

which showed that some previous claims in this direction, based on molecular dynamics studies,

were premature. This could either imply that the present PBD should be improved or that biolog-

ical activity can only be predicted in a more complex frame work that involves interactions with

proteins and super helical stresses. In this article, we give detailed description of the statistical

method introduced before. Moreover, for several DNA sequences, we give a thorough analysis of

the bubble-statistics as function of position and bubble size and the so-called l-denaturation curves

that can be measured experimentally. These show that some important experimental observations

are missing in the present model. We discuss how the present model could be improved.

PACS numbers: 87.15.Aa,87.15.He,05.10.-a
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I. INTRODUCTION

The process of DNA denaturation has intrigued both biologists as statistical physicists.

Large openings, the so-called DNA bubbles are supposed to allow the formation of some

specific DNA structures, such as the T-loop that stabilizes the end of the chromosomes.

The opening of the DNA double helix is also a mandatory step for the transcription and the

replication of the genetic code. In addition, the bonds between bases on opposite strands

can break due to thermal fluctuations which can occur even at room or physiological tem-

peratures. These thermally induced DNA bubbles can be several base-pairs long and tend

to increase at higher temperatures, which eventually results in the complete denaturation

or the melting of DNA. An intriguing question we could ask ourselves is how the formation

of bubbles depend on the base-pair specific sequence and how thermally induced bubbles

relate to biophysical DNA unwinding mechanisms that are involved in the transcription and

replication. Although these biological processes are driven by proteins, the intrinsic fluctu-

ations of DNA itself might play an important role. Hence, one could even question whether

biological active sites could be predicted by thermally induced bubbles in absence of any

proteins1–3.

Experimentally, the thermally induced denaturation can be monitored as the breaking of

the base-pairs is accompanied with a large increase of UV absorbance near 260 nm. In fact,

the UV absorbance measures the reduction of base-pairing and -stacking when the DNA

molecule denaturates. Using this technique, it was found that large synthetical fabricated

homopolymers denaturate suddenly within a very small temperature interval4. This indi-

cates that the process resembles a true first order phase transition. On the other hand,

natural heterogeneous DNA polymers denaturate in multiple steps and the shape of this

denaturation curve is highly sensitive to the sequence5. It is known that this process is not

only determined by the fraction of strong (GC) or weak (AT) bonds. The sequence specific

order is also important. Specific sequences can reveal a high opening rate despite a high frac-

tion of GC base-pairs6. Besides the already mentioned UV absorbance experiments, many

ingenious techniques have been devised to study the denaturation process and the statisti-

cal and dynamical properties of DNA bubbles in general. For instance, Raman vibrational

spectroscopy7,8, neutron scattering9, fluorescent correlated spectroscopy10, and S1-nuclease

cleavage1 have recently put forward as promising experimental tools to gain insight in the
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complex mechanism of DNA denaturation.

In general, despite this significant progress, the experimental techniques reveal only in-

direct information. Hence, complementary computational and theoretical studies are often

a requisite to complete the interpretation of experimental data. This is, however, difficult

due to the astronomical large number of atoms that are needed to describe solvated DNA.

Besides the number of atoms of DNA itself, a sufficiently large number of water molecules

and counter ions should be included. Any full-atom approach is henceforth limited to very

short DNA sequences and, for the longest sequences that can be studied, meaningful bubble

statistics cannot be obtained. This has created need for mesoscopic theoretical models that

allow to study long DNA sequences of hundreds or even thousands of base-pairs11–16. While

most of these models try to mimic the system by an Ising-like model, the Peyrard-Bishop-

Dauxois model11,12 (PBD) relies on a continuous approach using an effective force-field as

function of the base-pair separation. Although more complicated than the Ising type models,

the PBD model has the advantage that it can describe the DNA sequence in a more detailed

manner than just a simple array of open and closed states and it allows to study dynamics

as well. An important essence of the PBD model is the nonlinear stacking interaction which

reproduces the experimentally measured sharp phase transition of long homopolymers12.

Moreover, the model, parameterized for heterogeneous DNA chains, has given accurate re-

sults for denaturation curves of short heterogeneous DNA sequences17. Although the PBD

model is a very strong simplification of the actual DNA molecule in solution, the qualitative

and even quantitative agreement with numerous experimental findings have given confidence

to this model and to its theoretical results for which yet no direct experimental information

is available.

It were these findings that inspired Choi et al.1,2 to compare the signal of S1 nuclease

cleavage experiments with the formation of bubbles of a certain size obtained from molecular

dynamics (MD) simulations of PBD model. The detection of bubbles at a certain size

requires the identification of configurations that contain series of consecutive open base-

pairs which is very difficult to accomplish experimentally. Still, as argued in [1], the S1

nuclease enzymes can selectively cleave the large temporary openings while leaving the

smaller openings intact, hindered by their own physical size. The amount of cleavages

at certain positions in the DNA chain results in a signal that becomes visible after a certain

time of incubation (about 45 min.1). The obtained S1 nuclease signal showed a remarkable
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correspondence with the calculated probability profile for bubbles containing ten or more

base-pairs from the MD simulations of the PBD model1. Moreover, both experimental

and theoretical graphs showed clear dominant peaks around the Transcription Start Site

(TSS) where the biological transcription is initiated. A similar result had been reported by

Benham et al.18–22 who also found a connection between bubble formation and regulatory

loci using a theoretical model. However, there are two crucial differences between the work

of Benham et al. and Choi et al. First, the methodology of Benham et al. is specified to

detect very large openings upto 100 base-pairs in kilobase sequences, while the work of Choi

et al. investigates much smaller openings ∼ 10 in sequences of the order ∼ 100 base-pairs.

The second and most important difference is that work of Benham studies the bubbles in

vivo which includes torsional effects that are generated by other molecules. The apparent

evidence of Choi1 suggested that spontaneous bubbles in vitro already bear the signature

of biological activity. A remarkable result that was summarized by the statement: DNA

directs its own transcription1.

Unfortunately, this statement had to be reconsidered due to more accurate results by us3

using a direct integration method that is orders-of-magnitude faster than MD. An important

difficulty with MD or Monte Carlo is that large bubbles appear only seldom so that the

statistical significance can be questioned even for very long simulation periods. Our accurate

results did not support the previously found results at some crucial points. As in [1], they

indicated that bubbles might appear more easily in the biological active sites due to its

higher content of AT as compared to a random sequence. However, contrary to [1], the most

dominant peak did not appear at the TSS for the sequences under study nor did the promoter

sequences have a much higher opening profile as compared to biologically inactive sequences.

Hence, the statistical information on bubbles obtained by the PBD model was found to be

insufficient to make very accurate predictions on transcription start sites or to discriminate

between promoter sequences and biologically inactive sequences as was suggested before1,2.

This leaves open the following possibilities: (i) either the transcription sites cannot be

predicted by the information on thermally induced bubbles alone but require more complex

interactions including, for instance, superhelical stress, or (ii) the bubble hypothesis of Choi

et al. still holds, as suggested by the S1 nuclease experiments, but a more accurate theoretical

model is needed to support these findings.

The main subject of this article is to give a detailed description of the direct integration
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method introduced in [3] and to show some examples of the calculated bubble statistics

for some biologically active and inactive sequences. We will also investigate the validity of

the PBD model by applying this method to calculate quantities that allow a more direct

comparison with experiments. This article is organized as follows: we will first give a short

introduction to the PBD model in Sec. II, followed by a theoretical discussion on what we will

call the double stranded DNA ensemble (dsDNAE) in Sec. III. The latter is needed to give

meaningful results when applying the PBD model to finite chains. Then, in Sec. IV, we give

some important definitions concerning the bubble statistics of DNA expressed in microscopic

terms such that it can be calculated by computer experiments. In Sec. V we introduce the

direct integration method including all the technicalities involved. This derivation results in

an algorithm that implies a repetitive numerical integration scheme using a Newton-Cotes

rule. The efficiency of several Newton-Cotes schemes, such as rectangular, trapezoidal,

Simpson’s 1
3
-rule, Boole’s rule, and 11-point Newton-Cotes rule, are examined and compared

in Appendix A. In Sec. VI we show some numerical results of the bubble probability profiles

of a biologically active promoter sequence and two artificial Fibonacci sequences. We confirm

the previous findings: there is no enhanced opening at transcription start sites or at promoter

sequences in comparison to biologically inactive sites and sequences that have a similar

(local) AT content. Then, in Sec. VII we investigate the validity of the PBD model using

the direct integration method to calculate l-denaturation curves which can be measured

experimentally by the recently introduced quenching technique23–25. These results clearly

indicate that some essential ingredients are missing in the present PBD model. This implies

that the PBD model should be improved and that the bubble hypothesis of Choi et al. could

still hold when an ’ideal theoretical model’ is considered. In Sec. VIII, we end with a general

discussion and make some suggestion that could lead to an improved theoretical model.

II. THE PBD MODEL

The PBD model reduces the myriad degrees of freedom of DNA to a one-dimensional

chain of effective atom compounds describing the relative base-pair separations yk from the

ground state positions. The total potential energy U for an N base-pair DNA chain is then
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given by

U(yN) ≡ V1(y1) +
N

∑

k=2

Vk(yk) + W (yk, yk−1). (1)

Here, yN ≡ {yk} denotes the set of relative base pair positions and Vk and W are the two

PBD-potential energy functions given by

Vk(yk) = Dk

(

e−akyk − 1
)2

(2)

W (yk, yk−1) =
1

2
K

(

1 + ρe−α(yk+yk−1)
)

(yk − yk−1)
2

The first term Vk is the on site Morse potential describing the hydrogen bond interaction

between bases on opposite strands. Dk and ak determine the depth and width of the Morse

potential and are different for the weak AT and strong GC base-pair. The stacking potential

W consists of a harmonic and a nonlinear term. An important reason for the success of this

model lies in the ρ-term which was introduced in [12] as an improvement upon the original

Peyrard-Bishop (PB) model11. This original PB model can be retrieved by taking ρ = 0. The

precise analytical shape of W (yk, yk−1) in Eq. (2) is not crucial. What is important is that for

ρ > 0, the effective coupling constant of the stacking interaction drops from K ′ = K(1 + ρ)

down to K ′ = K whenever either yk or yk−1 becomes significant larger than α−1. It is

thanks to this additional term that the observed sharp phase transition in denaturation

experiments4 can be reproduced. It is important to note the + sign in Eq. (2). This makes

the stacking potential W (yk, yk−1) not a simple function of the relative distance |yk − yk−1|.
It was found that, after replacing e−α(yk+yk−1) with e−α|yk−yk−1| in Eq. (2), the denaturation

transition becomes continuous again as in the original PB model26. However, Eq. (2) is surely

not the only possible possible potential that can reproduce the sharp transition. Recently, an

alternative potential W (yk, yk−1) was suggested in [27] which also seems to generate a sharp

denaturation and only depends |yk−yk−1|. This shows that reproducing experimental curves

alone is definitely not enough to uniquely determine the effective potentials. Interpretation

of the physical mechanism that lead to the sharp denaturation transition is a prerequisite

for the justification of the effective models. The discussion of this mechanism is definitely

not completely settled, but the argumentation that relies in the PBD model seems very

plausible, as the ρ-term mimics the effect of decreasing overlap between π electrons when

one of two neighboring base move out of stack.
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After modeling homogeneous DNA, Campa and Giansanti generalized the PBD model

for the heterogeneous case17,28. The in total 7 parameters K = 0.025 eV/Å2, ρ = 2,

α = 0.35 Å−1, Dw = 0.05 eV, Ds = 0.075 eV, aw = 4.2 Å−1, as = 6.9 Å−1, were derived

by fitting to experimental denaturation curves of short heterogeneous DNA segments. The

subscripts w and s refer to the type of base-pair at site k in Eq. (2). Here, Dw and aw are

used for the weak AT base-pairs and Ds and as are used for the strong GC base-pairs. The

ratio between Dw and Ds reflects the ratio between the number of hydrogen bonds forming

the AT and GC base-pair bonding. In fact, the reason to fix this ratio is not really justified as

the depth of the Morse potential does not only reflect the hydrogen bond linking (which is in

the order of 0.2 eV per hydrogen bond), but also the repulsive interactions of the phosphate

groups and the effect of the solvent. Still, the absolute and relative magnitude of the effective

weak and strong interactions seem to be more or less correct as this parameterization could

reproduce the experimental denaturation curves of several short DNA sequences as tested

in [17,28].

Despite these accomplishments, it is also important to realize the limitations of the model.

The PBD model treats the A and T bases and the G and C bases as identical objects. The

stacking interaction W (yk, yk−1) is also independent of the nature of the bases at site k and

k − 1. Experimental measurements29–31 and theoretical calculations32–36 have shown that

these are rather crude approximations. Future work might aim to improve upon this.

III. THE DSDNA ENSEMBLE

In this section we will assert the need of special ensemble that we will call the double

stranded DNA ensemble (dsDNAE) and we will give its mathematical definition. The reason

that we will not use the full NVT or NVE ensemble is because the results based on the PBD

model have not much meaning in these ensembles whenever finite DNA chains are consid-

ered. The original papers using the PBD model were all performed in the thermodynamic

limit of an infinite DNA chain where this problem does not appear. It is in this limit that

one can show, using the transfer integral technique37, that the uniform PBD-DNA sequence

undergoes a very sharp phase transition38 upon heating, which is first order except in a

cross over region near the transition temperature that is so narrow that it is not accessible

to experiments. The difficulty of finite sequences is that PBD model basically represents a
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single DNA chain in an infinite solution. Hence, whenever the dsDNA completely separates,

the two strands are free to go to very large separations without cost of energy due to the

plateau of the Morse potential. In experiments, where the amount of solvated DNA is not

infinitely diluted, this effect is counterbalanced by the hybridization mechanism where two

single stranded chains in solution come together and match their complementary bases. This

implies that, per definition, the PBD model cannot reproduce the experimental data, which

are based on finite concentrations, using equilibrium statistics in the full phase space. A

confinement of the phase space is always necessary. These can be done hiddenly using a

series of reasonable short MD12,27,39 or Monte Carlo40 simulations starting from a certain dis-

tribution of initial configurations. Here, the finite simulation length prohibit the boundless

exploration of the completely separated states. However, this strategy will naturally gener-

ate results that depend on the choice of initial conditions and the simulation length which

is not completely under control especially at temperatures near the melting transition12,39.

Alternatively, one could restrict configuration space by adding an infinite wall such that yk

for all k cannot exceed a certain maximum value41 or by adding a small positive slope to

the plateau of the Morse potential38. These approaches still allow for complete denatura-

tion and recombination of the two strands, but prevent separations of very large distances.

This recombination, however, is quite artificial as the one-dimensional model does not allow

for misfolding, the creation of bulge-loops42 or the recombination with a different strand

in solution. Therefore, we chose to focus to these configurations only that belong to the

dsDNAE that we will introduce here. In microscopic terms, a configuration {yk} is called a

double stranded DNA (dsDNA) molecule when yk < ξ for at least one k ∈ [1 : N ] with ξ the

opening threshold definition. Similarly, a configuration is completely denaturated whenever

yk > ξ for all k. All configurations assigned as dsDNA together with their corresponding

Boltzmann-weight comprise the dsDNAE.

The statistical average of a certain function A(yN) in the full phase space is standardly

defined as

〈A〉 ≡
∫

dyNA(yN)̺(yN)
∫

dyN̺(yN)
(3)

with dyN ≡ dyNdyN−1 . . .dy1, ̺ = e−βU the probability distribution density, and β = 1/kBT

with T the temperature and kB the Boltzmann constant. In order to define the ensemble

average in the dsDNAE we introduce following characteristic functions that indicate whether
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a certain base-pair is open or closed.

θk(yk) ≡ θ(yk − ξ), θ̄k(yk) ≡ θ(ξ − yk) (4)

Here θ(·) equals the Heaviside step function. θk equals 1 if the base-pair is open and is

zero otherwise. θ̄k is the reverse. Now, the ensemble average of A(yN) in dsDNAE can be

expressed as a weighted average using the weight function µ(yN):

〈

A(yN)
〉

µ
≡

〈

A(yN)µ
〉

〈µ〉 (5)

with

µ ≡ 1 −
N
∏

k=1

θk (6)

To shorten the notation we have dropped the yk dependencies. In Eq. (6), µ = 1 except

when all bases are open; then µ = 0. The dsDNAE removes all difficulties concerning

the unnormalizability of the full phase space equilibrium distribution. Besides the opening

threshold definition ξ, it does not add any new (hidden) parameters to the PBD model

as in previous examples. At temperatures sufficiently below the denaturation transition,

the dsDNAE gives a good representation of the actual experimental situation where only a

fraction of the DNA is in the single stranded state. It is reasonably simple to use MD in the

dsDNAE using a biasing-potential, e.g.3

V bias(ymin) =











(ymin − ξ)6 if ymin > ξ

0 otherwise
(7)

with ymin = MIN[{yk}]

This bias yields an additional force to the system that is always zero except when the

dsDNA is at the point of complete denaturation. Then it gives a strong repulsion to the

last closed base to prevent the complete opening of the whole molecule. Although, MD is

certainly much less efficient than the direct integration method expressed in Sec. V, MD

using the biasing force (7) can still be useful for calculating properties that do not allow

the factorization necessary for the integration method or dynamical properties. At higher

temperatures, the contributions of single stranded DNA, to e.g. UV absorbance, can no

longer be neglected. Luckily, recent experimental techniques allow to selectively subtract
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the contributions of the single stranded molecules to the signal23–25 such that, effectively,

the dsDNA signal can be obtained. Hence, also at higher temperatures, the theoretical PBD

calculations using dsDNAE can be compared with experimental results.

It is an interesting mathematical problem why the complete separation does not disturb

the thermodynamic case. In fact, this can be understood invoking one-dimensional random

walk theory. This reveals that, for a fixed configuration of the infinite DNA chain, one should

always meet a closed base-pair when making a walk in one direction along the chain53. Hence,

µ is always 1 for the infinite case and, thus, the infinite chain remains in the dsDNAE at

all times. It is important to note that, therefore, the constraint to keep always one base-

pair closed, does not destroy the phase transition. On contrary, the additional constraint

allows to study thermodynamic limit using finite approximants in a much more controlled

way. Fig. 1 shows the denaturation curves of finite homopolymers of increasing length. The

results was obtained by the direct integration method of Sec. V, but could as well been

obtained using MD with the bias potential (7). The denaturation curves of the 400 GC and

400 AT base-pair sequences resemble already closely the discontinuous step function, that

would result from an infinite chain, and allow to estimate the denaturation temperatures

quite accurately. In contrast, previous analysis using MD without any bias had much more

difficulty to determine the denaturation temperature due to huge variations in the melting

region despite the use of very long sequences upto 16384 base-pairs39.

IV. DENATURATION CURVES AND BUBBLE PROBABILITY MATRICES

Using the definitions of [23–25] we can call f the fraction of open base-pairs and p the

fraction of open molecules. With the use of Eqs. (4) we can give the following mathematical

expressions

f =
1

N

N
∑

k=1

〈θk〉

p =

〈

N
∏

k=1

θk

〉

(8)
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Moreover, we introduce l23–25 as the fraction of open base-pairs provided that the molecules

is in the double stranded state

l =
1

N

N
∑

k=1

〈θk〉µ . (9)

Eq. (8,9) obey the relation l = (f−p)/(1−p). The quantity l is sometimes called the average

fractional bubble length. However, this is not completely true as more than one bubble may

occur simultaneously in the same sequence. For the infinite case, we have f = l and p = 0

as explained in Sec. III. However, we cannot reproduce the experimental f(T ) and p(T )

curves for finite chains as we have, strictly speaking, f(T ) = p(T ) = 1 at all temperatures in

the PBD model. Therefore, we will focus on the behavior of l(T ) which can be measured by

the quenching technique of Zocchi and co-workers23–25. Indirectly, f(T ) could be obtained

from l(T ) using the phenomenological approach of Campa and Giansanti17. This approach,

however, requires two additional parameters that have to be fitted to experiments. Therefore,

we believe that the calculation of l(T ) gives the most direct comparison with experimental

data.

Of course, the experimental UV absorbance signal cannot be literally related to the

fraction of open base-pairs as it is not a binary type measurement that detects whether the

base is open or closed. Moreover, the theoretical definition of ’open’ and ’close’ is a bit

ambiguous as it depends on the choice of opening threshold ξ. Still, it is known that the UV

absorbance changes quite abruptly when bases move out of stack, which validates the θ-like

expressions (8) and (9). Moreover, it was found that, at least, the qualitative aspects of the

theoretical denaturation curve are not too sensitive to ξ when chosen within a reasonable

interval (∼ [1 Å: 2 Å] ) . Nevertheless, the theoretical definitions (8) and (9) are, not the

only ones proposed in literature. In Refs. [40,43] another functional form of Eq. (8) was used

f ′ =
1

N

N
∑

k=1

θ
(

〈yk〉 − ξ
)

(10)

We believe, however, that Eq. (10) should be considered as imprecise as the UV signal is

almost a binary indication of the stacking state of a base pair and, hence, cannot be related

to the mean position 〈yk〉 of the bases.

Besides denaturation curves, the statistical method introduced in Ref. [3] allows to study

bubbles of a given size. The importance to study bubbles of a given size was suggested by
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Choi et al.1,2 as its signal could be related to S1 nuclease cleavage experiments and possibly

could tell more about its biological function than the mean 〈yk〉 or the probability of opening

〈θ(yk − ξ)〉. Before giving the definition of, what we call, the bubble probability matrix, we

will need to introduce the following auxiliary function:

θ
[m]
k ≡ θ̄k−m

2
θ̄k+ m

2
+1

k+ m
2

∏

k′=k−m
2

+1

θk′ for m even

≡ θ̄k−m+1
2

θ̄k+ m+1
2

k+ m−1
2

∏

k′=k−m−1
2

θk′ for m odd (11)

which is 1 (0 otherwise) if and only if k is at the center of a bubble that has exactly size

m. For even numbers it is a bit arbitrary where to place the center, but we defined it as

the base directly to the left of the midpoint of the bubble. The bubble probability matrix

Pbub(k, m) is, now, defined as the probability to have a bubble of size m centered at base-pair

k provided that the molecule is part of the dsDNAE. Hence,

Pbub(k, m) ≡
〈

θ
[m]
k

〉

µ
(12)

In principle, Pbub(k, m) contains all the information on the bubble statistics in a DNA

sequence. Still, it is useful to calculate other quantities as well. From physical and biological

perspective, it might be useful to know the ability to participate in bubbles. Therefore, we

introduce the Ppart(k, m) probability which is the probability to participate in a bubble of

at least m sites.

Ppart(k, m) ≡
{m′: even}

∑

m′≥m

k+m′/2−1
∑

k′=k−m′/2

Pbub(k
′, m′)

+

{m′: odd}
∑

m′≥m

k+(m′−1)/2
∑

k′=k−(m′−1)/2

Pbub(k
′, m′) (13)

This quantity is less mathematically stringent as it is independent of where you assign the

position of the bubble. Note that this quantity is still somewhat different from the projection

in Ref. [3] where each bubble is still associated to one base-pair position only. In variance

with Pbub(k, 1), the bubble participation probability Ppart(k, 1) is directly related to the

simple opening. Hence, Ppart(k, 1) = 〈θk〉µ 6= Pbub(k, 1).
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V. THE DIRECT NUMERICAL INTEGRATION METHOD

The two quantities 〈θk〉µ and
〈

θ
[m]
k

〉

µ
that appear in Eq. (9) and (12) can be expressed

using partition function integrals:

〈θk〉µ =
Zθk

− ZΠ

Z − ZΠ

〈

θ
[m]
k

〉

µ
=

Z
θ
[m]
k

Z − ZΠ

, (14)

which are defined by:

Z =

∫

dyNe−βU(yN )

Zθk
=

∫

dyNe−βU(yN )θk

Z
θ
[m]
k

=

∫

dyNe−βU(yN )θ
[m]
k

ZΠ =

∫

dyNe−βU(yN ) ×
∏

j

θj . (15)

In Eq. (14), we used the fact that (θk)
2 = θk and θkθ̄k = 0. Note that Z, Zθk

, and ZΠ are

infinite, but the differences Z − ZΠ and Zθk
− ZΠ are finite and well defined.

Now, as all integrals ZX are of the factorizable form ZX =
∫

dyNa
(N)
X (yN , yN−1) . . . a

(3)
X (y3, y2)a

(2)
X (y2, y1) we can use following iterative scheme to

determine the ZX integrals:

z
(2)
X (y2) =

∫

dy1 a
(2)
X (y2, y1)

z
(3)
X (y3) =

∫

dy2 a
(3)
X (y3, y2)z

(2)
X (y2)

. . .

z
(N)
X (yN) =

∫

dyN−1 a
(N)
X (yN , yN−1)z

(N−1)
X (yN−1)

ZX =

∫

dyN z
(N)
X (yN). (16)

The calculation of z
(k)
X (yk) for a discrete set of ngrid values yk requires only n2

grid function

evaluations whenever z
(k−1)
X is known. Hence, a total of N · n2

grid function evaluations are

required instead of nN
grid which is a huge improvement.

An alternative technique was introduced in Ref. [41] where the a
(k)
X (yk, yk−1) kernels are

expanded into a proper basis-sets. After this expansion, the integrals, like in Eqs. (15),
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turn into simple matrix multiplications which can be evaluated efficiently. It was found that

performance of such a method depends strongly of the right choice of basis-set functions.

The implementation of this method is, therefore, probably a bit more involved than the

direct integration scheme of Eq. (16). Most likely, this method will be more efficient to

calculate quantities as 〈yk〉 that are written as averages of continuous functions, than, for

instance, 〈θk〉 which involves a discontinuous step-function. The latter would require a much

larger expansion when using continuous basis-set functions.

The factorization of ZX into a
(k)
X kernels is generally not unique. Our choice for a(k) for

the partition function Z is the following

a(k)(yk, yk−1) =











e−β[W (yk,yk−1)+Vk−1(yk−1)] if k 6= N

e−β[W (yk,yk−1)+Vk−1(yk−1)+VN (yk] if k = N
(17)

and for a
(k)
Π and a

(k)
θq

a
(k)
Π (yk, yk−1) = a(k)(yk, yk−1)θk(yk)θk−1(yk−1) (18)

a
(k)
θq

(yk, yk−1) =























a(k)(yk, yk−1) if k 6= q, q + 1

a(k)(yk, yk−1)θk(yk) if k = q

a(k)(yk, yk−1)θk−1(yk−1) if k = q + 1

where we use again that θ2
k = θk. Similar expressions can be derived for a

(k)

θ
[m]
q

.

In order to perform the numerical calculation, we need to define some proper cut-offs

where we can stop the integration. It is natural to stop the integration whenever the weight

of a certain configuration ̺ = e−βU(yN ) drops below a certain threshold value ǫ. It is clear

that the energy diverges and, hence, ̺ vanishes whenever for a certain k the position yk takes

a very large negative value or when the relative distance |yk − yk−1| becomes very large. To

be in safe limits, we calculate the integration cut-offs for the pure AT-chain. If we set the

integration boundaries such that outside this domain we have ̺ < ǫ for this sequence, it will

also hold for the pure GC or heterogeneous chain. The lower limit L of yk results from

e−βVw(L) < ǫ ⇒ L . − 1

aw
ln

[

√

| ln ǫ|
βDw

+ 1
]

(19)

To define the maximal distance d between two neighbors we assume that ρe−α(yk+yk−1) is
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almost zero. This yields

e−β 1
2
Kd2

< ǫ ⇒ d &

√

2| ln ǫ|
βK

. (20)

If |yk − yk−1| exceeds the value d at any k, the probability distribution ̺(yN) must have

decreased below the threshold ǫ so that we can stop the integration. The upper limit R is

obtained as follows. Again neglecting the anharmonic ρ-term, the configuration with the

lowest stacking energy
∑

W (yk, yk−1) and with a maximal total stretch |yN − y1| = S is

obtained whenever equidistant positions are taken such that |yk − yk−1| = S/(n− 1). Then,

the total stacking energy equals (N − 1)1
2
K(S/(N − 1))2 = 1

2
KS2/(N − 1) < 1

2
KS2/N .

Therefore, the maximum displacement of each base, for configurations that belong to a

double stranded configuration, and with ̺(yN) > ǫ, cannot exceed R given by

R & ξ + S with S defined by e−β 1
2
KS2/N = ǫ

⇒ R & ξ +
√

Nd. (21)

This completes the set of cut-off values. In principle, the cut-off d is not strictly necessary

as L and R are sufficient to start a numerical approach. However, the cut-off d is useful

as it decreases the computational expense considerably. To summarize, via Eq. (19-21) we

have defined three cut-off values which restrict the configuration space to L ≤ yk ≤ R and

|yk − yk−1| ≤ d for all k. Any configuration outside this domain must have a Boltzmann

weight ̺ below ǫ and can, hence, be neglected for the numerical integration.

The integration boundaries increase only slightly upon decreasing ǫ. Therefore, we took

ǫ = 10−40 which is much smaller than actually needed for our required accuracy3. As we

take a discrete grid with spacing ∆y, the values d, L, and R must be adjusted to this grid.

That is, we require that Id ≡ d/∆y, IL ≡ (ξ − L)/∆y and IR ≡ (R − ξ)/∆y should all be

integer values. There is another restriction for the allowed values of IR which depends on the

specific numerical integration method and will be discussed in Appendix A. Coming back

to Eqs. (15), we actually no longer intend to calculate Z, Zθk
, and ZΠ, which are infinite,

but Z(R), Zθk
(R), and ZΠ(R) which have a linear dependence as function of R. However,

the differences Z(R)−ZΠ(R) Zθk
(R)−ZΠ(R) converge very rapidly to a constant value for

R → ∞.

As the same function evaluations are repeated over and over again in this integration

scheme (16), it is efficient to store following values at the start of the algorithm using two
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matrices M (w) and M (s) defined as:

M
(w/s)
ij ≡ exp(−βW (L + i∆y, L + (i + j)∆y))

× exp(−β[Vw/s(L + (i + j)∆y)]) (22)

which are basically the values of two possible a(k)(yk, yk−1) functions (17) on the grid. Then,

by defining the vector

χ
(k)
X (i) ≡ z

(k)
X (L + i∆y), (23)

the basic operation in Eq. (16)

z
(k)
X (yk) =

∫

dyk−1 a
(k)
X (yk, yk−1)z

(k−1)
X (yk−1)

can be recast in following numerical operation

χ
(k)
X (i) = ∆y

∑

j

fjM
(k−1)
ij χ

(k−1)
X (i + j) (24)

where M
(k−1)
ij is either M

(w)
ij or M

(s)
ij of Eq. (22) depending on the type of base-pair k −

1. Of course, like the end kernel a(N)(yN , yN−1) in Eq. (17), the last matrix in Eq. (24)

should include the additional factor exp(−βVN(yN)). The vector fj depends on the specific

Newton-Cotes integration method. An analyses of different Newton-Cotes schemes is given

in Appendix A.

The algorithm starts by taking the first vector χ
(1)
X (i) = 1 and, then, iteratively apply

Eq. (24). In order to obtain the full vector χ
(k)
X (i), we need to perform a loop where i

runs either from 0 till IL , from IL till IR, or from 0 till IL + IR depending on whether X

allows yk in Eq. (16) to take values over the closed, open, or full domain, respectively. At

each i, we perform an inner loop over j. Also yk−1 might take values in the closed, open

or full domain and its value is assigned by the integer i + j. Hence, similar to i we can

write that g ≤ i + j ≤ h where g can be either 0 or IL and h is either IL or IL + IR. As

j ∼ |yk −yk−1| is also restricted by |j| ≤ Id, the inner loop over j runs from MAX[−Id, g− i]

till MIN[Id, h − i]. After the double loop over i and j, we increase k by one and repeat the

procedure. This basically defines the complete numerical algorithm, but still leaves open

what one should take for the vector fj . This is discussed in Appendix A in which we consider

different integration schemes.
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VI. BUBBLE PROBABILITY MATRICES

Now we have introduced the mathematical definitions concerning the bubble statistics

in Sec. IV and derived the numerical method to calculate these properties in Sec. V and

Appendix A, we will apply this method to specific sequences. In Ref. [3], we calculated the

bubble probability matrix (12) for de adeno-associated viral P5 promoter (AAVP5) whose

sequence is shown below

AAVP5: 5’- GTGGCCATTTAGGGTATATATGGCCG

AGTGAGCGAGCAGGATCTCCATTTTG

ACCGCGAAATTTGAACG-3’.

The TSS is shown by an underscore.

In Fig. 2, we show the same results as Ref. [3] for a slightly different threshold value

(ξ = 1 Å instead of 1.5 Å) together with the bubble partition matrix (13). As we are not

interested in the boundary effects, we replicated the chain at both ends, but only computed

the statistics for the middle chain. This eliminates the effects of the free ends, which,

otherwise, would yield very large opening probabilities at boundary sites3. We calculated

the bubble probability matrix (12) up to bubbles of size m = 50 (only up to 30 is shown in

Fig. 2) and the bubble partition matrix from Eq. (13). Note that, for reasons of visualization,

we have applied for each row a normalization approach in these two figures. The normalizing

constants, which are the maxima in each row, are depicted in the panels below. Considering

these results, one can see that the probability for bubbles is approximately exponentially

decreasing as function of the bubble size. The bubbles of size ten have probabilities of the

order of ∼ 10−4. This explains the difficulties of previous MD results1 as the detection

of such a large bubble is a true rare event on the time-scale accessible by MD. On the

other hand, the numerical integration method allows to obtain accurate results for even

much larger bubbles. This can be important for the study of biological phenomena as, for

instance, transcription elongation involves DNA openings that are larger than ten bases44.

The method allows to obtain accuracies of less than one percent error after only a few hours

of computation which would otherwise take 200 years when using MD3.

Although Fig. 2 shows indeed somewhat enhanced opening in the biologically active

regions, it shows that it is certainly not true that the TSS has a much higher opening
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probability than the other sites as was found in the foregoing less accurate MD results1. In

fact, the -30 region shows equal probabilities for opening and and even higher probabilities

when bubbles of size ∼ 10 are considered. Inspection of the lowest rows in Fig. 2 basically

reflects the AT-rich parts of the sequence. The position of the preferential opening for the

larger bubbles can be reasonably understood as a merging effect; two small bubbles that

are close in distance act as the precursor of a larger bubble whose center is in the middle of

the two smaller ones. The Ppart matrix has considerable less structure, but shows the same

tendency.

To investigate whether promoter sites are special in terms of its bubble probability profile,

in Refs. [1,3] a human coding gene, known to be free of any protein interaction sites, was

examined. The initial results suggested that this sequence had much lower probability for

bubbles1, but the direct integration method showed that the ability for bubble formation was

certainly comparable in magnitude to the promoter sequences3. Here, we study two other

artificial non-promoter sequences. These are the following two complementary Fibonacci

sequences:

Fibonacci-1: ACAACACAACAACACAACACAACAA

CACAACAACACAACACAACAACACA

ACACAACAACACAACAACACAACAC

AACAACACAACAAC

and

Fibonacci-2: CACCACACCACCACACCACACCACC

ACACCACCACACCACACCACCACAC

CACACCACCACACCACCACACCACA

CCACCACACCACCA

which have a total length of 89 and a AT content of 62 % and 38 % respectively. The choice

for Fibonacci has been made to analyze the hypothetical enhance opening of biological

sequences in comparison with a ’random’ sequence. However, as a typical random sequence

is poorly defined, one could come up with any sequence and basically ’proof’ what one wants.
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It is therfore that we studied the Fibonacci sequences rather than two sequences produced

by a random number generator. Although Fibonacci is far from random, it is sufficiently

disordered and it has the advantage that it does not contain very long weak or strong regions

due consequetive repetitions. In addition, we strictly rule out that we pick per accident a

sequence that is biologically active as well.

In fig. 3, we show the results of Ppart(k, 1), Ppart(k, 5), Ppart(k, 10) and Ppart(k, 15) for the

Fibonacci sequences together with the results for the AAVP5 promoter. The first panel

shows Ppart(k, 1) which equals the simple opening probability of the individual base in the

sequences. It shows that the promoter sequence has some regions that have a considerably

higher affinity to open up than the Fibonacci sequences. This is a result of the presence of

longer consecutive AT regions in the AAVP5 promoter. The Fibonacci-1 and Fibonacci-2

sequence have at most 2 or 1 consecutive weak base-pairs in a row. When we examine

larger bubbles, we see that the base-specific order of the sequences becomes less important.

The extend of the bubble averages out the effect of the precise order of the weak and

strong bases. Hence, the openings probability profile becomes more and more determined

by the AT content. This is clearly illustrated by the fact that the promoter sequence’s

probability profile for bubbles of size 15 remains strictly within the two profiles of the

Fibonacci sequences at all sites. Hence, the chance to find a bubble of 15 is at each location

higher in the AT-rich Fibonacci sequence than in the AAVP5 promoter, despite the absence

of long series with consecutive weak AT bases. This also suggest that the bubble statistics,

at least within the PBD framework, is reasonably predictable by some simple rules based

on the AT content. Indeed, Rapti et al.45,46 suggest that these PBD bubble profiles could

be qualitatively reproduced by counting the number of AT-bases within a certain window

that is a bit larger than the bubble size considered. Actual DNA in solution seems to be less

predictable on basis of the AT content alone. The denaturation steps in long heterogeneous

DNA polymers are very sensitive to the sequence5 and can qualitatively change when only

one base-pair is changed. The experimental part of Ref. [1] also suggest that actual DNA

bubble statistics retains strong non-local effects. A prerequisite for the understanding of

these result would require a more precise interpretation of the measurements by the S1

nuclease cleavage technique expressed in microscopic terms. The experimental signal might

well be related to some of the definitions (12) and (13), but probably not straightforwardly.

Many questions remain such as which range of bubbles can be detected by S1 nuclease
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cleavage, where in the bubble takes the cleavage place, is bubble life-time important, and

many more. Much more systematic studies are needed. The results of Fig. 3 show that the

study of artificial sequences, such as the Fibonacci sequences, can reveal different structures

depending on the size of bubbles that are detected. Hence, experimental measurements on

artificial periodic and quasiperiodic sequences might be very useful to give some answers to

these intriguing questions.

To summarize this section, our results on the bubble statistics using the accurate direct

integration method do not indicate that biologically active sites have a stronger thermally

induced enhanced opening than one would expect based on the AT content of the sequences.

We also examined the effect of higher temperatures upto 350 K and different openings

thresholds upto ξ = 2 Å. However, the results remained qualitatively the same. Of course,

this does not necessarily mean that there is not such a relation as this would first require a

validation of the model. Therefore, in the next section, we will study the theoretical results

of the l-denaturation curves that can give a more direct comparison with experimental data

than the bubble statistics (12) and (13).

VII. DENATURATION CURVES

As explained in Sec. III, the denaturation curves f(T ) and p(T ) of Eq. (8) cannot be de-

termined within the PBD framework. Luckily, the l(T ) denaturation curve can be calculated

using the PBD model and can be measured as well using a recently introduced experimental

technique23–25. For several sequences, Montrichok et al.23–25 reported some anomalous be-

havior of l as function of T . These experimental results are, hence, an excellent benchmark

to test the validity of the PBD model. In this section, we show the calculated l(T ) curves

for the L60B36, L42B18, L33B9, and L48AS given by
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L60B36: CCGCCAGCGGCGTTATTACATTTAA

TTCTTAAGTATTATAAGTAATATGGC

CGCTGCGCC

L42B18: CCGCCAGCGGCGTTAATACTTAAGT

ATTATGGCCGCTGCGCC

L33B9: CCGCCAGCGGCCTTTACTAAAGGCC

GCTGCGCC

L48AS: CATAATACTTTATATTTAATTGGCG

GCGCACGGGACCCGTGCGCCGCC

In Fig. 4, we show the calculated results for these sequence using four values of ξ: 0.5, 1.0, 1.5

and 2.0 Å. It is important to note that the different opening threshold values considered

do not change the qualitative behavior of the curves. The curves with ξ = 2 Å intersect

the lower threshold value curves ξ = 1 Å and ξ = 1.5 Å. This might seem impossible as

each base k, that is counted as open because yk > ξ = 2 Å, must also be open when a

lower opening threshold value is considered. However, we should bear in mind that ξ not

only determines the definition of ’open’ and ’closed’, but also determines the ensemble via

Eqs. (5,6). Considering Eq. (14), it is certainly true that Zθk
(R) is strictly decreasing as

function of ξ. However, Zπ(R) is strictly decreasing as well and, hence, the ratio [Zθk
(R) −

Zθk
(R)]/[Z(R) − Zθk

(R)] can actually increase as function of ξ.

The experimental results for the L60B36 and L42B18 sequences contained a remarkable

change of slope23–25. This effect could indicate that the melting appears in two steps in which

first an AT rich part of the sequence opens up and is then followed by a GC rich region

in the sequence. Our results do not show this signature. This is in contrast with another

computational study by Ares et al. 40 which does report some of the experimentally found

characteristics. However, the change of slope that they found was negative for the both

sequences L60B36 and L42B18, while the experimental results showed a very sharp positive

change of slope in the L42B18 sequence at a temperature of 70 �. Still, the results of Ares

et al., for the same sequences we studied, seem to resemble more closely the experimental

results than the ones by us. This variance is explained by the following three reasons: (i)
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Ares et al. used the alternative definition of ’open states’ as expressed by Eq. (10) instead

of Eqs. [8,9]. (ii) They applied a selective use of boundary conditions which were periodic

boundary conditions for the sequences L60B36, L42B18, L33B9 and free boundaries, as in

this work, for the sequence L48AS. (iii) Ref. [40] allowed for complete denaturation as it

was based on a series of short MC simulations without the use of a bias-potential as in

Eq. (7). In fact, the work40 even report on the f and p curves, which cannot unambiguously

be determined as we pointed out in Sec. III. Hence, the deviation from the experimental

results must imply that the present PBD model is insufficient to reproduce these non-trivial

sequence specific order effects.

However, the experimental results themselves raise some questions. If we were allowed

to neglect the DNA-DNA interaction, the l(T ) curve seems to provide a signature that

is theoretically independent to the concentration of DNA. This is exactly why l(T ) can be

determined within the PBD framework. Still, it would be interesting to verify experimentally

whether the l(T ) curve is indeed insensitive to this concentration. Moreover, some of the

experimental results are a bit puzzling. The experimental f(T ) and p(T ) denaturation curves

of the L33B9 sequence, for instance, coincide at 75 � while still f(75 �) = p(75 �) < 124.

As l = (f − p)/(1 − p), this would imply that l(T ) = 0 for T > 75 �. This finding seems

to be unphysical and this is probably also the reason that Montrichok et al. have depicted

the l(T ) curve until T = 75 � in Ref. [24]. This indicates that one has to be careful when

translating the UV absorbance experiments in microscopic terms using Eqs. (8,9). The

theoretical development in this field would benefit significantly if more experimental data

based on the quenching technique were available.

VIII. CONCLUSIONS

The statistics of thermally induced DNA bubbles has become an important subject of

theoretical and experimental studies. Besides the fact that it is a interesting subject from

a purely statistical physics point of view, the relation between thermally induced bubbles

and biologically active sites has been subject of recent debate. Mesoscopic models, like the

PBD model, are a prerequisite in these studies as the experimental data can usually only

give indirect information. However, even if a good theoretical model is developed, it is not

easy to obtain accurate results as large bubbles occur only seldom in a microscopic system.
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In previous publications, the inaccuracy inherent to MD have lead to premature conclusions

such that the TSS has a much stronger affinity to form bubbles than any other arbitrary

site1,2. In a recent publication by us3, we showed, using a new statistical method that is

orders of magnitude faster than MD, that this statement had to be reconsidered. Although

the biologically active sites have some enhanced opening due to their relative high content

of weak AT base-pairs, the bubble probability profile given by the PBD model was certainly

not sufficient to make accurate predictions on transcription sites or to discriminate between

biologically active and inactive sequences. Hence, this implies that either the biologically

active sites cannot be assigned by the information of thermally induced bubbles alone or

the actual PBD model is insufficient to describe all the sequence specific effects correctly.

The S1 nuclease experiments seem to suggest a correlation between bubbles in vitro and

transcription sites. It is, however, not exactly clear how the S1 nuclease measurements

should be translated in microscopic terms that can be calculated by computer experiments.

In this article, we have revisited the direct numerical integration technique that was

introduced in [3]. We have given a detailed explanation of the algorithm and investigated

the performance of different integration schemes. Although the higher order Newton-Cotes

schemes are better for very high precision results with many digits, the simple Simpson

1
3
-rule or Boole’s rule are more efficient if only an accuracy of a few percent is required. The

optimal result is obtained when the Simpson’s or Boole’s rule is combined with the simple

rectangular rule. The latter is used when the function vanishes at the two integration

boundaries. Moreover, we have given a thorough discussion on how to treat finite chains

using the PBD model by introducing the double stranded DNA ensemble. This eliminates all

the problems due to the unnormalizability of equilibrium distribution in the full space and

gives results that can be compared by experiments performed below the melting temperature.

Within this ensemble, we have defined two types of bubble probabilities. Pbub(k, m) is

the probability that a bubble of exactly size m is centered at base-pair k. Ppart(k, m) is the

participation probability that site k is inside a bubble of at least m bases long. Our analyses

on the AAVP5 promoter sequence and two artificial Fibonacci sequences confirm what we

found before3. No theoretical evidence was found that bubbles appear more frequently at

transcription sites than at other sites that have a similar AT content. When larger bubbles

are considered, the effect of sequence specific order becomes even less important. A recent

theoretical study of Rapti et al.45 confirms this and reveals that the PBD bubble statistics
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profile can be qualitatively reproduced by counting the number of AT within a certain

window that is larger than the bubble size. The questions remains whether this is also true

for actual DNA. The S1 nuclease experiments suggest that the behavior of real DNA is more

complicated than that.

To study the validity of the PBD model, we applied our method to calculate the so-called

l-denaturation curves that allow to make a more direct comparison to experimental results.

As argued, the standard f -denaturation curve cannot be obtained without additional param-

eters due the problem of normalizability for finite DNA chains. Luckily, the l-denaturation

curves can be measured as well via a recently introduced quenching technique23–25. Our

theoretical calculations did not reproduce the experimentally found anomalies of the l(T )

denaturation curve. This points out a significant weakness of the present PBD model. This

also implies that the bubble hypothesis postulated by Choi et al.1 could still be supported

by theoretical evidence whenever an ’ideal’ DNA model is considered. The indirect evidence

of the S1 nuclease experiments is yet insufficient to make this statement absolute as its

meaning in terms of microscopic terms is not yet completely understood. It is also difficult

to believe that the statement holds for all TSS as some transcription sites are known that

consists of at least three consecutive strong base in a row47. More systematic experimental

and theoretical studies are required.

Theoretical improvement can probably be achieved when a more complicated stacking

interaction is taken into account. We found that some of the anomalies found by Montri-

chok et al.23–25 could be reproduced using a different base-pair specific stacking potential

W (yk, y−1) (2)48. However, more complicated potentials might be needed. It is important

to note that the direct integration method is not restricted to the PBD model only. It can

be used whenever the proper factorization (16) can be applied. Our preliminary results

indicate that the PBD model could be improved considerably while still maintaining the

one-dimensional character of the model. This implies that the direct integration method

could still be applied for used for this new class of models and will, hence, probably remain

an important method for the future theoretical developments in this field.
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APPENDIX A: NEWTON-COTES INTEGRATION SCHEMES

In Sec.V, we have given the derivation of the direct integration method upto the

numerical implementation which basically comprises an iterative operation of Eq. (24). The

vector fj depends on choice of Newton-Cotes integration scheme. In general, the Newton-

Cotes numerical integration approximates any integral over an finite range
∫ b

a
g(x) dx by

∆y
∑n

i=0 fi g(a + i∆y) with n = (b − a)/∆y. From the various Newton-Cotes schemes,

we will discuss the simple rectangular rule, Simpson 1
3
-rule, Boole’s rule, and the 11-point

Newton-Cotes formula. The corresponding fi vectors are listed below.

Rectangular rule:

fi = 1 for all i, (A1)

Trapezoidal rule:

fi =











1
2

for i = 0, n

1 for i = 1, 2, 3, . . . , n − 1
, (A2)

Simpson’s 1
3

rule:

fi =
1

3
×























1 for i = 0, n

4 for i = 1, 3, 5, . . . , n − 1

2 for i = 2, 4, 6, . . . , n − 2

, (A3)

Boole’s rule49:

fi =
2

45
×



















































7 for i = 0, n

32 for i = 1, 5, 9, . . . , n − 1

12 for i = 2, 6, 10, . . . , n − 2

32 for i = 3, 7, 11, . . . , n − 3

14 for i = 4, 8, 12, . . . , n − 4

, (A4)
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and the 11-point Newton-Cotes rule50:

fi =
5

299376
×







































































































































16067 for i = 0, n

106300 for i = 1, 11, 21, . . . , n − 1

−48525 for i = 2, 12, 22, . . . , n − 2

272400 for i = 3, 13, 23, . . . , n − 3

−260550 for i = 4, 14, 24, . . . , n − 4

427368 for i = 5, 15, 25, . . . , n − 5

−260550 for i = 6, 16, 26, . . . , n − 6

272400 for i = 7, 17, 27, . . . , n − 7

−48525 for i = 8, 18, 28, . . . , n − 8

106300 for i = 9, 19, 29, . . . , n − 9

32134 for i = 10, 20, 30, . . . , n − 10

. (A5)

The right choice of integration scheme can significantly improve the precision of the

method. One cannot say in advance that the highest order scheme is always preferable.

This can depend on the shape of the function g, the applied integration boundaries, and the

required precision. In order to study the accuracy of the integration methods, we applied

the different schemes (A1-A5) on the standard integral
∫ ∞

a
e−x2

dx where we take a = −∞, 0

and 1. We take a numerical cut-off such that |x| ≤ 10 on the integration domain. In general,

the higher order Newton-Cotes numerical integration schemes require that the total number

of integration intervals n must be multiples of a certain value. These are 2, 4, and 10

for, respectively, Simpson’s rule, Boole’s rule and 11-point Newton-Cotes. However, as the

function vanishes at the right boundary (x = 10 in our numerical approach) we can take the

semi-infinite analogue where we start with f0 at the point x = a (or x = −10 if a = −∞)

and then simply continue with f1, f2, . . . until the point x = 10 without requiring the correct

ending fn = f0.

In fig. 5, we have plotted the integration errors as function of n obtained by the five

Newton-Cotes methods and the three values of a. We see that the highest order scheme

is not always the best choice. In fact, for the integration over the full range (a = −∞),

the simple rectangular rule is identical to the trapezoidal rule, but far superior to the other

26



methods (A3-A5). Naturally, as the function vanishes at both ends, the result would not

change much upon shifting the initial point to −10 + ∆x. Averaging over several shifts

using Eqs. (A3-A5) results in a weighted summation that approaches the simple rectangular

rule (A1). The optimum performance of the rectangular rule on the infinite domain is,

hence, not surprising.

The trapezoidal rule gives the optimal result for the case a = 0. Also this is not too

surprising as the function is symmetric and the trapezoidal rule is exactly half the result of

the rectangular rule over the full domain. For a = 1 we find, as expected, that the 11-point

Newton-Cotes method gives the best result. However, only at large n the difference becomes

apparent.

We also analyzed the performance of the different Newton-Cotes schemes for the bubble

statistics in the PBD model. As a benchmark, we compared the calculated values of l (9) at

temperature T = 300 K and threshold opening ξ = 1 Å for a 10 base-pair long homogeneous

AT chain with free boundaries. Considering previous results, we always applied the rectan-

gular rule for the integrals in (16) when the integrated function vanishes at both integration

or cut-off boundaries in yk−1. These are either at yk−1 = L or at yk−1 = yk ± d. When

the integrated function only vanishes at one end, we applied the semi-infinite variation of

one of the Newton-Cotes formulas [A1-A5]. It is important to notice that, as we mentioned

before, the distribution function is not vanishing at yk−1 = R. Hence, the Newton-Cotes

rule needs to be applied at this boundary for an optimal accuracy; i. e. we start with f0 at

this boundary and continue in the negative direction R−∆y, R−2∆y, . . . for the numerical

integration.

The integrals with two non-vanishing boundaries appear only for the last integrations

ZX =
∫

dyNZ
(N)
X in Eq. (16) and when yN must be integrated over the open domain only.

Then, both at the left boundary yN = ξ as at the right boundary yN = R, the function is

not necessarily decayed below ǫ. This also implies that R − ξ is the only interval that must

be a special multiple of ∆y. This must be an multiple of 2 for Simpson’s rule, 4 for Boole’s

rule and 10 for 11-point Newton-Cotes rule and this gives the restriction to the possible

integer values that IR can take.

After these technical details are taken into account, the Newton-Cotes formulas [A1-A5]

can be applied to the benchmark system and allow to compare the different integration

methods. The results are depicted in table I. These show that it is certainly beneficial
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to go beyond the simple rectangular or trapezoidal rule. Although, higher order schemes

like11-point Newton-Cotes are presumably better at very small values of ∆y and very high

precision, at larger values of ∆y the Simpson’s and Boole’s method give better results.

The highest precision results with ∆y = 0.0125 Å show an accuracy of 8 digests for both

Simpson, Boole and 11-point Newton-Cotes, while the computational expense is less than a

minute. Such a performance is far beyond any MD or MC method even if enhanced sampling

is applied51.

For our purposes, an accuracy a few percent is enough. Therefore, considering the results

of Fig. 5 and Table I, we have chosen to use Simpson’s rule with a grid spacing of ∆y = 0.1.

In the results of Sec. VI and VII, we have always used these parameters.
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FIGURE CAPTIONS

FIG. 1: l (see Eq. (9)) as function of temperature for homogeneous AT and GC chains of different

lengths. One can clearly see that, when the length increases, the curves resemble more and more

a sharp step function. For all sequences free boundary conditions were applied.

FIG. 2: (Color online) Bubble statistics matrices for the AAVP5 promoter sequence for T = 300K

and openings threshold ξ = 1 Å. Top two panels show the bubble matrix Pbub(k,m) of Eq. (12)

and the lower two panels show the bubble partition matrices Ppart(k,m) of Eq. (13). Each row m

of the first and third panel is normalized by the maximum value of the matrix at the given bubble

size m. The normalization constants as function of m is depicted in the panels below.

FIG. 3: (Color online) Bubble statistics, Ppart(k, 1), Ppart(k, 5), Ppart(k, 10) and Ppart(k, 15), of the

AAVP5 promoter and the Fibonacci sequences.

FIG. 4: l versus temperature for 4 heterogeneous sequences L60B36, L42B18, L33B9, and L48AS

using four different opening threshold definitions ξ = 0.5, 1, 1.5, and 2 Å. Previous MD results of

Ares et al.40 were obtained using ξ = 0.5 and the different definition of opening Eq. (10). The inset

in the right upper panel shows the Morse potential Vk of Eq. (2) for the weak and strong base-pair

interaction.
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FIG. 5: (color online) The absolute error for the integration of
∫ ∞
a exp(−x2) dx as function of the

number of intervals n in the numerical approach. The rectangular rule (r), trapezoidal rule (t),

Simpson’s 1
3 -rule (S), Boole’s rule (B), and the 11 point Newton-Cotes scheme (N) are compared.

Three cases are considered: a = −∞ (top), a = 0 (middle), and a = 1 (bottom). The horizontal

plateau in the first two panels is a result from the cut-off at ±10.
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TABLE CAPTIONS

TABLE I: Analysis of the accuracy of the Newton Cotes integration scheme. l(10−1) for a 10

base-pair homogeneous AT chain is shown for different values of ∆y. 5 integration schemes are

compared: rectangular rule (r), trapezoidal rule (t), Simpson’s 1
3 -rule (S), Boole’s rule (B), and

11-point Newton-Cotes formula (N).
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LIST OF TABLES

∆y 0.2 0.1 0.05 0.025 0.0125

r 1.7059 1.6112 1.57187104 1.5520500628 1.5422425176

t 1.5506 1.5339 1.53313317 1.5326609537 1.5325428897

S 1.5015 1.5307 1.53253332 1.5325035590 1.5325035346

B 1.4887 1.5333 1.53258630 1.5325015790 1.5325035330

N 1.1940 1.5156 1.53183258 1.5325009318 1.5325035341

Table 1
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