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Abstract

Intrinsic localized modes have been shown to exist as exact solutions in nonlinear
lattices [R.S. MacKay and S. Aubry, Nonlinearity 7 1623 (1994)]. We investigate
the mechanisms that can lead to their formation in a physical system. We show
that they can emerge from a uniform energy distribution in several steps. First
modulational instability can generate small breathers and then their interaction
leads to the growth of the largest excitations. This mechanism, first investigated
in simple one-dimensional lattices is shown to be valid in a multicomponent lattice
as well as in a two-dimensional system. The signature of the discrete breathers in
the dynamical structure factor of the lattice is determined and the consequences
for their experimental detection are discussed. Finally some suggestions for indirect
observations of the discrete breathers are presented.

1 Introduction

Intrinsic localized modes in nonlinear lattices, also called discrete breathers,
are very interesting because they provide examples of localized excitations
in homogeneous systems. Approximate solutions have been obtained for one-
dimensional or multidimensional lattices [1-3] and a proof of existence of time-
periodic, spatially localized, solutions, or breathers, has been given for a broad
range of Hamiltonian coupled oscillators lattices [4,5]. However the existence of
exact solutions is not a guarantee of their relevance in physical systems. They
must be generated easily in a system and, if we want to observe them, they
must have a particular signature that can be detected in experiments or have
significant consequences in the physical properties of the system. The present
paper discusses these questions in systems where the nonlinearity comes from
an on-site potential, i.e. systems that would be described by a nonlinear Klein-
Gordon equation in the continuum limit. The proof of existence shows that
the discreteness of the lattice is crucial for the ezxistence of intrinsic localized
modes. We discuss here the role that it plays in their formation.
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The organization of the paper is the following. Section 2 reviews our previous
results on a simple one-dimensional lattice. Section 3 considers more complex
systems. It starts from a review of recent results on a multicomponent lattice
and then presents new results on a two-dimensional system. Section 4 discusses
the signature of discrete breathers in experiments through the calculation of
the structure factor of the lattice and the identification of its main features.
Section 5 summarizes the paper and makes some suggestions on the possible
observation of discrete breathers in a physical system.

2 Formation of discrete breathers in a simple one-dimensional lat-
tice.

Discrete breathers are large amplitude nonlinear excitations and therefore they
can only appear if one introduces enough energy into a lattice. At a microscopic
scale in a homogeneous lattice, it is generally not possible to excite selectively a
few sites and therefore the initial excitation is extended over the whole system.
The energy can be introduced coherently, as a plane wave, or incoherently
under the form of fluctuations. The first situation, which is the simplest, is
nevertheless interesting because it provides some insight on the more realistic
case of incoherent fluctuations which can come from a thermal bath. The
localization of energy can be initiated by the modulational instability of the
plane wave [6,7]. We discuss this initial stage first and then show how large
amplitude breathers can be formed.

2.1 Modulational instability as a first step in breather generation.

Let us consider the simple case of a one-dimensional lattice described by the
Hamiltonian
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with the on-site potential

Vi =22 P )

where wu,, is the displacement of the n'" particle, p, its momentum, o and
[ measure the nonlinearity of the potential and w? determines the relative
weight of the on-site potential with respect to the coupling characterized by



K. In order to analyze the stability of a plane wave, we can look for solutions
of the equations of motions that derive from Hamiltonian (1) under the form

Un(t) = F1n(t)e™™0" + By, (t)e ! + c.c. (3)

for a symmetrical potential (o = 0), and

Up(t) = F1p(t)e " + Fy o (t) + Fop(t)e 29" + c.c. (4)

for a non-symmetrical potential (o # 0, 8 = 0).

Assuming a slowly varying envelope | Fj ,,(t)| < wo|F;,.(t)| and a highly discrete
lattice w? > 4K, one gets a discrete NLS equation for the envelope

QiWOFl,n + K(Fl,n—l—l + Fl,n—l — 2F1,n) + 7|F1,n|2F1,n = 0 . (5)

This equation can be used to investigate the stability of a coherently modu-
lated wave defined by the initial condition

un(0) = (2¢9 + 4by cos nQ) cos ng
U (0) = (2¢p9 + 4by cos nQ)w sin ng . (6)

The short term evolution of such an excitation is very well described by a
linear stability analysis which gives the dispersion relation (@), provided the
harmonics created by the nonlinearity are included. For instance, in a sym-
metrical potential for which the equations of motion contain a cubic term,
one must not only consider the cosng term but also a small contribution in
cos® ng which introduces factors of the form cos 2nq cosng, i.e. the nonlinear
term can be viewed as a modulation of the cos ng plane wave with a wavevec-
tor Q = 2¢g. When such nonlinear terms are considered in addition to the
applied modulation, numerical simulations show that the first stage of the
time evolution of an initial condition such as (6) is accurately predicted by
the linear stability analysis [7]. The long term evolution is however more com-
plicated because higher harmonics start to play a role and the growth of some
components due to their instability requires an analysis that involves a mode
coupling approach. For the purpose of the generation of discrete breathers
from a coherently modulated wave, the basic conclusion of these studies is
that modulational instability is much more likely to occur in a lattice than in
the continuum limit for two reasons: first the linear stability study leads to
a broader range of instability in the parameter space (¢,@Q) than for a con-
tinuum medium, and second one must take into account the folding of the
Brillouin zone. In a discrete medium, only the wavevectors belonging to the
first Brillouin zone (|g| < 7) are meaningful. Any wave with a larger wavevec-
tor can also be described by a wave with a wavevector in the first Brillouin



zone. It means that combination wavevectors such as 3q, 4q, 5q, 2¢ + @, ...
which appear due to the nonlinearities, must be interpreted modulo 27. As
a consequence these terms, that would lead to large wavevectors that belong
to the domain of stability in a continuous medium, may in fact behave in the
discrete lattice as small wavevector modulations, that belong to the instability
region.

The case of a randomly modulated wave is more interesting because it mimics
the effects of thermal fluctuations that would always be superimposed in a
real system to a plane wave excitation due for instance to the effect of an
electromagnetic wave on a ionic crystal. Figure 1 shows the spectrum of the
excitation generated by a noisy wave

un(0) = (2¢0 + I'(n)) cosng, TI'(n) Gaussian noise . (7)

The initial spectrum was almost a sharp peak because the noise was extremely
small. Then it develops side bands due to modulational instability of some
of the components. Figure 1 shows that the prediction of the modulational
instability in the discrete lattice that one can derive from Eq. (5) is very
accurate.

2.2  The growth of large amplitude breathers.

Modulational instability is however only the first step in the formation of
discrete breathers. This is illustrated in Fig. 2 which shows the long term
evolution (15000 periods of the lowest phonon Ty = 27/wp) of the energy
density in the lattice, for an initial noisy wave as above.

One can notice three main stages in the time evolution. The first one is the
modulation of the energy density which was initially uniform. It is fast and
leads to energy density maxima which are almost equally spaced. They corre-
spond to small breathers, and their mean separation can be estimated with the
linear stability analysis described above. It is determined by the fastest grow-
ing modulation of the initial wave. But modulational instability cannot lead
to very large breathers because the typical energy of a breather is given by the
product of the mean energy density E, by the preferred modulation length.
Figure 2 shows that larger breathers can emerge in a second stage which takes
a longer time. They result from the collisions of the small breathers generated
in the first stage. When two of them collide they do not behave as exact soli-
tons as they would in a continuum medium. In most of the cases, the largest of
the two takes some energy from the smallest. After the multiple collisions that
occur during the second stage, a few large breathers have collected most of the
energy of the initial plane wave. Then, during the third stage the distribution
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Fig. 1. Fourier spectrum of the time evolution at ¢ = 150 of a noisy plane wave
in a discrete lattice. The dotted line shows the spectrum of the initial condition.
The random modulation is so small that the initial spectrum appears only as a
sharp peak. At a later time, the spectrum (full line) shows the formation of two side
bands coming from to the growth of the random fluctuations due to modulational
instability. The inset shows the growth rate of the modulated waves and the dashed
line indicated the shape of the side bands predicted by the modulational instability
study of the initial condition. This figure has been generated by averaging over a set
of 1000 initial conditions, for parameters a = 0, 8 = 0.5, K = 2, ¢¢ = 0.6, w3 = 100
and a gaussian noise of variance 1 and amplitude 0.01. (from Ref. [7])

of energy density in the lattice stays almost stationary with sharp maxima
at the positions of the large breathers which do not move along the lattice.
This is because as they grow the breathers also become narrower so that their
width falls down to a few lattice spacing. At this stage, the breathers feel the
discreteness very strongly and stay pinned to the lattice. This effect is very
similar to the pinning of kinks or dislocations by the Peierls barrier, although,
for breathers that have an internal oscillation, a Peierls potential depending
only on the position of the breather cannot be defined [8]. The third stage
is then extremely stable and extremely long simulations are required to see
the decay of some of the highly localized breathers due to their interaction
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Fig. 2. Long term evolution of the energy density along the chain for an initial
condition corresponding to a noisy wave given by Eq. (7). The horizontal axis indi-
cates the position along the chain and the vertical axis corresponds to time, going
upward. The energy density at site n is shown by a grey scale from E,, = 0 (white)
to the maximum E,, recorded during the simulation (black).



with the background of small amplitude excitations that remain from the first
stage [9]. In a system in contact with a thermal bath, after such a decay, an-
other breather may emerge elsewhere from the fluctuations. As a result, if one
observes the system in contact with the bath over a time interval which is
extremely long in comparison with the phonon periods, energy equipartition
is found, but, on time scales of the order of 10000 phonon periods one can
detect a localization of most of the energy in small regions of the lattice.

An analytical study of the growth of breathers through collisions is difficult
because it involves small energy exchanges and we do not have an exact an-
alytical expressions of the discrete breathers. A numerical study can confirm
the existence of such a growth mechanism and give some quantitative data
on this process. As breathers are modes with an internal degree of freedom
and because they move in a discrete medium, the output of their collisions
depends on their relative phases and on the exact location of the collision
point with respect to the lattice sites. To get meaningful results concerning
the spontaneous localization of energy in a lattice, one must therefore perform
a statistical analysis of the outcome of many collisions [10]. Figure 3 illustrates
the results of such a study obtained from 200 collisions of a stationary “big
breather” and “small breathers” with a gaussian distribution of initial am-
plitudes, positions, and initial velocities [10]. The energy exchange in each
collision is measured relatively to the initial energy of the small breather by

_ Eyig(after) — Eyig(before)

AH . 8
! Egman(before) 8)

Then an histogram giving the probabilities of the various values of the energy
exchange is built. Similarly the displacement An; of the big breather in the
collision can also be measured. These calculations confirm the observation
made of Fig. 2: collisions tend to favor big breathers. On average the energy
transfer goes from the small amplitude excitations to the large amplitude
ones. This is shown by the probability distribution of AH; on Fig. 3 which is
clearly biased toward a positive value. This provides a mechanism by which
the small amplitude breathers that emerge from modulational instability can
grow and give rise to excitations with a very high energy density. Moreover this
mechanism for growth has been found to be very robust and weakly dependent
on the on-site nonlinear potential or the presence of thermal noise [10].

2.8 Localization of thermal fluctuations.

Up to know we have assumed that energy was introduced in the lattice in a
coherent way, under the form of a plane wave, eventually slightly modulated.
Although it is conceivable to excite a crystal coherently, in many cases the
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Fig. 3. Upper figure: typical initial condition for the study of discrete breather col-
lisions. Lower figure: Probability distribution of (left) the energy transfer to the big
breather AH; and (right) its displacement An; found from a set of 200 simulations.
The dashed lines indicate the mean values AH; = 9% and An; = —1.3.

energy will be provided as thermal fluctuations. Numerical simulations show
that breathers are also observed in this case. This was in particular checked
for a lattice of coupled Morse oscillators which is a very simple model of the
dynamics of base pairs in DNA [11], but, as discussed below this is not specific
to this model.

3 Discrete breathers in complex systems.

The results of Sec. 2 show that discrete breathers can exist et can be easily
generated in a simple one-dimensional lattice of coupled nonlinear oscillators.
Although such a lattice may be a crude model of some physical systems, real
systems are often much more complicated. They may involve more than one



degree of freedom per site, or more than one spatial dimension. Therefore,
in order to conclude on the possible relevance of localized modes in physics,
we must consider systems that are more complex than the lattice studied in
Sec. 2. This section considers two kinds of generalizations.

3.1 Intrinsic localized modes in a multicomponent nonlinear lattice.

Let us consider first a generalization of the simple DNA model mentioned
above. We consider a two-chain system with an hamiltonian given in dimen-
sionless form by

17 (dU\*  [dV,\*1 1 , 1, )
H—%:g[(dt) +<%) ]+§K(Un+1—Un) + 5K (Vi = Va)

+ [exp[—(Un -1 (9)

The two degrees of freedom per cell, U, and V,, describe the transverse dis-
placements of the two bases belonging to the base pair labeled by index n in
the DNA molecule. The coupling of two nucleotides along the same strand
is assumed to be harmonic, with coupling constants K and K'. The interac-
tion between the two bases in a pair is modeled by a Morse potential which
represents the hydrogen bonds coupling the bases as well as the repulsive in-
teraction between the phosphate groups. It is interesting to consider the new
variables

U+ Vi U, -V,

X Y, =——, 10
where X,, describes the acoustic motions of the two-chain system while Y,
corresponds to the stretching of the bond connecting the two strings.

The existence of discrete breathers in such a system is no longer obvious
because the spectrum of the linear phonon modes includes two bands, corre-
sponding to acoustic and optical modes as shown in Fig. 4. As a result, the
breathers, which have a frequency below the optical phonon band, could be in
resonance with acoustic phonons. The proof of existence of discrete breathers
as exact solutions can however be extended to the two-chain system [12]. As
expected exact breathers exist only in the gap between the optical and acous-
tic bands. This could be a problem for a real system with several degrees of
freedom per unit cell because the various phonon bands could overlap and
close completely the gap. This may also happen for the two-chain model when
the coupling along the chains increases. However, numerical simulations show
that, even when it resonates with the acoustic band, a breather can have a
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Fig. 4. Dispersion curves for the two chain model. (a) K —+ = (K + K')/2 = 0.6
and K_ = (K — K')/2 = 0 (full lines), (b) K — + = (K + K')/2 = 0.6 and
K_ = (K - K'")/2 =0.4 (dashed lines)

very long lifetime [13]. This indicates that the coupling between a highly local-
ized mode and extended phonons is weak. But, more importantly, the growth
of breathers through collisions with smaller excitations is still effective in a
complex lattice. This has two consequences. First, collisions can prevent the
decay of an unstable breather by feeding-in some energy. This is illustrated in
Fig. 5. Second, the spontaneous formation of breathers from thermal fluctua-
tions is possible in a multicomponent lattice as it is in a simple lattice. This
is shown in Fig. 6 which shows the acoustic X displacements and the optical
Y displacements in the two-chain model in contact with a thermal bath. As
shown by hamiltonian (9), the nonlinearity appears only in the stretching mo-
tion Y = U — V. Figure 6 shows that the acoustic displacements do not show
localization. They are simply dominated by the lowest energy mode which is
the bending of the chain with a wavelength equal to the system size. On the
contrary the stretching Y shows large amplitude localized modes that may
survive for hundreds of phonon periods, although at the high temperature
shown in Fig. 6 their lifetime is shorter.

3.2 Formation of breathers from thermal fluctuations in a two-dimensional
lattice.

The proof of existence of discrete breathers is also valid in more than one spa-
tial dimension, so that they could exist as surface modes (in two dimensions)
or as volume modes (in three dimensions). However in theses cases it is not

10
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Fig. 5. Time evolution of the energy of a weakly unstable big breather undergoing
multiple collisions with small breathers. K = 0.7, K’ = 0.5. The big breather has
frequency wy = 1.4. The full line shows the energy of the big breather undergoing
multiple collisions with incoming small breathers. The dotted line shows the time
evolution of the energy of the same big breather without the collisions. It slowly
decays in amplitude and increases in frequency until it reaches a stable state with
a lower energy when its frequency has raised above the acoustic phonon band.

clear that breathers can be formed from thermal fluctuations because it has
been recently shown that they can only exist above a given energy thresh-
old [14]. This is a fundamental difference with the one-dimensional case where
breathers can exist even in the limit of vanishing energy. In this limit they tend
toward phonon modes. Therefore it was important to test the possible spon-
taneous formation of breathers in more than one spatial dimension. This has
been done for a two dimensional lattice of Morse oscillators with hamiltonian

1 dulm > 1
H:§§<d£>+§MWWH—WMV+WHm—wmﬂ

1 2
5% (e7mm —1)" . (11)
The indices [ and m denote the sites along the x and y axes. The displace-
ment at each site is characterized by a scalar variable u; ,,, and the harmonic
coupling along the x and y axes is isotropic. The time evolution of this model
system in contact with a thermal bath has been simulated with the Nose
method [15], with periodic boundary conditions, N, = 32 cells along the z
axis, N, = 16 cells along the y axis. Figure 7 shows a typical sample of the
time evolution of the system for w3 = 16, K = 0.05. The evolution of a

11



Fig. 6. Thermal generation of localized excitations in the two-chain model. The
coupling constants are K = 0.3, K’ = 0.1. The temperature is T = 0.8 in energy
units. The grey scale figures show the X and Y displacements of the different lattice
sites versus time. The horizontal axis extends along the lattice which has 128 cells
with periodic boundary conditions. The vertical axis is the time axis. It extends
over 1000 time units, i.e. 500 periods of the lowest optical mode. Left: X,, (acoustic
displacements); grey scale from X < —10 (white) to X > +10 (black). Right: Y,
(optical displacements); grey scale from Y < —0.5 (white) to Y > +5 (black).
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Fig. 7. Time evolution of the displacements of a thermalized lattice of Morse os-
cillators along 1000 periods Ty = 2m/wy. The lattice has N, x N, = 32 x 16 cells.
Each of the 16 columns of the figure (between two black vertical lines) shows the
time evolution of a row in the lattice. The grey scale shows the amplitude of the
displacements from u = —1 (white) to u = 15 (black).

given row of the two-dimensional lattice is very similar to the evolution of a
one-dimensional lattice of Morse oscillators. It shows the existence of local-
ized breathing excitations that survive for hundreds of phonon periods. The
comparison of the evolution of neighboring rows shows that these modes are
localized in both spatial directions. The spontaneous localization of thermal
energy in a nonlinear lattice appears clearly when one compares the time evo-
lution of the lattice of Morse oscillators with the evolution of a similar lattice
of harmonic oscillators on Fig. 8. This figure illustrates one example of a large
amplitude mode, situated roughly at the center of the nonlinear lattice, which
is shown for about 100 phonon periods, whereas the harmonic lattice shows a
uniform pattern of displacements.

Although they are restricted to one particular type of nonlinear lattice (lattice

of Morse oscillators) these numerical simulations show that intrinsic localized
modes can emerge from thermal fluctuations even in more that one spatial
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dimension, in spite of the energy threshold that has been found for the dis-
crete breathers in this case [14]. The only significant difference with the one-
dimensional case is the value of the coupling constant K that we have used
to observe a similar self localization of thermal energy. For the same on-site
potential characterized by w? = 4, the simulations have been performed with
K = 0.1 in one spatial dimension, and K = 0.05 in the two-dimensional case.
In fact this difference is understandable because in the two dimensional case,
when an atom is displaced with respect to its equilibrium position, it is recalled
to equilibrium by the forces exerted in the z and y directions. Thus, dividing
K by 2 amounts to choosing the same restoring force as in the one-dimensional
case. This shows that the dimension is not a critical factor for the formation
of discrete breathers as long as the system stays sufficiently discrete, i.e. as
long as the total coupling with the neighbors is sufficiently small compared to
the force coming from the on-site potential.

4 Observing discrete breathers in experiments.

Spectroscopic experiments, such a Raman scattering, or inelastic neutron scat-
tering experiments can probe the dynamical structure factor S(q,w) which is
the Fourier transform of the space-time correlation function of the atomic
displacements S(q,w) = F(u,(t)up(0)). In order to determine how breathers
would appear in such experiments, we have calculated the structure factor
for a thermalized one-dimensional lattice of Morse oscillators. Figure 9 shows
typical results. The grey scale picture clearly shows the presence of breathers
and the structure factor exhibits three characteristic features. The first one is
a broad band that covers the full range of ¢ values, i.e. corresponds to non-
localized modes, and follows the general shape of the phonon band (shown as
a dash-dot line on the contour plot), but with lower frequencies. This band
corresponds to anharmonic phonons. In the Morse potential the frequency of
the vibration decays when the amplitude increases. This is why the anhar-
monic phonons are situated below the harmonic band. The second noticeable
feature is a small peak, with a frequency immediately below the phonon band,
and limited to small wavevectors. It is essentially visible in the bottom left
diagram of Fig. 9. The third feature of the structure factor is the very strong
low frequency component, which has a large peak that dominates the struc-
ture factor at small wavevectors, but extends however over the whole Brillouin
zone, as shown in the contour plot. In order to understand the origin of the
second and third feature, it is useful to start from the approximate breather
solution provided by the multiple scale expansion. As the Morse potential con-
tains a cubic contribution, in the semi-discrete approximation, one looks for
a solution of the form

14



Harmonic

Fig. 8. Snapshots of the spatial distributions of the displacements, shown with a grey
scale, in thermalized two-dimensional lattice of harmonically coupled oscillators.
Model parameters: N, x Ny = 32 x 16 cells, K = 0.05, w3 = 4. The snapshots,
separated by horizontal black lines, have been recorded at a time interval At = 40,
which must be compared to the period Ty = 7 of the bottom of the phonon band.
Left: lattice of harmonic oscillators; grey scale range [—2, 2]. Right: lattice of Morse
oscillators; grey scale range [—1,15].

un(t) = € [Flynew" + c.c.]
+ € |:F(],n + Fy e 4 c.c.] +0(€) (12)
with 0, = gn — wt, where w and ¢ are related by the dispersion relation of the
discrete lattice. Introducing this expression into the equations of motion one

gets a nonlinear Schrédinger equation for F; which leads to the solution w,, (%)
under the form

15
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Fig. 9. Structure factor S(g,w) for a thermalized one-dimensional lattice of Morse
oscillators (N = 256 cells, K = 0.2, w? = 4, temperature in energy units 7 = 0.8) .
The top left figure shows the corresponding displacements u, (t) with a grey scale.
the top right figure shows a contour plot of S(g,w). The dash-dot lines shows the the-
oretical phonon dispersion curve. The two bottom figures show the surface S(q,w)
from two different point of view.

un(t)= 2eAsech[e(n — V,t)/L.] cos(On — wpt)
+2€% A%sech®[e(n — V,t)/ L)
1
% {1 3+ (16/wd) sin*(2)

cos[2(On — wbt)]} , (13)

where A determines the amplitude of the solution, V, is the velocity of the
envelope, w, < wy is the breather frequency and L. determines its width (w,

16
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Fig. 10. Effect of a filter in w and g on the displacement pattern of the thermal-
ized chain of Morse oscillators. Left: original displacement pattern. Middle: pat-
tern restricted to the frequency components 0.35 < w < 0.95 and wavevectors
—0.2 < g < 0.2. Right: pattern restricted to the frequency components 0 < w < 0.35
and wavevectors —0.4 < ¢ < 0.4. The mean value of the displacements is given for

each pattern.

and L, can be expressed in terms of the breather amplitude and velocity,
and the model parameters [13], but their expressions are not useful for the
present discussion) The second and third features of the structure factor can
be understood in terms of this approximate solution. The low frequency central
peak (third feature) is associated to Fp,(t) while the breather frequency wj
which appears in the cosine factor of Fj ,(¢) is responsible of the small peak of
the second feature. This interpretation can be checked numerically by filtering
some components in w and ¢ in the Fourier transform of u,(¢) and plotting
the backward Fourier transform of the filtered data. The results if shown
in Fig. 10. The left figure shows the full displacement pattern recorded for
512 time units. The middle picture shows the pattern obtained by Fourier
transforming the full pattern and then selecting only a small frequency domain
below the phonon band ( 0.35 < w < 0.95) and a small range of wavevectors
around ¢ = 0 (—0.2 < ¢ < 0.2). This region in the spectrum corresponds
to the small peak denoted as the “second feature” in the structure factor.
The picture shows clearly large oscillations situated at the positions of the
breathers, but, the mean value of the displacements is now equal to 0. This
is consistent with the selection of the F; term in the approximate solution
(12). The right picture shows the pattern obtained by retaining only the low
frequency components 0 < w < 0.35 and a range of low wavevectors broader
than previously (—0.4 < ¢ < 0.4). It shows black lines at the positions of the
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breather, without the fast oscillatory component due to the filtering, which
is consistent with the selection of the F5 component of the solution. There is
however one component of the third feature of the structure factor which is
not yet reproduced; it is the low frequency component at large wavevectors.
This contribution is a two-phonon contribution coming from the u? term in
the equation of motion. If one considers the sum of two phonon modes

u = Upelan=—wt) 4 o 4 U,eten—wt) 4 e , (14)

the square term gives factors of the form exp {i[(ql —@)n — (w — w2)t]}

which contains low frequency contributions at all wavevectors, in a range that
coincides very well with the part of the third feature of the structure factor
which is not accounted for by the breathers.

This type of analysis allows us to assign the various features of the structure
factor of a nonlinear lattice. It indicates that the dominant feature is not at
the breather frequency but in the low frequency range and shows up as a broad
central peak. This calls for two remarks. First it shows the limitation of the
multiple scale analysis because, in this approach, the low frequency component
F5 is a second order term, while F; is first order. In the thermalized lattice
we find that the “second order” component plays in fact a larger role in the
structure factor than the “first order” one. Second the main signature of the
breathers in the structure factor is not favorable for their experimental de-
tection because, in experiments performed on a real material, there are many
other possible contributions to the central peak, beyond the breathers, in par-
ticular the static scattering by defects broadened by the limited instrumental
resolution. This is why the central peak in ferroelectrics lead to such debates
for instance. One could think of looking for systems in which this dominant
central peak feature would be absent in order to allow a simpler observation
of features that are truly characteristic of breathers. This would be the case
in systems with a symmetric on-site potential, so that the equations do not
contain a quadratic term. Let us consider for instance a lattice of oscillators
with the on-site potential

V() = %wg [e"“' _ 1]2 . (15)

Figure 11 shows the structure factor of such a system in contact with a ther-
mal bath with the same parameters as for the Morse lattice discussed above.
As expected the structure factor contains neither the central peak nor the
two phonon contribution, i.e. the third feature of the structure factor of the
Morse lattice has vanished. This does not mean however that the breathers
would be easier to detect in a experiment because the breather peak (second
feature of the structure factor) is almost mixed with the phonon band broaden
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Fig. 11. Structure factor S(g,w) for a thermalized one-dimensional lattice of oscilla-
tors with a symmetric on-site potential given by Eq. (15) (N = 256 cells, K = 0.2,
w3 = 4, temperature in energy units 7' = 0.8) . The top left figure shows the corre-
sponding displacements u, (t) with a grey scale. the top right figure shows a contour
plot of S(g,w). The dash-dot lines shows the theoretical phonon dispersion curve.
The two bottom figures show the surface S(q,w) from two different point of view.

by the nonlinearity. This is because for a symmetric potential the nonlinear-
ity appears at a higher order than for an odd potential so that the drop in
frequency due to the large amplitude motion within the breathers is smaller.
In the structure factor of Fig. 11 the presence of the breathers is essentially
attested by the fact that the broad phonon band has a shoulder on the low
frequency which decays when the wavevector ¢ increases.
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5 Conclusion.

The analysis of the pathways to energy localization in a lattice of coupled
nonlinear oscillators shows that the formation of intrinsic localized modes is
possible from a coherent energy input corresponding to a plane wave excitation
of the lattice. It proceeds in two steps. First the modulational instability of the
wave splits it into wavepackets which are small breathers. Then the interaction
of these breathers tend to favor the largest excitations which grow at the
expenses of the other. This process saturates when the breathers, that get
narrower as they grow in amplitude, are so narrow that they are trapped by
lattice discreteness and no longer move in the lattice. The formation of discrete
breathers can also occur from thermal fluctuations. These mechanisms for the
generation of highly localized modes, which had been initially found for simple
one-dimensional lattices, have been shown to be valid in a much larger variety
of systems, and in particular in a multicomponent one-dimensional lattice
or a two-dimensional lattice. The possibility to form breathers from thermal
fluctuations in various nonlinear lattice strongly suggests that they could exist
in many physical systems.

The direct observation of discrete breathers seems however difficult. One could
expect to detect them in the structure factor associated to atomic motions,
which can be probed by experiments such as inelastic neutron scattering or
Raman spectroscopy. However, in system with an on-site potential of odd
symmetry, the dominant contribution of the breathers to the structure factor
is a broad central peak which might be difficult to distinguish from a central
peak due to static scattering or to slowly moving domain walls. If one considers
systems with even on-site potential, the central peak is no longer present but
the peak at the breather frequency is not well separated from the band of
anharmonic phonons because nonlinearity occurs at a higher order.

This indicates that it may be difficult to find the track of breathers in equi-
librium properties such as the two-point correlations functions although the
breathers break temporarily the equipartition of energy. This suggests that one
should look at non-equilibrium properties and attempt to detect some indirect
effects of breathers on the physical properties of a system. A recent work of
Aubry and Tsironis has shown for instance the role of breathers to modify the
relaxation rate of a lattice put into contact with a cold bath[16]. The case of
DNA, for which the lattice of Morse oscillators is a crude model, the breathers
correspond to large amplitude, temporary, openings of the base pairs. They
could be the precursor of the thermal denaturation of DNA [11]. They are ob-
served indirectly because the opening of a base pair corresponds to the break-
ing of the hydrogen bonds linking the bases. This leaves the hydrogen available
for chemical reactions, and in particular for exchange with deuterium when
DNA is in deuterated water [17]. The case of DNA gives some hints on a pos-
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sible role of intrinsic localized modes in biological molecules. Theses molecules
are highly deformable and undergo large amplitude nonlinear displacements,
so that the formation of localized modes from thermal fluctuations seems likely
to occur, especially because biological molecules combine two possible sources
of localization, nonlinearity and disorder. While, as discussed above, localized
modes my be hard to detect by the observation of the equilibrium properties
of the molecule, they could have a dramatic effect if these anomalously large
fluctuations are at the origin of a chemical reaction. The possible role of in-
trinsic localized modes on the kinetic of biological reactions is currently under
investigation [18].
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