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Using the Go� model of a real protein, we explore the landscape of
its metastable structures. First, we show how the inherent struc-
ture energy density can be obtained from the probability density
determined by sampling molecular dynamics trajectories and
quenching. The analysis of the inherent structure landscape can
characterize the folding transition. Then we show how thermody-
namics of the inherent states can be established to study the
equilibrium properties of proteins. Our work brings some elements
into the current discussion about the protein dynamical transi-
tion. The study uses a simplified model to illustrate the ideas, but,
as the inherent structure landscape is much simpler than the free
energy surface of the protein, it appears to be accessible for an
all-atom model of a small protein, at the expense of much longer
calculations.

biomolecule � protein dynamical transition � protein folding �
statistical physics

The concept of energy landscape (1, 2) is very important for
proteins because it provides a unifying viewpoint on the

structure of the proteins, their ability to fold, and their f luctu-
ations, which are essential to function. The energy landscape of
a protein is itself a very complex object so that, except for simple
lattice models of proteins (3), it cannot be explicitly obtained.
But, do we really need to know this landscape? In this article we
argue that the answer is no, or more precisely that a partial view
of this landscape can already tell us a lot about a protein. The
example of glass-forming materials, which are also very complex,
shows that many structural and thermodynamic properties can
be deduced from the knowledge of a very small subset of the
configuration space, the inherent structures, i.e., the local min-
ima of the energy landscape (4, 5). Here we show how the
inherent structure landscape (ISL) can be determined for the
model of a real protein, and that it provides a fairly complete
description of the thermodynamics of the protein.

The key result needed to establish reduced thermodynamics
from the ISL is the corresponding density of states. Previous
investigations have pointed out the importance of the general
features of the density of energy states in determining the
properties of proteins (6, 7). These studies show that the most
significant properties of proteins can be obtained from a suitably
built random energy model, based on a stochastic Hamiltonian.
In this context protein folding has been formulated in terms of
a discrete set of microstates, which could be taken as the minima
of a continuously defined potential energy surface (7). The spirit
of ISL-based thermodynamics is similar, but, in addition we show
here how to build a density of microstates that is based on the
structure of an actual protein. The framework that we introduce
with a simple model to reduce computation time could be used
to analyze any model, including models with an atomic descrip-
tion. The calculations would, of course, become much heavier,
but they appear feasible with the computing facilities available
today.

Exploring the ISL of a protein is not a new idea, but, to our
knowledge, up to now this exploration has been restricted to its
structural properties, for a model heteropolymer with 46 beads
(8). We consider here a 56-aa real protein, and even with a very
simple model, it implies that the number of inherent structures
is increased by more than four orders of magnitude. An exhaus-

tive search is not possible, but we show that a statistical physics
analysis can be used to extract the necessary information from
the phase space trajectories of the thermalized protein. Then we
compare the thermodynamics over the ISL to the full thermo-
dynamics of the protein.

We selected protein G (9) for this study because it is rather
small (56 residues) but nevertheless includes typical secondary
structure elements of proteins, one �-helix and two �-strands.
We use molecular dynamics at constrained temperature to let the
protein explore its free energy landscape, and applying rapid
quenchings, i.e., calculating a steepest descent path from differ-
ent points of this trajectory, we sample the underlying inherent
structures. Although the characterization of the ISL is much
simpler than a full determination of the energy landscape,
calculations with an all-atom model of the protein would require
a large computer power. Here, to illustrate the ideas, we use an
off-lattice Go� model (10), which is rather simple but nevertheless
accurate enough to reproduce experimental properties of the
transition state for several proteins (11).

Density of States for the Inherent Structures
Molecular dynamics simulations show that the model has the
expected qualitative properties of a good folder: at low temper-
ature it folds to the global minimum of the potential energy,
whereas at high temperature it denaturates. If the model is
cooled down quickly from a high-temperature unfolded state to
a temperature well below its folding temperature (Tf), the folding
process is, however, very slow, and may never reach a shape close
to the native shape within the time scale accessible in a simu-
lation. This finding suggests that this model protein exhibits the
glassy properties observed in actual proteins. The folding tran-
sition can be detected from the temperature variation of the
specific heat Cv. As shown in Fig. 1, a characteristic peak of Cv
appears at a temperature that we define as Tf. The ISL is
determined by the basins of the potential energy surface, labeled
by an index �, which are defined as the set of conformations that
are connected to the same local energy minimum, called the
inherent structure, which has an energy e�.

The rapid change of the shape of the curve showing the
probability density of inherent structures PIS versus their energy
e� in the vicinity of Tf confirms this interpretation: below Tf,
PIS(e�, T) is higher for the low values of e�. At Tf it shows two
maxima, one for low energies corresponding to folded states, and
one for high-energy, unfolded states. Above Tf, PIS(e�, T) is
dominated by the high-energy, unfolded states. To characterize
the ISL we need not only the values of the energies e� but also
their density of states �IS(e�). A realistic protein has a huge
number of inherent states so that �IS(e�) cannot be determined
from a systematic search. Instead it can be deduced from the
sampling of the inherent structures that gives PIS. In the basin of
attraction of inherent structure �, the potential energy of the
protein can be written as V(r) � e� � �V(r), where r designates
all of the degrees of freedom of the protein. Let us assume that
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the inherent structures can be split into a set of discrete states
�0, �1, . . . , �K (which includes at least one state, the ground
state) and a continuum of higher-energy states. With this
notation, the configurational contribution of the partition func-
tion of the protein is

Z�T� � �
�i��0

�K

e��e�i e��F���i ,T� � �
e�K

emax

� IS�e��e��e�e��F���,T�de� ,

[1]

where emax is the highest inherent structure energy. Moreover we
have introduced

e��F���,T� � �
B���

e���V�r�dr, [2]

which is the vibrational free energy in the basin of attraction
B(�) of the inherent structure �. The probability to be in the
basin of attraction of a discrete inherent structure is

p�i
�T� �

1
Z�T�

exp���e�i
�exp���F��� , T�	 , [3]

and, for the continuum of inherent structures, the probability
density of inherent structures is

PIS�e� , T� �
1

Z�T�
�IS�e��exp���e��exp���F��� , T�	 .

[4]

If we can assume that the free energy Fv(�, T) does not depend
on the inherent structure, in Z the term exp[��Fv(T)] can be
factorized so that p�i

and PIS simplify into

p�i
�T� �

e��e�i

ZIS�T�
, PIS�e�, T� �

1
ZIS�T�

�IS�e��e��e� [5]

with

ZIS�T� � �
�i��0

�K

e��e�i � �
e�K

emax

� IS�e��e��e�de� . [6]

ZIS can be viewed as an inherent structure partition function. It can
be expressed in terms of the probability p�0

(T) that the protein is
in the basin of attraction of the ground state, which is henceforth
denoted as p0(T). This allows us to rewrite PIS(e�, T) as

PIS�e� , T� � p0�T��IS�e��e��e� , [7]

if we chose the ground-state energy as the reference state of the
energies (e�0

� 0). Eq. 7 provides a method to compute �IS(e�)
from the probability density PIS(e�, T) deduced from the sam-
pling of molecular dynamics trajectories. The validity of the
method relies on the assumption that the vibrational free energy
in a basin of attraction Fv(�, T) does not vary significantly from
a basin to another. For harmonic basins of attraction, we have

F���, T� � kBT �
q

ln� –h�q

kBT
� , [8]

where the values �q are the frequencies of the vibrational modes
of the protein when it is in the configuration corresponding to the
inherent structure �. Of course, these frequencies change indi-
vidually from one inherent state to another, but they keep the
same order of magnitude, and the sum has an averaging effect
that keeps Fv(�, T) only weakly dependent of the conformation.

This conjecture is verified by our calculations because �IS(e�)
deduced from PIS(e�, T) at different temperatures gives the same
result in all of the ranges of inherent structure energies that are
accessed with a sufficient probability to allow a correct sampling
at the temperature considered. Fig. 2 shows the density of states
�IS(e�) computed from the sampling of molecular dynamics
trajectories at three temperatures. Fig. 2’s results are remarkably
similar, showing that the assumption that Fv(�, T) can be
eliminated in the calculation is a good approximation; however,
the results are obviously not identical. Fig. 2 Right, deduced from
the calculation at the lowest temperature, shows some values of
e� where the density of states appears to vanish, whereas it does
not vanish if �IS(e�) is computed from a trajectory at higher T.
Such inconsistency is particularly noticeable for high values of e�,
and it points out the limit of the numerical calculation. As shown
from Eq. 7, the probability to be in the basin of attraction of an
inherent structure decreases as exp(�e��kBT). Therefore, if we
use a molecular dynamics trajectory at a low temperature to
sample the basins of attraction of the inherent structures, it may
happen that we completely miss some inherent structures be-
cause of insufficient sampling. This outcome is even more likely
if the basin of attraction of a given inherent structure is narrow
because, besides the temperature factor, its small size also
reduces the chance to sample it properly. Studies performed at
higher temperatures reduce this problem and T � Tf is partic-
ularly appropriate because we expect a molecular dynamics
trajectory to sample both structures corresponding to folded and
unfolded states. Once �IS(e�) has been determined from Eq. 7
at a temperature where the sampling is particularly efficient,
ZIS(T) can be computed at any temperature with Eq. 6.

Fig. 1. Temperature dependence of specific heat Cv and probability distri-
bution of the inherent-state energies, PIS(e� , T) at three temperatures in the
vicinity of the Tf.
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Fig. 3 displays �IS(e�) in a large range of energies. It shows an
isolated minimum energy state, followed by a few states very
close in energy and then a large gap, of the order of kBTf, before
the next state. A plot of the structure shows that the ground state
and states immediately above it in energy have very similar
shapes. Thus the few states near the minimum can be viewed as
conformational substates (12) of the ground state. The gap
between these states and the next states indicates that the model
protein is a good folder (3), as observed in molecular dynamics
simulations.

For larger energies �IS(e�) shows an exponential growth, with
two different slopes depending on the energy range:

�IS�e�� � �0exp�g�e��	 [9]

with

g�e�� � �
e�

kBTs
� A �e� � 45kBTf� ,

e�

kBTu
�e� � 50kBTf� ,

[10]

where �0 and A are positive constants, and Ts � 1.1 Tf and Tu �
0.9 Tf. It is interesting to notice that a similar exponential
dependence of the density of metastable state was found for spin
glasses (13) although the energy dependence of g(e�) is more
complex for such systems.

Thermodynamics in the Inherent Structure Space
The density of states in the ISL can be used to analyze the folding
of the protein. Substituting the expression of �IS(e�) into Eq. 7
gives

PIS�e�, T� �
1

ZIS�T�
�0exp� e�

kB
� 1

Ts
	

1
T� � A	

for e� � 45kBTf , [11]

PIS�e�, T� �
1

ZIS�T�
�0exp� e�

kB
� 1

Tu
	

1
T� 	

for e� � 50kBTf . [12]

But Eq. 11 is also the expression that gives the behavior of PIS(e�,
T) at low temperature (T 
 Tu) because, in this temperature
range, the equations giving PIS(e�, T) show that low-energy
inherent structures dominate. On the contrary, Eq. 12 should be
used at high temperature (T � Ts), because in this range
high-energy inherent structures dominate. As shown in Fig. 1, in
the range Tu 
 T � Tf 
 Ts none of the energy ranges dominate,
and PIS(e�, T) has two humps, one of them at low e� correspond-
ing to folded structures, the other one at high e�, corresponding
to unfolded structures. Therefore, when we take into account the
expression of �IS(e�), we find that the shape of PIS(e�, T) changes
qualitatively in a narrow temperature range around Tf. This
picture is consistent with a first-order transition, Tu 
 T 
 Ts

being the coexistence region, so that the two temperatures
exhibited by the analysis of �IS(e�) appear as the limit of the
spinodals. These characteristics are consistent to the behavior of
specific heat Cv. As is indicated in Fig. 1, Ts and Tu are close to
the temperatures at the start and the end of the peak for Cv.

As noticed above, the exponential growth for the density of
state �IS of the inherent structures is not a special feature of the
protein model but was also obtained in spin glasses (13).
However, in the present case, the exponent g(e�) is connected to
the folding transition, which is specific to proteins. We also
observed a similar behavior in a standard Go� model, without
interaction through dihedral angles.

The density of inherent structures energies and the associated
partition function ZIS(T) are not only useful for characterizing
the folding transition. They can also tell us a lot about the
thermodynamics of the protein. We can build thermodynamics
based only on the configurations of the inherent structures by the
usual scheme of statistical mechanics,

UIS�T� � 
e�� � � e�PIS�e� , T�de� , [13]

FIS�T� � �kBT log�ZIS�T�� , [14]

SIS�T� �
UIS 	 FIS

T
, [15]

Fig. 2. Comparison of the density of states �IS(e�) computed from the probability densities PIS(e�, T) deduced from molecular dynamics trajectories at three
different temperatures: T � Tf (Left), T � 0.83 Tf (Center), and T � 0.69 Tf (Right).

Fig. 3. Density of state �IS (e�) for the inherent structures, which is obtained
from PIS(e �, Tf) according to Eq. 7. The dotted lines are two distinct exponen-
tial functions with exponent corresponding to Eq. 10. (Inset) A magnification
of the curve for the energies close to the ground state.
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CIS�T� �

�e�

2�

kBT2 �

e�

2� 	 
e��2

kBT2 , [16]

where UIS, FIS, SIS, or CIS are the internal energy, Helmholtz free
energy, entropy, or specific heat, respectively, deduced only from
the thermal fluctuations between conformations, so that they
can be called conformational energy, conformational free en-
ergy, etc. They are shown in Fig. 4.

The conformational specific heat is remarkably similar to the
full specific heat of Fig. 1. The detailed analysis of Fig. 4 Middle,
which displays the vibrational specific heat per residue CW�Nr �
(Cv � CIS)�Nr and conformational specific heat CIS, shows that
the vibrational contribution of the specific heat is very close to
the value 3 kB�2 expected for harmonic oscillators. This finding
suggests that the thermalization in the basin of attraction of each
inherent structure allows a good separation between a vibra-
tional part and a conformational part of the specific heat. When
comparing the values of CW and CIS one should notice an
essential difference between the two. CW is a vibrational con-
tribution, which comes from all of the residues and, as it is well
approximated by the harmonic value, indicates that the contri-
butions of all vibrational degrees of freedom are independent, so
that CW�Nr has an actual physical meaning. On the contrary, the

structural f luctuations entering in CIS may be either a flip of a
residue, for instance, and thus can be very local, or a slow
structural change extending to a significant part of the protein,
such as the motion of the whole �-helix. This is why the quantity
CIS�Nr would not have a physical meaning because a protein is
not a self-similar structure. A meaningful comparison must
compare CIS with CW�Nr: structural f luctuation will start to play
a role in the physics of the protein when CIS � CW�Nr. As shown
in Fig. 4, CIS starts to rise significantly �0.3 Tf and quickly takes
over for T � 0.4 Tf, whereas the fluctuations are dominated by
the vibrational contribution in the low temperature range.

The behaviors of the conformational entropy and energy (Fig.
4 Bottom) show a similar rise clearly visible for T � 0.4 Tf. The
increase of entropy that appears to accelerate and become
exponential for T � 0.4 Tf (see Fig. 4 Bottom Inset) can be
understood as coming from the structural variety observed in the
thermal fluctuations. This idea would be consistent with the
behavior of CIS and CW.

Discussion
The results of the thermodynamics of the inherent structure
states shed an interesting light on the current debate about the
existence and observation of a protein dynamical transition (14).
For our model protein two temperatures appear to play a
particular role. The lowest one is 0.05 Tf, above which energy and
entropy show a rise (Fig. 4). With the resolution of our calcu-
lation,§ 
0.05 Tf, f luctuations among inherent states seem
completely suppressed, so that this temperature could be viewed
as the Kauzmann temperature for this model (15). One should,
however, notice that Fig. 4 shows a gradual decrease of the
entropy �0.05 Tf, suggesting that, as previously noticed for
another off-lattice protein model (16), a true thermodynamics
glass transition does not exist for a finite system such as a protein.
The other characteristic temperature is 0.4 Tf. It should corre-
spond to a qualitative change in some observations on the
protein because, around this temperature, conformational
changes among the different inherent structures start to domi-
nate the fluctuations, as shown by the specific heat. Thus a glassy
behavior could be expected when the temperature is lowered to
values in the range 0.05 Tf 
 T 
 0.4 Tf or below.

However, as far as we deal with equilibrium aspects, the
characteristics of a glass phase are not detected in our study
because they only show up in out-of-equilibrium situations. From
the viewpoint of equilibrium thermodynamics, we cannot find a
characteristic change caused by the ‘‘glass transition.’’ In the
temperature range 0.05 Tf 
 T 
 0.4 Tf, in which we could expect
the glass transition, the specific heat Cv only shows a smooth
evolution without any drop when temperature is lowered. In the
thermodynamic sense there is no transition. However, the pic-
ture could become different if nonequilibrium aspects were
probed. For instance, when cooling the protein rapidly from high
temperature, a drop of Cv might be observed and a transition
temperature identified in the range 0.05 Tf 
 T 
 0.4 Tf, but it
should depend on the cooling rate.

Our results raise a question about the nature of the fluctua-
tions that we observe: do they correspond to the � or �
relaxations observed in proteins (14)? Experiments (17, 18) and
molecular dynamics simulations in which the temperature of the
solvent and the protein are constrained to be different (19) show
that the solvent mobility is an important factor in determining
the large-scale fluctuations of a protein. The � relaxation is
‘‘slaved’’ to the solvent fluctuations, which is not the case for the
glassy aspects of our results because the solvent only enters into

§The results from thermodynamics in the inherent structure space are not affected by a
possible lack of ergodicity at low temperature because they are established from a density
of states deduced from simulations around the Tf. Their accuracy is determined by the
quality of the sampling of the phase space in the vicinity of the Tf.

Fig. 4. Thermodynamic quantities defined from the inherent structures.
(Top) Conformational specific heat CIS�kB. (Middle) Magnification of the
variation of the specific heat in the low-temperature range, also showing the
contribution CW � Cv � CIS, which is expected to reflect the properties of
thermalization inside each well. Notice that the value shown is CW�Nr, i.e., the
vibrational specific heat per residue, while CIS, which is expected to reflect a
global property of the protein, is shown for the full molecule. The dashed line
indicates the harmonic limit CW�Nr � 3 kB�2. (Bottom) Conformation entropy
SIS and conformation energy UIS. (Inset) Conformational entropy in logarith-
mic scale.
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our study through its contribution to the interaction energies not
through its dynamics because the model uses effective potentials
to include hydrophobic effects. The fluctuations must be attrib-
uted to the protein energy landscape, which suggests that the
fluctuations that are observed in our simulations correspond to
the � relaxation, i.e., to fluctuations that do not involve large
conformational changes that could be hindered by a frozen
solvent in an actual experiment. This makes sense if we think of
the peculiarities of the Go� model, which strongly favors the
native structure by the selection of the interactions that are
introduced in the model. It is likely that such a bias toward the
native shape prevents such a simplified model from exhibiting an
� relaxation.

In the studies of glassy systems with inherent structures, it is
customary to introduce the configurational entropy

sc�e�� � kB log�� IS�e��� . [17]

In the context of a thermodynamic description based on the
inherent structures, sc can be viewed as the microcanonical
entropy, whereas SIS(T) defined by Eq. 15 is the canonical
entropy. Therefore, in the thermodynamic limit, we could expect
that sc(ẽ�) � SIS(T), where the most probable value ẽ� of the
inherent structure energy would also tend toward its mean value

e��. However, this is not true for a protein, because of the
finiteness and heterogeneity of the system, but also because,
below Tf, the most probable value of e� is the ground state of the
protein. In this regime the density of states �IS(e�) is dominated
by a few isolated states, and one cannot build thermodynamics
on the configurational entropy, whereas SIS(T) defined by Eq. 15
has the expected properties of a thermodynamic entropy, such as
dSIS(T)�dUIS(T) � 1�T.

In this article we have shown that the ISL of a protein can be
analyzed because its density of states can be deduced from the
probability density of inherent states extracted from molecular
dynamics simulations. The ISL contains considerably less infor-
mation than the free-energy landscape of the protein, and this is
what makes it accessible. At the expense of much longer
calculations, the ISL appears to be accessible for an all-atom
model of a simple protein because our scheme to obtain it does
not require the full determination of every local minimum
because it takes advantage of the usual ability of statistical
physics to provide very accurate results from a simplified de-
scription of the system. An important aspect is that, in this
framework, all thermodynamics properties are deduced from the
density of inherent states that is obtained from molecular
dynamics simulations in the vicinity of Tf to sample folded and
unfolded states. As a result the difficult issue of the ergodicity of
simulations at very low temperature can be avoided.

When a complicated model, such as an all-atom description is
considered, the landscape becomes immense and one may be
concerned by the validity of the sampling of the phase space to
get the inherent structure density of states. But it should be noted
that, even for a frustrated Go� model, the landscape is rugged and
complex. For our protein model, it is multifunneled. Kinetic
studies of folding detect the existence of a second folding funnel,
leading to a kinetic trap (unpublished work). The density of
inherent states in the kinetic trap can be obtained and it is very
low. Therefore, although the second funnel plays a significant
role in the kinetics of the folding, it does not show up in the
thermodynamics of the protein. This is an interesting aspect of
the canonical sampling that we use. It introduces some self-
consistency in the method because states that are important for
the reduced thermodynamics are also those that are more likely
to be sampled. Another test of the validity of this approach is
provided by the possibility to get �IS(e�) by sampling at different
temperatures in the vicinity of Tf. They should lead to the same
structure for the density of states. This is why, despite the

obvious difficulty of carrying long molecular dynamics trajecto-
ries at different temperatures for a complex protein model, the
thermodynamics in the ISL seems reachable in this case.

The Go� model of a real protein is sufficient to allow the
investigation of the properties of the ISL. It shows that, despite
the loss of information with respect to the full free energy
landscape, the ISL still contains a lot of data on the protein. It
can be used to study the folding transition because PIS exhibits
a qualitative change across Tf and can even detect the associated
spinodals. The density of inherent states shows an exponential
scaling, which can be related to the folding transition. This
finding suggests that it could be a general property of proteins,
and it will be interesting to test this hypothesis on other protein
models, including all-atom descriptions. The ISL can also be
used to analyze the thermodynamics of the protein. It cannot
observe the vibrational contributions, but detects the most
important features of proteins, their conformational f luctuations
that are responsible for their function.

Materials and Methods
The potential energy of our Go� model of protein G is

V � �
i�1

Nr�1 Kb

2
�bi 	 b0i�

2 � �
i�1

Nr�2 K a

2
�
i 	 
0i�

2

� �
i�1

Nr�3 Kd

2 �1 	 cos� 2� i 	
�

2 � �
� �

i�j�3

native



 5� r0ij

r ij
� 12

	 6� r0ij

r ij
� 10� � �

i�j�3

non-native


� C
rij
� 12

,

[18]

where Nr is the number of residue, and bi, 
i, and �i are the ith
bond length, ith bond angle, and ith dihedral angle, respectively.
rij is the distance between ith and jth residues. The index 0
denotes the parameters determined from the native structure.
Such a model includes local and nonlocal interactions. The local
interactions are the bonds that define the C� chain through stiff
elastic potentials describing the covalent bonds, angular poten-
tials between adjacent bonds, and dihedral potentials. The
natural bond length or bond angles are determined from the
native structure. The nonlocal bonds connect C� carbons that are
not adjacent along the peptide chain, but nevertheless close in
space in the folded geometry of the protein. Such carbons are
said to form a ‘‘native contact’’ and interact with a Lennard-
Jones potential in the model. They are determined from the
experimental structure of the protein in its folded state: two C�

carbons are said to form a native contact if the distance between
them or between atoms of the side chains attached to them is less
than a critical distance, here chosen as 5.5 Å. A repulsive
interaction is introduced between all C� carbons that do not form
a native contact to describe the steric repulsion. Such a Go� model
is specifically designed to ensure that the system reaches the
correct folded structure and these models are generally good
folders, i.e., their folding transition is sharp and leads to a well
defined structure, because they are minimally frustrated. A
comparison of the folding of an off-lattice Go� model and a
frustrated model based on hydrophobic (B), hydrophilic (P), and
neutral (N) residues (BPN model) showed that the Go� model
leads to a sharp transition where collapse and folding occur
simultaneously, whereas the highly frustrated model shows a
very broad collapse and even at the lowest temperature the
number of contacts is far from maximal (20), pointing out that
a realistic model of protein should be minimally frustrated (2).
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In our model a slight frustration is introduced (10) by assuming
that the dihedral angles have the ideal values 45° or 135° of the
�-helices or �-sheets instead of the angles deduced from the
native structure. The native structure of protein G has been
obtained from the Protein Data Bank (21). The dimensionless
parameters of the model are Kb � 200.0, Ka � 40.0, Kd � 0.3, 

� 0.18, and C � 4.0. The experimental structure lies in the basin
of the global minimum of the model but does not correspond
exactly to the ground-state structure of our model because of the
frustration introduced on the dihedral angles.

Thermalized phase space trajectories are generated for this
model, using underdamped Langevin simulations, where the
masses of all of the residues are assumed to be equal. Our goal
here is not to explore out-of-equilibrium states, but rather to
analyze the equilibrium properties of a protein. Therefore, to
avoid long nonequilibrium transients that occur on cooling,
except for the general tests of the model properties, all of our
simulations started from the ground state and heated up to the

temperature of interest. To collect statistics over a given equi-
librium trajectory, a typical simulation included 3 � 108 steps
after the desired temperature was reached. For each tempera-
ture 20 simulations were performed with different sets of
random numbers in the Langevin equations.

Equilibrium trajectories were used, on one hand, to analyze
the thermodynamic properties of the model, and, on the other
hand, to characterize its ISL. The basins of the potential energy
surface were determined by quenching 6 � 104 instantaneous
configurations separated by 105 steps, i.e., calculating a steepest-
descent path from these points of the trajectory. A similar
algorithm had been used earlier for the BPN model of a
four-helix bundle protein (22) to detect states that could be
long-lived intermediates in the folding.
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