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We use an extended Gō model, in unfrustrated and frustrated variants, to study the energy
landscape and the fluctuations of a model protein. The model exhibits two transitions, folding and
dynamical transitions, when changing the temperature. The inherent structures corresponding to
the minima of the landscape are analyzed and we show how their energy density can be obtained
from simulations around the folding temperature. The scaling of this energy density is found to
reflect the folding transition. Moreover, this approach allows us to build a reduced thermodynamics
in the Inherent Structure Landscape. Equilibrium studies, from full MD simulations and from the
reduced thermodynamics, detect the features of a dynamical transition at low temperature and we
analyze the location and timescale of the fluctuations of the protein, showing the need of some
frustration in the model to get realistic results. The frustrated model also shows the presence of a
kinetic trap which strongly affects the dynamics of folding.

PACS numbers: 87.15.-v Biomolecules: structure and physical properties, 87.15.Cc Folding and sequence
analysis, 87.15.He Dynamics and conformational changes, 87.15.Ya Fluctuations

I. INTRODUCTION

Proteins are fascinating molecules which perform a large variety of functions in biological systems. The most
remarkable property of some proteins is their ability to work as molecular motors, i.e. to turn chemical energy into
mechanical motion. How this occurs is not understood but even the basic properties of proteins, such as their folding
or their glass transition raise many questions yet unanswered. For instance, for a long time folding has been assumed
to occur in successive stages, first the formation of secondary structures and then their positioning in space. This
is now questioned because studies show that the α helix may require the environment of the protein to be stable,
so that folding has to be global [1]. On another hand, the “glass transition”, which is the low-temperature freezing
of the large conformational changes which exist at biological temperature, is still the subject of many investigations
presently, in particular to determine to what extend it is slaved to a transition in the solvent [2], and a consensus has
yet to be reached concerning the form and time scales of the protein motions activated when this dynamical transition
[3] is passed by raising temperature.

The specific properties of proteins are closely related to their fluctuations, which have been the object of numerous
investigations. For instance NMR spectroscopy [4] which can precisely study the fluctuations of the side chains of
the amino-acids that compose a protein, neutron scattering [5] or dielectric measurements [6] have observed a large
increase of the fluctuations above approximately 200 K corresponding to the dynamical transition. But experiments
are rather crude tools to study fluctuations [7] because they provide ensemble averages such as root mean square
quantities. Recently subtle properties of the fluctuations have been investigated with single molecule experiments
[8] but even when ensemble averages are eliminated by such studies, the experiments are observing time averages
because they measure over time domains which are much longer than the time scale of the fluctuations. This is
why many theoretical studies using protein models, which can study individual motions with high resolution, have
been performed. Here too various views are possible. It is tempting to use all-atom molecular dynamics simulations
to directly investigate protein dynamics with a high accuracy. This has been done successfully for small proteins
[3, 9, 10]. Molecular dynamics is perfect to study sub-nanosecond dynamics but some conformational changes occur
on much longer time scales which can extend to µs or more. Therefore, even when low temperature simulations
observe some features characteristic of the glassy behavior such as the Boson peak [10], they only study the properties
of fast fluctuations and not the conformational changes which, at these temperatures, are rare events. Folding is an
even slower process and the first numerical experiment to “fold a protein with a computer” with an all-atom model
was a challenge that required a huge computer power [11]

To overcome these difficulties, another limit is to consider highly simplified models. Two-dimensional dynamical
models have given useful information [12, 13] and even simpler models, lattice models, where the motion of the protein
is restricted to positions on a discrete lattice [7, 14] have given interesting insights on protein fluctuations.
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There are however some questions that these simple models cannot answer, it is all those which are related to the
complex geometrical structure of a protein. To address these questions, one needs a model which describes the full
three-dimensional structure of an actual proteins, while being simple enough to allow studies on long time scales.
Such a model, proposed a long time ago by N. Gō and coworkers [15], became popular as the “Gō model”. The idea
is to describe only the backbone of the protein and design the potentials for the interaction between its elements to
make sure that the ground state of the model corresponds to the native state of the protein of interest. Although
the original paper shows that the model can describe the fluctuations of the protein configuration between different
conformations, the model has essentially been used to study folding. The properties of a protein cannot be reduced
to its folding transition, and therefore one should consider a model which can reproduce not only protein folding
but other typical features. One of them, which is particularly important and typical of proteins, is their dynamical
transition, which is rather universally observed for various proteins. Because the two transitions are major features
of proteins, it is important to study them in conjunction with each other. This is the aim of our study and to our
knowledge it is the first time that these two basic features of proteins are studied theoretically in the same framework.
The Gō model, provided it is enriched by some minimal frustration allows such a study, which on one hand tells us
more about proteins by comparing the results provided by the model with known experimental facts, and, on another
hand brings results on the requirements that a minimal protein model has to fulfill. The questions that we want to
address are:

(i) How is the the energy landscape of a protein? The notion of energy landscape, which designates the potential
energy of a protein as a function of its numerous degrees of freedom [16] has been a very fruitful tool for the reasoning
on protein properties because it leads to a conceptual image of the energetic configurational space. However it is a
highly multidimensional object which cannot be drawn or even computed although some of its properties have been
determined for very simple protein models [17, 18], small molecules [19], or secondary structure elements of a protein
[20]. We introduce here a method which allows us to fully characterize the density of states of a reduced version
of the energy landscape which corresponds to the minima of the full energy landscape. It can be obtained for a
three-dimensional model of an actual protein and moreover the ability to precisely get its density of states allows us
to exhibit scaling properties in the landscape, which are strongly correlated with the folding transition. Moreover,
we show that the knowledge of the reduced energy landscape can be used to derive a reduced thermodynamics of the
protein, which characterizes the properties of its conformational fluctuations to a high accuracy.

(ii) How does the protein explore its energy landscape? This question is related to the dynamical transition of
the protein. Below the transition temperature, the fluctuations of the protein are restricted and very local, and the
protein can hardly explore its global energy landscape. While experiments clearly demonstrate that the solvent plays
a role in this transition [21], one may wonder whether the complexity of the landscape of an actual protein would
not be sufficient to lead to such a dynamical transition. Molecular dynamics simulations of isolated proteins answer
this question positively [22–24], but these calculations are limited to a time scale of the order of 1 ns and thus cannot
probe a possible slowing down when the transition is approached from above. Besides the effect of the solvent, the
conformational change of side chains can contribute to the dynamical transition [25, 26]. Such local conformational
changes would in turn induce changes on a larger scale, showing up in fluctuations of the backbone itself. In simple
models the effect of solvent is implicitly included in the effective potential for the backbone, which does not depend on
temperature. A possible effect of a temperature dependent dynamics of the solvent is precluded and the occurrence
of the conformational changes of the side chains is omitted. Thus the only dynamical effects that can occur come
from the way the protein explores its energy landscape. A full molecular dynamics study of our Gō model for time
scales longer than 1µs indicates that the motion of the backbone can exhibit the dynamical transition, without any
explicit driving by the solvent or the conformational changes of the side chains. We think that the complexity of an
actual protein, with its full chemical structure and solvent effects is not a prerequisite for a physical system to exhibit
both a folding and a dynamical transition, and this suggests that minimal models can be used in a meaningful way
to understand some important properties of proteins.

(iii) What features are required in a “minimal” protein model? In spite of its importance, taking into account the
complex geometry of the protein backbone in the modeling is not sufficient to lead to realistic model. Our study
allows us to precise how the observations depend on the features of the model by showing that a minimal frustration
is necessary to lead to realistic, in agreement with the conclusions of statistical physics studies [27, 28]

The organization of the paper is the following. We first introduce the model in Sect. II. We discuss two versions
of the model, a simple unfrustrated Gō model, and a model in which frustration is introduced through the dihedral
angles. They are then tested against various actual properties of proteins in order to determine the conditions that
an appropriate model should meet. Examining folding/unfolding gives a first hint that frustration is necessary.

Section III investigates the equilibrium properties of the model. In the spirit of studies performed to study glasses
we analyze the numerous metastable states which exist in the energy landscape of the model, which correspond to
the so-called “inherent structures” of glasses. We show that a thermodynamics of the inherent states can be built and
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FIG. 1: [color] Representation of the main structural elements of the B1 domain of protein G (drawn with VMD[30]). The
purple part corresponds to the α-helix, while the yellow ribbons are β-sheets. Residue number 1 is the end of the chain at the
top right of the figure. The main structural elements of this protein are two β strands comprising residues 1 to 7 and 14 to 19,
which form a β sheet denoted by βN , one α helix made of residues 23 to 35, and two β-strands comprising residues 42 to 46
and 51 to 55, which form the β-sheet called βC . Other residues belong to loops.

that it describes the equilibrium properties associated to the conformational changes of the protein.
Section IV investigates the dynamical properties of the protein in equilibrium. The temperature evolution of its

fluctuations, their location within the structure and their time scales are computed and discussed in comparison with
known experimental properties. This section strengthen the need of some frustration in the model.

Section V investigates the out of equilibrium properties of the protein, in particular the dynamics of its folding
when temperature is abruptly reduced from a high value to a value below the folding temperature. It allows us to
characterize the energy landscape further by extracting some information on the barriers between minima. All these
results allow us to discuss the modeling of proteins at mesoscopic scale in Sec. VI and to examine some of their
properties, particularly the dynamical transition.

II. MODEL

A. The models

We chose to study a small protein containing all types of typical secondary structure elements (α-helix, β-sheets
and loops), protein G (the B1 domain of immunoglobulin binding protein [29], Protein Data Bank ID code 2GB1).
It contains 56 residues, with one α-helix and 4 β-strands forming a β-sheet. Its NMR structure is shown on Fig. 1.

As discussed in Sec. I we want a model able to describe the actual geometrical structure of the protein, but
nevertheless sufficiently simple to allow us to investigate slow processes, such as the conformational changes at low
temperature, or folding. To study the fluctuational dynamics of the protein we need an off-lattice model. All those
requirements naturally lead to the choice of an off-lattice Gō model [15, 31], which is rather simple but nevertheless
accurate enough to reproduce experimental properties of the transition state for several proteins [32].

The design of this model, which only describes the backbone of the protein defined by the chain of Cα carbons, is
tailored to the correct description of the geometry, but the expression of the potential energy only uses a small number
of parameters and does not intend to to be quantitatively correct, as it is the case for the all-atom models. The main
idea of the model is to classify all possible contacts as either “native” (i.e. present in the native conformation) or
“non native”. The potential energy is then constructed so that native contacts are favorable, and non-native contacts
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are less favorable, neutral or repulsive. It is given by
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where Nr is the number of residue, bi, θi and φi are the i-th bond length, i-th bond angle and i-th dihedral angle
respectively. rij is the distance between i-th and j-th residues. The index 0 denotes the parameters determined from
the native structure. The model includes local and non-local interactions. The local interactions are the bonds which
define the Cα chain through stiff elastic potentials describing the covalent bonds, angular potentials between adjacent
bonds, and dihedral potentials. The natural bond length or bond angles are determined from the native structure.
The nonlocal bonds connect Cα carbons which are not adjacent along the peptide chain, but nevertheless close in
space in the folded geometry of the protein. Such carbons are said to form a “native contact” and interact with a
Lennard-Jones potential in the model. They are determined from the experimental structure of the protein in its
folded state: two Cα carbons are said to form a native contact if the distance between them or between atoms of the
side chains attached to them is less than a critical distance, here chosen as 5.5 Å. A repulsive interaction is introduced
between all Cα carbons which do not form a native contact to describe the steric repulsion. For Kd = 0 all the
interactions are are at their minimum energy in the native state. This is the choice made in the original version of the
Gō model and models having this property are generally good folders, i.e. their folding transition is sharp and leads to
a well defined structure, because the native state does not result from a compromise between competing interactions.
The model with Kd = 0 is unfrustrated and will be henceforth denoted as “model U”.

The choice of an unfrustrated model becomes questionable if we want to investigate the fluctuations of the protein
because the structure of actual proteins results from a compromise between different interactions. This introduces
frustrations which are likely to play an important role in the protein dynamics. Proteins have been described as
“minimally frustrated systems” [16], and this is why we have introduced the possibility to add a frustration coming
from competitive dihedral angle interactions [31]. It is provided by the last term of Eq. (1). When Kd 6= 0 (Kd = 0.3
in our case), the last term tends to favor dihedral angles equal to π/4 (mod π) which are not exactly equal to the
value of the dihedral angles in the native structure. This energy terms competes with the other contributions. This
leads to a ground state slightly distorted with respect to the native structure, but the geometrical influence of the
dihedral potential terms stays small, while it has a significant influence on the dynamical properties of this version
of the model, called frustrated model (or “model F”), as shown below. Such frustrated models are still simple but
nevertheless accurate enough to reproduce experimental properties of the transition state for several proteins. The
introduction of the frustration through a constraint on the dihedral angle might sound arbitrary. First one should
realize that, as pointed out above, the potential energy of Gō models does not claim to be quantitatively correct. This
is a remarkable feature of Gō models that they are able to give results which agree with experiments, for instance
for the structural details of the transition state and intermediates for folding [32] although their potential energy is
highly simplified. In the same spirit, introducing frustration through the dihedral angles can be understood as a way
to include a physical effect, frustration, through the simplest description that is qualitatively correct. Second, an
analysis of the folding of different proteins described by frustrated Gō models where the frustration was introduced
through the dihedral angles showed the validity of this approach [31] because, for small fast-folding proteins, the
energetic roughness is not the dominant factor determining a sequence’s foldability. Topological frustration, which
can be described by the dihedral angle contribution, is even more important [32].

The dimensionless parameters used in our calculations are Kb = 200.0, Ka = 40.0, Kd = 0.3, ε = 0.18 and C = 4.0.
Time is also a dimensionless variable, measured in arbitrary time units.

Our investigations have been carried by molecular dynamics simulations using underdamped Langevin simulations
[33], where the mass of all the residues are assumed to be equal to 10 and the time step used in the simulation is
equal to 0.1 time unit. They show that the model has the expected qualitative properties of a good folder: at low
temperature it folds to the global minimum of the potential energy, while, at high temperature it denaturates. If the
model is cooled down quickly from a high temperature unfolded state, the folding is however very slow, and may never
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reach the global minimum within the time scale accessible in a simulation. This suggests that this model protein
exhibits the glassy properties observed for actual molecules.

However, except in Sec. V, our goal is not to explore these out-of-equilibrium states, but rather to analyze the
equilibrium properties of the protein. Therefore, to avoid long non-equilibrium transients which occur on cooling,
most of our simulations have been carried by starting from the ground state, and heating up to the temperature of
interest. As discussed below, the formalism that we introduce to study the equilibrium properties allows us to avoid
the difficult issue of the ergodicity of simulations at low temperature so that the pathway that we use to reach a
particular temperature is not an issue which could affect the results.

B. Folding properties

The folding transition of the two models can be detected by comparing the shape of the protein with the fully
folded native state. The comparison can be quantified by introducing the dissimilarity factor [36] which is a weighted
distance map between two conformations. Let A and B be two conformations of the protein (for our purpose B will
be the native structure) and aij , bij the distance between residues i and j in these conformations. The dissimilarity
d(A,B) between the two conformations is defined by

d(A,B) =
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where aij and bij are the distances between residues i and j in the A and B conformations and p an integer which
determines how much residues which are far apart contribute. For large p only the closest neighbors contribute to
the weighted map, while for the value p = 2 that we are using, residues separated in space by a greater distance
also contribute. The dissimilarity factor is a quantitative measure of the deviation between the geometries of two
conformations.
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FIG. 2: (a) Temperature evolution of the dissimilarity between the the average structure of the protein model and the native
structure. (b) Temperature evolution of the specific heat of the protein model.

For our applications conformation B will always be chosen as the native structure of the protein, so that when
we speak henceforth of the “dissimilarity factor” we mean the dissimilarity between the conformation of interest and
the native structure. With this definition the dissimilarity factor, that we shall denote by D, vanishes when the
conformation is identical to the native structure and increases when the geometry of the conformation of interest
deviates from the native structure.

Figure 2.a shows that, when temperature is lowered from a high value, the dissimilarity factor drops sharply in a
narrow temperature range. The corresponding temperature can be identified as the folding temperature of the protein
model, henceforth denoted by Tf . The variation of the specific heat, plotted in Fig. 2.b, shows a peak which confirms
that Tf can be viewed as a thermodynamic transition between two states, the unfolded state at high temperature and
the folded state below Tf . This transition is sharp as expected for Gō models which are unfrustrated (model U) or
weakly frustrated (model F ). There is however differences between the two cases, Tf (U) < Tf (F ) and the transition
is slightly sharper for model F than for model U .
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III. EQUILIBRIUM PROPERTIES

The complete energy landscape of the protein is very hard to determine but a partial picture can be obtained by
looking for all its metastable states. They correspond to the so called “inherent structures” in the language of glasses
[38]. The interest is that, although it contains less information than the free energy landscape, the inherent structure
landscape contains nevertheless a rich set of data on the protein and moreover it can be obtained from simulations
at temperatures well above the temperature at which the protein shows a dynamical freezing which avoids possible
ergodicity problems. In this section we would like to show how it can be obtained, and then how it can be used to
build a thermodynamics of the conformational motions of a protein.

A. Obtaining the inherent structure landscape.

Inherent structures are local minima of the energy landscape of the protein. Each one, labeled by an index α
corresponds to a basin of attraction in the phase space which is defined as the set of conformations which are
connected to the same local energy minimum. In practice they are obtained by sampling the phase space with
molecular dynamics trajectories at constrained temperature, and then quenching instantaneous configurations by
calculating a steepest-descent path from these points of the trajectory. The MD trajectories involve 3 × 108 steps
after the desired temperature is reached, and for each temperature 20 simulations are performed with different sets
of random numbers in the Langevin equations used to thermalize the system. For each temperature, quenchings are
made for 6× 104 instantaneous configurations separated by 105 steps.

In order to characterize the inherent structure landscape we need not only the values of the energies eα but also
their density of states ΩIS(eα). A realistic protein has a huge number of inherent states so that ΩIS(eα) cannot be
determined from a systematic search. Instead it can be deduced from a sampling of the inherent structures which
gives the probability PIS(eα, T ) to be in the basin of the inherent structure α at temperature T .
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FIG. 3: Comparison of the density of states ΩIS(eα) computed from the probability densities PIS(eα, T ) deduced from molecular
dynamics trajectories at three different temperatures T = Tf , T = 0.83 Tf and T = 0.69 Tf for the unfrustrated model U (top
part) and the frustrated model F (bottom part) (deα = 0.02)

In the basin of attraction of inherent structure α, the potential energy of the protein can be written as V (r) =
eα + ∆V (r), where r designates all the degrees of freedom of the protein. Let us assume that the inherent structures
can be split into a set of discrete states α0, α1, . . . , αK (which includes at least one state, the ground state) and a
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continuum of higher energy states. With this notation, the configurational contribution of the partition function of
the protein is

Z(T ) =
αK∑

αi=α0

e−βeαi e−βFv(αi,T )

+
∫ emax

eαK

ΩIS(eα)e−βeαe−βFv(α,T )deα (3)

where emax is the highest inherent structure energy. Moreover we have introduced

e−βFv(α,T ) =
∫

B(α)

e−β∆V (r)dr (4)

which is the vibrational free energy in the basin of attraction B(α) of the inherent structure α. The probability to be
in the basin of attraction of a discrete inherent structure is

pαi
(T ) =

1
Z(T )

exp(−βeαi) exp[−βFv(α, T )] (5)

and, for the continuum of inherent structures, the probability density of inherent structures is

PIS(eα, T ) =
1

Z(T )
ΩIS(eα) exp(−βeα) exp[−βFv(α, T )] . (6)

If we can assume that the free energy Fv(α, T ) does not depend on the inherent structure, in Z the term exp[−βFv(T )]
can be factorized so that pαi and PIS simplify into

pαi(T ) =
e−βeαi

ZIS(T )
, PIS(eα, T ) =

1
ZIS(T )

ΩIS(eα)e−βeα (7)

with

ZIS(T ) =
αK∑

αi=α0

e−βeαi +
∫ emax

eαK

ΩIS(eα)e−βeα deα . (8)

ZIS can be viewed as an inherent structure partition function. It can be expressed in terms of the probability pα0(T )
that the protein is in the basin of attraction of the ground state, which is henceforth denoted as p0(T ). This allows
us to rewrite PIS(eα, T ) as

PIS(eα, T ) = p0(T )ΩIS(eα)e−βeα , (9)

if we chose the ground state energy as the reference state of the energies (eα0 = 0). Equation (9) provides a method
to compute ΩIS(eα) from the probability density PIS(eα, T ) deduced from the sampling of MD trajectories.

The validity of the method relies on the assumption that the vibrational free energy in a basin of attraction Fv(α, T )
does not vary significantly from a basin to another. For harmonic basins of attraction, we have

Fv(α, T ) = kBT
∑

q

ln
(
~ωq

kBT

)
, (10)

where the values ωq are the frequencies of the vibrational modes of the protein when it is in the configuration
corresponding to the inherent structure α. Of course these frequencies change individually from one inherent state to
another, but they keep the same order of magnitude, and the sum has an averaging effect that keeps Fv(α, T ) only
weakly dependent of the conformation. This is verified by our calculations because ΩIS(eα) deduced from PIS(eα, T )
at different temperatures gives the same result in all the range of inherent structure energies which are accessed with
a sufficient probability to allow a correct sampling at the temperature considered. Figure 3 shows the density of
states ΩIS(eα) computed from the sampling of molecular dynamics trajectories at three temperatures. The figures
are remarkably similar, demonstrating that the assumption that Fv(α, T ) can be eliminated in the calculation is a
good approximation, however the three figures are obviously not identical. The figure deduced from the calculation
at the lowest temperature shows some values of eα where the density of states appears to vanish, while it does not
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vanish if ΩIS(eα) is computed from a trajectory at higher T . This is particularly noticeable for high values of eα

and it points out the limit of the numerical calculation. As shown from Eq. (9), the probability to be in the basin of
attraction of an inherent structure decreases as exp(−eα/kBT ). Therefore, if we use a molecular dynamics trajectory
at a low temperature to sample the basins of attraction of the inherent structures, it may happen that we completely
miss some inherent structures due to insufficient sampling. This is even more likely if the basin of attraction of a given
inherent structure is narrow because, besides the temperature factor, its small size also reduces the chance to sample
it properly. Studies performed at higher temperature reduce this problem and T = Tf is particularly appropriate
because we expect a molecular dynamics trajectory to sample both structures corresponding to folded and unfolded
states. Once ΩIS(eα) has been determined from Eq. (9) at a temperature where the sampling is particularly efficient,
ZIS(T ) can be computed at any temperature with Eq. (8), including low temperatures for which MD calculations
might become incorrect due to ergodicity problems.
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FIG. 4: Top figures: Density of state ΩIS(eα) for the inherent structures, which is obtained from PIS(eα, Tf ) according to
Eq. (9). The inset shows a magnification of the curve for the energies close to the ground state. The dotted lines are two
distinct exponential functions with exponent corresponding to Eq. (12).
Bottom figures: Probability distribution (in logarithmic scale) of the inherent state energies at temperature Tf .

Figure 4 displays ΩIS(eα) in a large range of energies. Although it has the same general shape for models U and
F , there are some differences in the low energy range (see the insets), near the ground state, which is separated from
the others. For model U there is a large gap between the ground state and the next state. On the contrary model F
shows a few states which have an energy very close to the ground state, separated from higher energy states by a large
gap. The calculation of the dissimilarity between the native state and the cluster of states near the ground state gives
very small values (D ≈ 0.02), well below dissimilarity values that correspond to a real change of the protein shape
when it unfolds. This indicates that, although the ground state is not isolated from others by a large gap, model F is
nevertheless a good folder [37] because the cluster of states near the ground state can be considered as belonging to
the same fold as the native state. Therefore the proteins does evolves towards a unique geometrical structure when
it folds. This points out an additional richness of the off-lattice models with respect to lattice models for which a
ground state isolated from all the others by a large gap appears to be a prerequisite for good folders [37].

For larger energies ΩIS(eα) shows an exponential growth, with two different slopes depending on the energy range:

ΩIS(eα) = Ω0 exp[g(eα)] (11)

with

g(eα) =





eα

kBTs
+ A (eα < 45kBTf ) ,

eα

kBTu
(eα > 50kBTf ) ,

(12)
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where Ω0 and A are positive constants, and Ts = 1.07 Tf Tu = 0.97 Tf for model U and Ts = 1.12 Tf Tu = 0.9 Tf

for model F . It is interesting to notice that a similar exponential dependence of the density of metastable state was
found for spin glasses [40] although the energy dependence of g(eα) is more complex for such systems.

The density of states in the inherent structure landscape is related to the probability density of the occupation of
the different basins of attraction versus temperature through Eq. (9) which gives

PIS(eα, T ) =
1

ZIS(T )
Ω0 exp

[
eα

kB

(
1
Ts
− 1

T

)
+ A

]
(13)

for eα < 45kBTf ,

PIS(eα, T ) =
1

ZIS(T )
Ω0 exp

[
eα

kB

(
1
Tu

− 1
T

)]
(14)

for eα > 50kBTf .

In the low temperature range, the contribution to PIS(eα, T ) given by Eq. (13) dominates that given by Eq. (14). As
a result, in this temperature range, PIS(eα, T ) takes its largest values for low eα, corresponding to the folded state.
On the contrary at high temperature PIS(eα, T ) is dominated by the term coming from Eq. (14), so that high-energy
inherent structures are the most likely, corresponding to the unfolded state. And, in the range Tu < T ≈ Tf < Ts

none of the two terms dominates and PIS(eα, T ) has two humps, one of them at low eα corresponding to folded
structures, the other one at high eα, corresponding to unfolded structures, as shown in Fig. 4 (bottom figures). This
is particularly true for model F while Fig. 4 shows that, at T = Tf model U occupies a continuum of structures
ranging from folded to unfolded states because the two temperatures Tu and Tf are close to each other and the humps
overlap. This picture is consistent with a first order transition, Tu < T < Ts being the coexistence region, so that the
two temperatures exhibited by the analysis of ΩIS(eα) appear as the limit of the spinodals. These characteristics are
consistent with the behavior of the specific heat Cv.

B. Thermodynamics in the inherent structure space.

The density of inherent structures energies and the associated partition function ZIS(T ) are not only useful to
characterize the folding transition. They can also tell us a lot on the thermodynamics of the protein. We can build
a thermodynamics only based on the configurations of the inherent structures by the usual scheme of statistical
mechanics,

UIS(T ) = 〈eα〉 =
∫

eα PIS(eα, T ) deα, (15)

FIS(T ) = −kBT log
(
ZIS(T )

)
, (16)

SIS(T ) =
UIS − FIS

T
, (17)

CIS(T ) =
〈∆eα

2〉
kBT 2

=
〈eα

2〉 − 〈eα〉2
kBT 2

, (18)

where UIS , FIS , SIS or CIS are the internal energy, Helmholtz free energy, entropy and specific heat, respectively,
deduced only from the thermal fluctuations between conformations, so that they can be called conformational energy,
conformational free energy, etc. They are shown on Fig. 5.

The conformational specific heat is very similar to the full specific heat of Fig. 2, although the peak at Tf is
smaller than the peak obtained from MD simulations, which is not surprising because some aspects are lost when
one only considers the inherent structures instead of the exact conformations of the proteins. The detailed analysis
of Fig. 5 (middle figures) which displays the vibrational specific heat per residue CW /Nr = (Cv − CIS)/Nr and
conformational specific heat CIS , shows that the vibrational contribution of the specific heat is very close to the
value 3kB/2 expected for harmonic oscillators. This suggests that the thermalization in the basin of attraction of
each inherent structure allows a good separation between a vibrational part and a conformational part of the specific
heat. When comparing the values of CW and CIS one should notice an essential difference between the two. CW

is a vibrational contribution, which comes from all the residues and, as it is well approximated by the harmonic
value, it indicates that the contributions of all vibrational degrees of freedom are independent, so that CW /Nr has
an actual physical meaning. On the contrary the structural fluctuations entering in CIS may be either a flip of a
residue for instance, and thus can be very local, or a slow structural change extending to a significant part of the
protein, such as the motion of the whole α-helix. This is why the quantity CIS/Nr would not have a physical meaning
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FIG. 5: Thermodynamic quantities defined from the inherent structures. Top figure: conformational specific heat CIS/kB . The
arrows on the top axis point to the values of the temperatures Tu and Ts which enter in the expression of the density of inherent
states (Eq. (12)). Middle figure: Magnification of the variation of the specific heat in the low temperature range, showing also
the contribution CW = Cv −CIS which is expected to reflect the properties of thermalization inside each well. Notice that the
figure shows the value CW /Nr, i.e. the vibrational specific heat per residue, while CIS , which is expected to reflect a global
property of the protein, is shown for the full molecule. The dashed line indicates the harmonic limit CW /Nr = 3kB/2. Bottom
figure: conformation entropy SIS and conformation energy UIS Inset: conformational entropy in logarithmic scale.

because a protein is not a self-similar structure. A meaningful comparison must compare CIS to CW /Nr: structural
fluctuation will start to play a role in the physics of the protein when CIS > CW /Nr. As shown in Fig. 5, CIS starts
to rise significantly around 0.3 Tf and quickly takes over for T > 0.4 Tf , while the fluctuations are dominated by the
vibrational contribution in the low temperature range.

The behaviors of the conformational entropy and energy (Fig. 5, bottom plots) show a similar rise clearly visible
for T > 0.4 Tf . The increase of entropy which appears to accelerate and become exponential for T > 0.4 Tf (see
inset) can be understood as coming from the structural variety observed in the thermal fluctuations. This would be
consistent with the behavior of CIS and CW .

The results in the low temperature range show that models U and F have different behaviors for T < 0.3 Tf . Model
F shows a small increase of specific heat and entropy around T = 0.05 Tf which does not appear for model U . This
may be related to the existence of inherent structures with an energy very close to the ground state for model F ,
which do not exist for model U (see insets in Fig. 4).

IV. DYNAMICAL ASPECTS IN EQUILIBRIUM

The inherent structure landscape gives a static view of the energy surface of the protein and provides us with some
information on the states which are accessible to the molecule. We want now to examine the fluctuations of the
protein in equilibrium at a given temperature because they are important for its function and have been extensively
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studied experimentally [6]. One of the issue is the existence and properties of the so-called “dynamical transition” of
proteins, which is observed around 200 K for many proteins.

A. Onset of the fluctuations.
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FIG. 6: Temperature variation of the average fluctuations of the positions of residues for model U and F , measured by ∆u2

(Eq. (19)).

Figure 6 shows the temperature evolution of the fluctuations of the protein model in the low temperature range
T < 0.7 Tf , measured by

∆u2 =
1

Nr

Nr∑

i

(
〈d0

i
2〉 − 〈d0

i 〉2
)

(19)

where d0
i is the distance between residue i and the center of mass of the protein. It is a quantity which is sensitive

to the global fluctuations of the protein in a way which is very similar to the Debye Waller factor, which only has a
meaning for a protein crystal and cannot be defined for the single-protein model that we study here. Figure 6 clearly
exhibits two regimes for the thermal fluctuations of the model protein, in a striking similarity with the experimental
observations made for instance by Mösbauer absorption spectroscopy [6] or neutron scattering [5]. Below TD ≈ 0.4 Tf ,
the calculation shows a linear increase which can be expected from the harmonic vibrations of the residues, but, around
TD = 0.4 Tf the fluctuations start to rise much faster with temperature. The change is sharp for model F and smoother
for model U but clearly noticeable in both cases.

B. Location of the fluctuations.

The quantity ∆u2 can be used to determine the location of the fluctuations if, instead of summing over all the
residues as in Eq. (19), we compute it for a single residue. Figure 7 shows the result at different temperatures for
models U and F . First one notices that the fluctuations are not homogeneous along the protein, some residues
appearing as peaks over a low background, in agreement with experimental results obtained in actual proteins [42].
This is not surprising because it simply reflects the inhomogeneities of proteins. For instance the largest peak in
Fig. 7 is obtained for residue 47 belonging to a loop connecting two β strands, which corresponds to a highly flexible
part of the protein. What is more interesting is the significant difference between model U and model F for these
large fluctuations. For model U the largest fluctuation appears abruptly between T = 0.35 Tf and T = 0.40 Tf and it
is highly localized on one residue. Several other sites also show fluctuations that become large at high temperature,
but they are still isolated and scattered along the protein chain. On the contrary model F shows more cooperativity.
The growth of the largest amplitude fluctuation when temperature increases is more gradual and involves several sites
around the most mobile residue. Moreover the fluctuations are very different from one region to another. In the βN

and α helix region of the protein chain the fluctuations do not grow significantly with temperature, whereas the βC

region shows a large growth distributed over many of its sites. This higher cooperativity of model F is consistent with
several other observations in our calculations: the folding transition (Fig. 2 ) and the change in slope in the variation
of ∆u2 versus T (Fig. 6) are both sharper for model F than for model U .
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Another way to assess the distribution of the fluctuations within the protein is to examine distances between atoms
belonging to the main structural elements of the protein, i.e. the two β sheets and the α helix. Relative fluctuations
of different structural elements can be defined by

∆r2
SS′ =


 1

Np

Np∑
p=1

〈d2
p〉 − 〈dp〉2
〈dp〉2


×


 1

Np

Np∑
p=1

〈dp〉2

 , (20)

where the index p designates a pair of residues, the first one belonging to structural element S and the second one
to structural element S′. For given S and S′, the sum extends over the Np possible native pairs. For S = S′, ∆r2

SS
provides a measure of the rigidity of the structural element, while, for S 6= S′ ∆r2

SS′ measures the fluctuations in the
relative motions of the two structural elements.

Figure 8 shows a significant difference between models U and F . An increase of the amplitude of the fluctuations
around TD = 0.4 Tf is visible for both models, in agreement with the global results provided by ∆u2 (Fig. 7) but the
rise is much more significant for model F , and, as noticed above it mainly concerns one part of the protein, attesting
of a greater cooperativity. The fluctuations inside the βC sheet rise very significantly, and this also affects the relative
motions βN − βC and α − βC . The large fluctuations inside the βC sheet come from a relative motion of the two β
strands, showing again that model F exhibits some collective effects.

Thus, for the model that we study, the dynamical transition temperature TD appears as the onset of fluctuations on
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a large scale. This is consistent with the properties of the statistical quantities studied in Sec. III B. As discussed for
Fig.5, the comparison of CIS with CW /Nr implies that conformational fluctuations begin to dominate the protein’s
fluctuations above 0.4Tf . This is also suggested by the beginning of growth for the conformation entropy SIS .

C. Time scale of the fluctuations.

In order to characterize the fluctuations of the protein, it is also important to determine their characteristic time
scale. Let us consider a quantity x(t) that fluctuates in time such as the dissimilarity factor x(t) = d(A,B)(t). We
can compute the time-averaged quantity

x(t; τ) =
1
τ

∫ t+τ

t

x(t′) dt′ (21)

and then evaluate its fluctuations according to the usual expression

∆x2(τ) = 〈x2(t; τ)〉t − 〈x(t; τ)〉2t (22)

where the averages 〈·〉t are time averages. Obviously, if τ → ∞, ∆x2(τ) → 0, and generally ∆x2(τ) decays with an
increase of τ . But the way it decreases tells us about the time scales of the fluctuations of x(t) because as long as τ is
shorter than the typical time scale of the variation of x(t), ∆x2(τ) is not significantly different from the fluctuations
∆x2 of the original quantity x(t) while it decays quickly when τ becomes longer than the typical time scale of the
fluctuations of x(t).
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FIG. 9: (a) Variation of the fluctuations of the dissimilarity D between the model conformations and the native structure
averaged over a time τ , versus τ for model U at T = 0.7 Tf . The solid line shows the decay given by the law of large numbers.
(b) Arrhenius plot of the relation time τr deduced from the fluctuations of the dissimilarity factor for models U and F . The
solid lines are fits to τr ∝ exp(EB/kBT ) with activation energies EB = 6.2 kBTf for model F and EB = 5 kBTf for model U .

Figure 9 shows the result of such a calculation where x(t) = D(t) is the dissimilarity between the instantaneous
structure and the native state, at a given temperature. It clearly shows the existence of a characteristic time scale,
that we denote by τr (τr ≈ 5 105 time units). For τ > τr, ∆x2(τ) decreases significantly faster than for lower values of
τ which indicates that the fluctuations of the dissimilarity D include a slow component having a period at least equal
to τr. This appears clearly in Fig. 10 which shows the time evolution of the dissimilarity factor at T = 0.5 Tf . The
results are consistent with a splitting of the fluctuations in two components, small-amplitude fast fluctuations within
the basin of attraction of an given inherent structure and large jumps from basin to basin as discussed in Sec. III.

Similar calculations can be performed for various quantities, and in particular for the fluctuation of the energy of
the model, which determine the specific heat. The same behavior is observed, although the change of slope at τ = τr

may be smaller for some quantities. The value of τr does not depend on the quantity that is considered, showing that
the relaxation time τr is an intrinsic property of the system.

If our analysis that τr is related to jumps from one inherent structure to another is correct, it should depend on
temperature. As shown in Fig. 9.b, it exhibits an Arrhenius behavior in the range 0.45 Tf ≤ T ≤ 0.75 Tf . For
lower temperatures the relaxation time becomes so large that it cannot be measured in a simulation, and, for higher
temperatures, approaching Tf , the separation of time scales between the oscillations within the basin of an inherent
structure and the diffusion from basin to basin becomes blurred. Figure 9.b shows that the relaxation time is
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significantly larger for model F than for model U . The activation energy is 6.2 kBTf for model F and 5 kBTf for
model U . It can be viewed as the typical barrier to move from the basin of an inherent structure to another, suggesting
that the energy landscape of model U is smoother than that of model F . This point is confirmed by the folding studies
of Sec. V.
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FIG. 11: Density of inherent states of models U and F obtained at different temperatures, showing the difficulty to get a
complete sampling of the phase space for model F at low temperature.

The longer time scales associated to the fluctuations of model F with respect to model U can also be observed
in another aspect of our study, the calculation of the density of inherent states by sampling the phase space. As
discussed in Sec. III the derivation of ΩIS(eα) from PIS(eα, T ) should be independent of the temperature T at which
the phase space is sampled to determine PIS(eα, T ). We noticed however that this is not exactly true because, at
low temperature, the finite time of the simulation could lead to insufficient sampling and some inherent states can be
missed. This is more critical when the switch from basin to basin is slow, which is the case for model F . Figure 11
illustrates this point by comparing ΩIS(eα) obtained by sampling at two different temperatures for model U and
model F : while for model U , even the low temperature calculation can find most of the inherent states, for model F ,
on the contrary, many states are missed when the temperature is too low. It should however be noticed that this is
not only a matter of time scale, but also a matter of the accessibility of the states. As discussed above and in Sec. V
the energy landscape of model F is rougher than for model U so that some basins of attraction may lie behind high
barriers or be very narrow.
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At this stage of our study, although model U and model F show rather similar properties, we have exhibited
significant differences:

• Both models show a qualitative change in their fluctuations which occurs in a narrow temperature range around
TD = 0.4 Tf , which appears to be the temperature of the dynamical transition observed in proteins. This
transition is sharper and more cooperative for model F than for model U .

• The probability of occupation of the inherent structures at the folding temperature PIS(eα, Tf ) (Fig. 4) clearly
shows two humps for model F , which corresponds to the coexistence of two different kinds of states, folded and
unfolded. On the contrary for model U , there is an overlap of the probabilities of these two kinds of states, with
many intermediate states.

• The fluctuations in model F are much more cooperative, while model U can exhibit very large fluctuations of
a single residue in a loop.

• The time scale of the fluctuations between the basin of attraction of one inherent structure to another is about
one order of magnitude longer for model F than for model U . The energy landscape is rougher for model F
than for model U.

All these points suggest that model F is more appropriate to describe an actual protein, i.e. a minimal frustration
has to be introduced in the Gō model to make it sufficiently realistic. This is confirmed by the study of the dynamics
of the folding of Sec. V.

V. OUT OF EQUILIBRIUM PROPERTIES: DYNAMICS OF THE FOLDING.

In Sec. II we showed that both model U and model F fold in the sense that the cooling of an unfolded initial state
at high temperature leads to a well defined state at low temperature. However the dynamics of the folding is very
different for the two models. To test this aspect, we have performed a series of out-of-equilibrium studies in which a
thermalized initial state which is a random coil at temperature T1 = 1.73 Tf is suddenly cooled to a temperature T2

lower than Tf . For each value of T2, 30 to 50 MD simulations are performed allowing us to get an ensemble average of
the dynamics of the folding. The folding time tf is the time between the temperature jump and the instant at which
the model reaches the basin of attraction of the native state.
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FIG. 12: (a) Histogram of the folding time of model U and model F at two temperatures. The large peak observed at low T
for model F occurs because most of the initial states do not reach the native state within the simulation time of 108 time units.
(b) Time evolution of the folding of model F at different temperatures. The time points ti selected to calculate UIS(ti)
evolve with a logarithmic scale according to ti+1 =

√
2 ti and for each calculation the time interval ∆ti for the integration is

∆ti = (1−√2)ti so that the time domains which are analyzed are adjacent to each other.

Figure 12.a shows histograms of tf for the two models at two temperatures T2 which are both above the temperature
of the dynamical transition TD. When T2 is sufficiently high (T2 = 0.78 Tf in Fig. 12), both models fold within the
duration of our MD simulations, i.e. in less than 108 time units, but the folding time of model F extends to values
about 2 order of magnitude larger than the largest folding time of model U . For lower T2 (T2 = 0.59 Tf in Fig. 12),
many of the initial configurations of model F do not achieve folding in 108 time units while the largest folding time
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of model U hardly exceeds 106 time units. Although we work in dimensionless variables and our parameters are not
fitted to reproduce experimental results, an estimate of the time scales of our simulations can be made. The period
for the dynamics of the vibrations of two residues forming a native contacts is about 10 time units for our model.
Experimentally such modes are observed in a range 10 to 100 cm−1. Taking an estimate of 20 cm−1 this corresponds
to a period of 1.7 ps, so that our time unit corresponds approximately to 0.2 ps. The folding time of model U , of the
order of 105 to 106 time units corresponds thus to 0.02 to 0.2 µs, which is very small for an actual protein, while the
values of 107 to more than 108 time units of model F , corresponding to 2 to more than 20 µs are more realistic for a
small protein although they are still small. This is an additional hint that model F is more appropriate than model
U to describe a protein in a broad temperature range, and particularly at temperatures well below Tf .

Figure 12.b completes the view of the dynamics of the folding of model F because it shows the time evolution at
different folding temperatures T2 of UIS(t, T2) defined by

UIS(t, T2) =
1

∆t
〈
∫ t+∆t

t

eα(t)dt〉 , (23)

which measures the average inherent structure energy of the protein in a small time interval ∆t. The value of ∆t,
measured with the time units of the simulation, is always well below the characteristic time of folding of the models.
Very slow (logarithmic) relaxations are observed, even for T2 > TD.

Although folding is an out-of-equilibrium process, some of its properties can be obtained from equilibrium studies.
It is possible to build an equilibrium free energy profile along the folding pathway, i.e. a one-dimensional picture of the
free energy landscape plotted by using the dissimilarity factor D as the reaction coordinate. The most straightforward
approach is to sample the phase space by MD simulations, and to compute the dissimilarity D with the native state
for each of the sample points. A histogram of the number of events for which the dissimilarity lies in the range
[D, D + dD] gives a probability distribution P (D) which can be used to build an effective free energy F (D) defined
by P (D) = exp[−βF (D)]. This calculation can be made for the actual points of the MD trajectories, which gives a
full effective free energy. But, for each sample point one can also determine the corresponding inherent structure by
quenching, and then compute D for this inherent structure. This gives a probability density PIS(D) and an inherent
structure free energy FIS(D). These free energies F (D) and FIS(D) are plotted on Fig. 13 for model F at three
temperatures in the vicinity of the folding transition.
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FIG. 13: Effective free energy F (D) (dotted line) and inherent structure free energy FIS(D) (full line) of model F at three
temperatures in the vicinity of the folding temperature. The graphs have been shifted along the vertical axis to get the same
values for the left minimum.

The quantities F (D) and FIS(D) have the shape that one could expect: below the folding temperature they show
a deep minimum with a low value of D, which corresponds to the folded state, and a second, higher and shallower
minimum corresponding to an unfolded molten globule state. Exactly at the folding temperature, the two minima
have equal effective free energies, and above Tf the minimum corresponding to the unfolded state becomes the deepest.
The curve F (D) is shifted to higher values of D with respect to FIS(D) because fluctuations around the minima of the
free energy landscape bring additional contributions to the dissimilarity with the native state, which are suppressed
in FIS(D). Apart from this systematic shift, Fig. 13 shows that studying inherent structures can give almost the
same results as the points of the MD trajectories because the curves for F (D) and FIS(D) are very similar. This is
an additional proof of the interest of the inherent structure analysis. However, the calculation of FIS(D), as it has
been done to compute the results shown on Fig. 13, does not exploit the full power of the analysis in the inherent
structure landscape because it relies on MD trajectories at the temperature at which we wish to obtain FIS(D). In
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the vicinity of the folding temperature, this does not introduce any difficulty, but if we wish to obtain FIS(D) at
very low temperatures, MD simulations will become highly inefficient to sample the phase space and may suffer from
ergodicity problems.

These difficulties are completely avoided if one uses the inherent-structure landscape approach that we introduced
in Sec. III A. The idea is to reproduce the method that we used earlier to derive the inherent structure density of
states and then the inherent structure partition function, but instead of considering all the states at once, select
the states having a dissimilarity factor in a small range [D, D + dD]. Thus we define a density of inherent states
ΩIS(D, eα) and a probability density of inherent structures PIS(D, eα, T ), which are such that

ΩIS(eα) =
∫ 1

0

ΩIS(D, eα) dD PIS(eα, T ) =
∫ 1

0

PIS(D, eα, T ) dD . (24)

Separating inherent structures in the same D range, Eq. (9) becomes

PIS(D, eα, T ) dD = p0(T )ΩIS(D, eα)e−βeα dD , (25)

so that the numerical determination of PIS(D, eα, T ) can be used to compute ΩIS(D, eα), and then build an inherent
structure partition function restricted to inherent states which have a dissimilarity factor in the range [D,D +dD] by

ZIS(D, T ) =
∫

ΩIS(D, eα)e−βeαdeα . (26)

The inherent structure partition function of Eq. (8) can be expressed as

ZIS(T ) =
∫ 1

0

ZIS(D, T ) dD , (27)

from which an inherent structure free energy FIS(D,T ) = −kBT ln[ZIS(D, T )] can be derived.
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FIG. 14: Inherent structure free energy FIS(D, T ) as a function of the dissimilarity factor D of the inherent structures, obtained
from the analysis of folding pathways at different temperatures T2 for model F .

Figure 14 shows the inherent structure free energy FIS(D, T ) as a function of the dissimilarity factor D of the
inherent structures obtained from probability densities PIS(D, eα, T ) computed along folding pathways at different
temperatures T2 for model F . It qualitatively exhibits the shape that we have got from the straightforward analysis
leading to Fig. 13, but the results are much more reliable, especially in the low temperature range because they do not
rely on the sampling of a low temperature MD trajectory. For a folding temperature T2 slightly below Tf , starting
from the unfolded state (large value of D) one meets first a shallow well with a minimum around D = 0.5, which can
be understood as the first stage of the folding, i.e. the evolution towards a molten globule. This stage should be fast
since it corresponds to a decrease of the free energy. Then, if D decreases further, the free energy raises again before
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dropping to the inherent structure free energy of the native state FIS(D = 0, T ). The maximum corresponds to the
transition state. The second stage of the folding involves overcoming the maximum, and thus must be a slow step.
In the same figure made for model U , the barrier height from the molten globule state to the transition state is very
small. Therefore it is not surprising that model U leads to very fast folding.

Thus Fig. 14 for model F appears to show the behavior that we expect for an actual protein, but a more careful
examination reveals however a feature that could seem puzzling: for decreasing values of T2, the barrier EB from the
molten globule state to the transition state decreases very significantly, so that EB/(kBT2) actually decreases in spite
of the decrease of T2. This could lead to the conclusion that the folding time should decrease when T2 decreases. This
is not what Fig. 12 shows for model F since, on the contrary the histogram shows the presence of many cases which do
not succeed to fold in 108 time units. Actually the figure shows that, at low values of T2 the histogram of the folding
times for model F splits into two parts: there is a first set of folding times in the range 105–107 time units, which
is the same range as the range of folding times observed at a higher T2, and there is a second set group of folding
times around 108 time units or larger. The first set would be consistent with the properties of the inherent structure
free energy of Fig. 14, while the second set is not. This suggests that two different mechanisms could contribute to
determine the folding time of model F , as it is observed in studies of some proteins made with more complex models
[43] or in experiments [44]: some folding pathways can evolve rather quickly to the native state, while others are
trapped for a very long time in a kinetic trap. If the density of states ΩIS(D, eα) in the free energy basin of the
kinetic trap is small, the kinetic trap may not lead to any peculiarity in the inherent structure free energy landscape,
but, if it exists in model F , it should appear in studies which explicitly analyze the time evolution of the folding.
This is indeed the case as shown by Fig. 15, which displays the probability distribution of the inherent structures
P t

IS(eα, T2) derived from the sampling of folding trajectories at temperature T2 in a given time range.
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FIG. 15: Probability distribution of the inherent structures P t
IS(eα, T2) derived from the sampling of folding trajectories at

temperature T2 in a given time range for various folding temperatures T2. In each case the top figure shows P t
IS(eα, T2)

averaged for the whole duration of the simulation 108 time units, except for the first 105 time units which correspond to a short
transient time during which the results might be influenced by the initial condition of each simulation. The lower figure shows
P t

IS(eα, T2) in the last part of the folding trajectory (0.7 108 < t < 1.0 108 time units). (a) T2/Tf = 0.34, (b) T2/Tf = 0.48, (c)
T2/Tf = 0.69. A logarithmic scale is used for the probability distributions in all these figures.

In each case P t
IS(eα, T2) for the whole folding trajectory (except for a short initial transient) is compared to

P t
IS(eα, T2) in the last part of the simulation ((0.7 108 < t < 1.0 108 time units), in order to show how the population

of the different inherent structures evolves with time. The calculation of P t
IS(eα, T2) is made by a statistical averaging

over 30 or 50 different folding trajectories.
At the lowest value of T2, T2 = 0.34 Tf , which is below the dynamical transition, the tendency of the protein to stay

frozen in metastable states instead of approaching its ground state is clear. Even at the end of the simulation time, a
broad range of inherent states are occupied, although a tendency to evolve towards the ground state is visible because
the population of the inherent states with the highest energies is lower in the last part of the simulation than in the
figure showing the average over the full simulation. For a slightly higher value of T2 (T2 = 0.48 Tf > TD), the picture
changes sharply. At the end of the simulations, in the low eα range the populated states tend to concentrate towards
the ground state although, in this range, P t

IS(eα, T2) still looks random. But there is a group of inherent structures
with a higher energy (30 < eα/(kBTf ) < 50) which stays populated in the long term. These states correspond to a
kinetic trap. They appear as a set of states from which it is difficult to escape to evolve toward a lower energy state.
On the time scale of the calculations the region of the protein phase space corresponding to these states seems to be
disconnected from the rest of the phase space. Actually there are phase space trajectories which can leave these states,
but the decay of the population of the kinetic trap is however very slow, indicating that the trap is separated from
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the native state by a high barrier. The decay of its population is hardly visible on Fig. 15.b but it can be detected
from the evolution of UIS(t) on Fig. 12. Fig. 15.c shows that the same phenomenon persists at higher temperatures
(T2 = 0.69 Tf ). The same range of inherent structure energies stay populated for a very long time, while the inherent
structures with lower energies have a distribution which is smoother than at T2 = 0.48 Tf , the population of the
low-energy states decreasing approximately exponentially with their energy.

Thus, for model F a study of the time evolution of the occupation of the basins of attraction of the structures
shows the existence of a set of states in which the protein may stay for a very long time. The roughness of the energy
landscape within this kinetic trap seems to be lower than in the vicinity of the native state because the probability
distribution P t

IS(eα, T2) for the states in the trap shows an exponential decay with the energy eα well before the
probability distribution of the states near the ground state reaches such a behavior. A plot of the structure of the
protein when it is trapped in these long-lived metastable states shows that the α-helix has a “knee” and the β-sheet
is distorted with respect to the native structure. The presence of such a kinetic trap indicates that model F is rich
enough to exhibit the complex properties which are observed in protein folding, contrary to model U which leads to
an unrealistically fast folding.

VI. DISCUSSION

In the introduction, we posed three questions about proteins. The study that we presented in this work puts us in
a position to provide some answers.

(i) How is the energy landscape of a protein? Using an analysis based on the inherent structures of the protein,
i.e. its metastable states, we have shown that it is possible to build an “inherent structure landscape”, which is a
kind of simplified view of the free energy landscape, which is accessible to numerical computations even for a rather
complex protein model. It can be used to build a statistical physics analysis in terms of an inherent structure partition
function, from which a reduced thermodynamics can be obtained. This simplified picture cannot describe all aspects
of protein dynamics because it ignores the fluctuations inside the basin of attraction of an inherent structure, but it
is nevertheless a useful tool to analyze the results of the computations, as shown for instance in our investigations
of the dynamics of the folding. One of its major interests is that the inherent structure landscape is best obtained
from molecular dynamics simulations around the folding temperature, which efficiently sample the full phase space
and do not suffer from a possible lack of ergodicity which could appear in low temperature simulations. Once the
inherent structure density of states is obtained it can be used at any temperature, including very low ones, to derive
the reduced thermodynamics, which provides a lot of data on the protein properties although it does not include the
small vibrational motions in the inherent structure basins.

Another interesting point which emerges from our results, it is the distribution of the energies of the inherent
structures which shows an exponential scaling, with two slopes. The exponential scaling itself is known for some
models of glasses [40] and it has also been observed in small Lennard-Jones clusters [41]. Its existence for the protein
model too may be an indication of a deep similarity between proteins and these systems. For proteins, the existence
of two slopes in the scaling (Eq. (12)), which is associated to two different regimes in the distribution of inherent
structures (Eqs. (13) and (14)) when the temperature changes from T < Tu to T > Ts, may be related to their folding
transition. It will be interesting to test other protein models to determine whether these properties of the density of
inherent structures states are general features of proteins. To our knowledge such a two-slope feature has not been
observed in Lennard-Jones clusters, but this may be because the energy landscape of clusters has been determined in
the temperature range of the solid and liquid phases. There are a few inherent structures relevant for the solid state,
similarly to the few states that are populated when a protein is its native state or its vicinity. At higher temperatures
clusters melt and in the range of the relevant inherent structure energies, an exponential scaling is found in their
density of states, similarly to the proteins below the folding transition. Thus it is tempting to make the parallel
between the three temperature domains that characterize a protein (i) low temperature “frozen” state below TD, (ii)
folded state with its multiple conformations, (iii) unfolded state, and the three phases of a cluster (i) solid, (ii) liquid,
(iii) gas. This could suggest that, for the high energy inherent structures of a cluster, another exponential scaling
could exist, at least when the gas is sufficiently confined to allow enough interactions between the atoms, as for the
molten globule of the protein. Of course the analogy is crude and speculative, but we think that the similarity of
some general features of the inherent structure landscape of proteins and small atom clusters raises an interesting
question: why are proteins special? Of course we know that their structure and the nature of their interactions, with
a hierarchy of different interactions, has not much to do with the structure and simple interaction potentials of atomic
clusters, but can we detect this specificity of proteins from their equilibrium inherent-structure energy landscape?
The scaling of the density of inherent states might be fairly general, but the values of its slopes are probably specific
of a protein, in connection with the temperature and sharpness of its folding transition. Therefore understanding the
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relation between the potentials that connect the residues and the scaling of the inherent state energies appears an
interesting open question closely related to protein folding.

(ii) How does the protein explore its landscape? The study of the fluctuations of the model versus temperature
shows a qualitative change at a temperature TD ≈ 0.4 Tf where the amplitude of the fluctuations start to strongly
raise above the linear increase versus temperature which is observed at T < TD. The fluctuations in model F are
more cooperative than for model U : the βN sheet and α helix are more rigid than in the unfrustrated case but the
βC sheet is globally more flexible.

This increase in the fluctuations above a particular temperature is very reminiscent of the dynamical transition
which has been observed around 200 K for many proteins [6] and has been the object of a renewed interest in the last
few years [2]. In the experiments, this phenomenon is closely related to properties of the water which is in contact with
the protein. Firstly water appears to be necessary for the existence of the dynamical transition, which is not seen in dry
samples, and observed at higher temperatures for weakly hydrated samples. Secondly the analysis of the experiments
point out a clear correlation between a change in the fluctuation of the water as temperature varies and the evolution
of the dynamics of the protein embedded in this water [21, 45]. The role of water, which is sometimes described
as a “lubricant” in protein dynamics because it allows fluctuations which are necessary for biological function, can
be understood since water molecules are making hydrogen bonds with some groups of the protein which, otherwise,
would be directly linked by hydrogen bonds. Thus water alters the strength of the interactions within the protein.

Our calculations do not use explicit water but the role of water is nevertheless included through the effective
potentials which link the amino-acids. However, in our results, the transition cannot come from a change in the
properties of water at a particular temperature because the model uses interaction potentials that do not depend on
temperature. Nevertheless the calculations show the same “dynamical transition” as in the experiments. We think
that this is an interesting result because it indicates that the complexity of the energy landscape itself is sufficient
to lead to such a “transition”. This transition is not a true thermodynamic transition but, as shown in Sec.III, it
corresponds to a temperature range around which the fluctuations from the basin of an inherent structure to another
take over the fluctuations inside a single basin. It should be noticed that such a dynamical transition can be observed
in a model without side chains. The complexity of the energy landscape of the Cα chain is sufficient to show such a
behavior.

Of course in experiments the solvent and the side chains play a role to determine the quantitative properties of the
dynamical transition, but our results suggest that they may not be the only driving force. This view could raise an
objection: since the dynamical transition is observed approximately at the same temperature for all proteins, it is
tempting to conclude that its origin should not be searched within the protein itself but rather within the common
factor to all the experiments, the solvent. However there may be another simple explanation to the fact that TD is
almost the same for all proteins although they may have very different structures. The dynamical transition is the
onset of conformational fluctuations. Therefore it is not determined by global properties of the proteins but by local
effects which depend on the short range interactions (native contacts in the terminology of the Gō model). These
interactions are (on average) the same for all proteins, even if their global shapes can be very different from each other.
Thus the dynamical transition can have a component which is intrinsic to proteins and nevertheless occur around the
same temperature for many proteins. Actually the views that the dynamical transition is due to the solvent or that
it is intrinsic to the protein are not exclusive. We show with a simple model that a dynamical transition intrinsic
to the protein can exist, but it is certainly influenced by the properties of the solvent, which are themselves strongly
dependent on the protein because hydration water, the water in contact with the protein, is very different from bulk
water [46]. The protein and the solvent are actually deeply coupled, leading to a subtle interplay between the solvent
and the protein fluctuations.

(iii) What features are required in a “minimal” protein model? Although this is a difficult question because the
answer depends on the properties of the protein which are of interest, our studies show that a minimally frustrated
Gō model is able to exhibit the two main features that characterize a protein, the folding to a well defined structure
and the dynamical transition. To our knowledge this is the first time that these two features are observed with a
given protein model. The ability of the model to lead to folding is not surprising because its design has been tailored
for that purpose, since the Gō model favors interactions corresponding to the native state. What is interesting is
that this constraint based on the geometry of the native state also leads naturally to a model showing a dynamical
transition, although the interaction potentials are not optimized to quantitatively match the potential energy of an
actual protein. This points out the crucial role of the geometry of the protein backbone. We have shown here that a
significant improvement towards results that match experimental observations on proteins can be obtained by adding
dihedral angle frustration. With this additional feature, Gō models, which were used only for folding studies or to
analyze small amplitude vibrations appear to be able to describe conformational fluctuations as well. The addition of
the frustration requires a minimal modification and it does not increase significantly the complexity of the simulations,
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while it makes the model much richer. Model F , which includes frustration is able to show a complex folding pathway
including a kinetic trap, and conformational fluctuations which exhibit some cooperativity. This suggests that the
mesoscopic model F can be used in a reliable way to investigate the thermodynamics and dynamics of proteins at a
qualitative level.
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