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Abstract. The real mechanisms of several biological processes involving DNA are not yet under-
stood. We discuss here some aspects of the initiation of transcription, in particular the formation
of the open complex and the activation mechanism associated to enhancer binding proteins. Tran-
scription activation seems to be governed by underlying dynamical mechanisms related to several
distortions of the double chain structure: a dynamical approach on a mesoscopic description level
could then allow a deeper understanding of this complex process. Starting from the Peyrard Bishop
(PB) model, that considers only the hydrogen bond stretching of each base pair, we describe here
an extended DNA model, proposed in [1], that allows a rather good representation of the double
helix geometry and of its structural features by the introduction of angular variables related to the
twist angle. Using a generalized multiple scale expansion for the case of vectorial lattices derived
elsewhere [2], we derive analytically small amplitude approximate solutions of the model which are
movable and spatially localized: we present here the results of this calculation and show how the
special shape of the solutions is in good agreement with what can be expected for coupled angular
radial distortions in the real molecule.

Key words: DNA modeling, helix, hydrogen bond stretching, nonlinear dynamics, solitons, tran-
scription initiation, twist

1. Introduction: transcription initiation processes and double helix structure

We illustrate a geometrical dynamical model of the DNA helical structure. The
main aim of the model is to help in studying some physical features that could be
implied in the actual mechanisms of some biological processes which are not yet
well understood, such as replication, transcription and its initiation, in which the
structural and dynamical distortions of DNA play a major role. The model takes
into account explicitly the geometrical constraints acting during these processes.
As it should be clear from the following discussion, biologists pay more and more
attention to the involved structural mechanisms and to their direct implications in
allowing the processes themselves.
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Figure 1. Schematic representation of the transcription process. (a): open complex formation;
(b): elongation phase; (c): enhancer linking protein activation.

We have focused our attention on the transcription process (Figure 1), i.e. the
process by which the instructions coded in a gene can be read and transcribed on
a RNA chain, that will then be used as a template for the synthesis of proteins.
Transcription is a complex process that involves a large number of enzymes. The
main enzyme responsible for transcription, RNA-polymerase, has first to recognize
a specific region in the DNA chain, calledpromoter, that is located immediately
upstream with respect to the gene, and to bind to it, in many cases together with
some other proteins ortranscription factorsthat are needed to maximize the rate of
transcription, forming theinitiation complex[3, 4]. The next step is the formation
of theopen complex: a quite small segment (about 15–20 base pairs (bps)) of the
helix, in correspondence to the promoter region, is ‘melted’ with the separation
of the two strands and the formation of atranscription bubble. Then the RNA-
polymerase and the transcription bubble start to move along the gene, copying the
coding sequence into RNA (elongation phase).

We shall consider in particular transcription initiation, i.e. the group of pro-
cesses that allows the transcription to start. The formation of the open complex
and its motion along the chain are often regulated by a set of activation/inhibition
processes that function by means of the binding of other proteins to different DNA
regions that could be very far along the chain either upstream or downstream with
respect to the promoter. This starting activating sites can be upstream and close to
the promoter region (usually with a distance along the chain of about 100–200
bps), or far from it (up to several kilobases). In the latter case they are called
enhancers. The mechanisms of activation are still mostly unknown, particularly
for what concerns the latter.
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Figure 2. Proposed enhancer activation mechanisms: (a) loop formation; (b) ‘oozing’; (c)
distortion transmission.

Atomic force microscope technology has allowed the visualization of one mech-
anism of activation for transcription factors bound to DNA sites distant from the
promoter: they loop the molecule so to bring the promoter and enhancer regions
closer (Figure 2a) [5]. In this case a direct interaction between the various bound
proteins could be the main way of activation.

However, the formation of a loop is not the unique way for activation, and
two other mechanisms for these long range activation effects have been proposed,
namely the induction of the cooperative binding of transcription factors, so that
all the DNA between the enhancer and the promoter is covered (‘oozing’ model,
Figure 2b), and the transmission of altered DNA structures from the enhancer,
along the helix, to the transcription complex (Figure 2c) [3]. Among these two
proposed models, the latter seems to correspond better to experimental results.
Some experimental works seem in fact to confirm that the structural modifications
induced in the enhancer sites are actually much more important for activation, than
the specificity of the linked proteins themselves. The enhancer region is known to
be bent by the activator factors; furthermore, it has been shown that activation can
be achieved, in some cases, by replacing the enhancer region by an intrinsically
bent DNA sequence that is not a protein binding site, so that there is no more
protein mediation: in this case, then, the structural deformation acts by itself as an
activator [6, 7, 8, 9].

It is interesting to mention also the proposed‘hit and run’ mechanism for DNA
binding proteins, according to which, immediately before the open complex form-
ation, activator factors bind just for a short time the DNA, locally modify it, and
then leave the binding site [10]. This could suggest that the action of these activator
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100 MARIA BARBI ET AL.

Figure 3. Local twist effects. (a): bubble local opening is possible only if accompanied by an
untwisting; (b): in the elongation phase, the movement of the untwisted bubble along the helix
produces some overtwist upstream and some undertwist downstream.

factors could be that of ‘launching’ a structural distortion that could travel along
the chain toward the promoter region, where it will eventually act as activator by
inducing the right conformational change.

These are not the only cases in which structural deformations can be shown
to be relevant for biological functioning in transcription, in long range activation
effects as well as in open complex formation, and bending is not the unique kind of
‘active’ deformation. Besides the cited results there are for instance several evid-
ences on the enhancing effects of intrinsically superhelical sequences, i.e. regions
where the rotation between the neighboring base pair, ortwist angle (Figure 3), is
changed with respect to its value in equilibrium conditions [11, 12]. Because twist
deformations are strongly related, for geometrical reasons, with bubble formation,
this kind of effects has from our point of view a great interest, as we will discuss
immediately hereafter.

Local changes in twist are in fact necessarily involved in the transcription bubble
formation: simple geometrical considerations allow to understand that the stretch
of the hydrogen bonds in some local region of the chain is possible only if the
twist angle is decreased with respect to its equilibrium value20 in that region,
in order to bring the steps of the double helix ‘ladder’ toward a common vertical
plane (Figure 3a) [4]. This constraint is well known by biologists because in the
elongation phase, when the bubble starts to move, it causes topological problems,
giving rise to a positive excess of twist in front of the RNA-polymerase and to
a negative excess behind (Figure 3b). Special enzymes, thetopoisomerases, are
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designed to release these structural stresses by cutting one of the two strands and
rejoining it after having made some turns around the other. If the topoisomerases
cannot act efficiently enough, the excess of twist could sometimes be so important
that it prevents the transcription, showing how the twist deformations are important
in all the processes in which hydrogen bond opening is implied.

In DNA, changes in the twist angle can be always put in relation with modifica-
tions in its three-dimensional shape by the well known White lawLk = Tw+Wr,
whereT w (twisting number) is the number of turns that one strand makes around
the other, and is then the ratio between the overall twist angle change along the
considered DNA segment and 2π ; Wr (writhing number) is the number of times
the molecular main axis crosses over itself, giving rise to a coiled three-dimensional
configuration;Lk (linking number) is the total number of times the two strands
wrap around, and is a fixed number in closed circular chains [4]. The phenomeno-
logy which relates to this interdependence between local angular variables (twist)
and three-dimensional secondary structures is usually referred to assupercoiling,
and many interesting papers have been devoted to the study of their influence on
transcription and on other processes.

Besides the topological constraint related to the helix geometry, open complex
formation presents finally other interesting features from the physical point of view,
which could be in turn related to the mentioned deformational effect. In this phase
no chemical energy is required by the RNA-polymerase to open the two strands. It
is interesting to investigate the actual mechanism that allows the concentration of
enough energy to break hydrogen bonds; furthermore it is well known that the
bound RNA-polymerase induces a strong bending in the promoter region, that
could be in relation with the opening [3].

From what we have discussed so far it should be clear that transcription ini-
tiation is in many aspects strongly dependent on structural modifications. Con-
sequently it is quite natural to suppose that these modifications could act directly in
the process itself. Our aim is to look at these mechanisms from a physical point of
view, and to investigate for instance how the RNA-polymerase can collect enough
energy in the promoter region to melt the DNA in a bubble, how bending and
twist modifications are implied in this process, if there is any structural mechanism
which is responsible for the activation induced by the enhancer linked proteins,
and how structural modifications are responsible for some features of transcription
activation and initiation. To do this, it is necessary to simplify in some way our
description of the double helix, by building a model that should be simple enough
to be treated in a mathematical way, but that should contain the most essential
geometrical constraints of the molecule to allow a quite realistic description of the
main dynamical features of the various processes involved.

We will describe in the next section how this can be made, according to our
results [1]. The outlines of the paper is the following. In Section 2 we will initially
recall briefly the results of the planar Peyrard Bishop model, then we shall describe
our extended model, the chosen degrees of freedom, the geometrical constraints
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introduced, and we will then write the model Lagrangian. The model produces the
correct helical shape and leads to a correct coupling between torsional deformation
and hydrogen bond opening: we will confirm this fact by numerical integrations of
the equations of motion performed by simple initial conditions. In Section 3, we
will deal with the problem of finding small amplitude soliton like solutions for the
model. We briefly recall the extended expansion technique presented in [2] and the
results obtained by applying it to the model [1]. The analytical shape of the solution
will be presented, compared with the results of numerical integrations and briefly
commented. In the Conclusions we will present some possible future investigations
allowed by the new model and we will discuss some problems related to the choice
of some physical parameters.

2. A geometrical model of DNA

A first attempt to describe physically the dynamics of the formation of the tran-
scription bubble has been made with the Peyrard Bishop (PB) model [13, 14].
The authors focus mainly on the energetic aspects of the process and build a
planar model, where each base pair is described by a single degree of freedom
yn that corresponds to the stretching of the hydrogen bond linking the two bases.
The strength of the bond is described by an on site Morse potentialV (yn) =
D(exp(−αyn)− 1)2, where the constantsD andα are related respectively to the
depth and the width of the potential well. The neighboring bases are coupled
by an elastic potential with the elastic constantK which represents the stacking
interaction between neighboring base pairs.

The Lagrangian for the PB model is then

LPB =
∑
n

mẏn
2−

∑
n

D
(
e−αyn − 1

)2−∑
n

K
(
yn − yn−1

)2
. (1)

One of the main results of this model is that it is possible to find analytically,
applying a standard Multiple Scale Expansion technique [15], special (approxim-
ate) soliton-like solutions of the form of breathers that can eventually move along
the chain and which are characterized by a localized envelope and an internal os-
cillation [16]. The internal oscillation is asymmetrical, corresponding to a positive
mean value of the stretchingyn. These localized oscillations are well stable in the
small amplitude limit, in the sense that they can propagate along the chain for long
times with a very small loss in energy and without changing their shape.

Having a very small amplitude, the PB moving breathers probably cannot be
considered as the traveling activation distortions of the type suggested in the intro-
duction. The authors suggest anyway that breathers could be considered as precurs-
ors for the transcription bubble formation. They show in fact that, in a thermalized
chain, breathers form spontaneously by energy localization [13, 14]; simulating
the DNA thermal denaturation by increasing the bath temperature, one can see that
they have a tendency to grow by collecting energy from smaller excitations [17],
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up to the formation of bigger denaturation bubbles and then lead to a complete
strand separation. Among the main interesting properties of these kind of solutions
it is even shown that they can eventually be trapped by local inhomogeneities of
the chain [16]. This allows then the authors to make a hypothesis for a possible
mechanism of the open complex formation: since we know that RNA-polymerase
bends the promoter region, one can imagine that this results in a local change of
the coupling constantK, and thus in the introduction of a local inhomogeneity that
acts as a breather trap and collects in that region enough energy to allow bubble
formation.

The PB model represents a good starting point because it is able to reproduce
some interesting features of the energetics and dynamics of DNA. However, as we
have discussed, there are constraints related to the molecule geometry which are
very important in determining the efficiency of several biological functions. For
this reason we have proposed [1] a more realistic model, based on the introduc-
tion of the helical structure into the description of the molecule, by the addition
of one more degree of freedom to the hydrogen bond stretching, namely: twist
angle. ‘Twist’ can be introduced as a local degree of freedom remaining on the one
dimensional lattice model, without needs of three dimensional description. By con-
straining local twists and hydrogen bonds stretching in an appropriate, geometrical
way, we are able to obtain a model that contains the fundamental features of the
helical structure and that mimics quite well its possible dynamical deformations.

We stress furthermore that the twist angle can maybe model indirectly other
DNA structural deformations. In fact, there exists strong geometrical links between
the various local helix deformations in the three-dimensional configuration – bend-
ing, supercoiling – as well as in local helix deformation – stretch of the hydrogen
bonds, changes in twist. It is especially interesting to remark that the bending of
the chain implies that, in the same region, the twist angle tends to decrease [4]: this
is probably what happens when RNA-polymerase binds to the molecule; we know
furthermore how a decreasing of the twist is a necessary condition for the opening
of the chain, so that maybe an opening could be directly induced by the bending
deformation in the promoter region. We introduced the twist angle becauses it
describes the molecule helicity and we consider it as the degree of freedom that
is coupled in the most direct way to the opening deformations; at the same time
we have then to keep in mind that it is influenced by deformations in the three
dimensional configuration as bending and supercoiling, so that it could perhaps be
used in the future in such a way to contain informations on some three dimensional
properties.

The two degrees of freedom per site in the improved model are the radiusrn of
the base pair, which is related to the opening, and the angleϕn defined with respect
to an external fixed reference frame (Figure 4). The twist is then defined by the
difference between neighboring base pair angles. The kinetic energy term in the
Lagrangian will be written in these polar coordinates.
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Figure 4. Choice of variables (left) and the schematic view (right) of the model. The n-th
base-pair is represented by its radial and angular displacements(rn, ϕn) with respect to a
fixed external reference frame. Neighboring base-pairs are linked along the two strands by
elastic rods with equilibrium lengthL. R0, 20 andh are the geometrical parameters of the
model, with values deduced from the real B-DNA geometry.

As in the PB model we describe the hydrogen bonds by a Morse potential, with
depthD = 0.04 eV and widthα = 4.45 Å−1, depending on the stretch variable
(rn − R0),D

(
exp[−α(rn − R0)] − 1

)2
.

To obtain the correct coupling between radii and angles, we have then explicitly
referred to the helical geometry. The helical shape of DNA is essentially due to the
competition between two forces: the stacking interaction and the backbone rigidity.
The stacking interaction arises from the hydrophobic character of bases: this tends
to eliminate water from the core of the molecule by bringing the base pairs close
to one another. At the same time bases along the same strand are connected by
a sugar phosphate backbone segment which is quite rigid, so that their distance
along the strand is almost fixed: to bring base pairs closer it is then necessary to
rotate them, inclining the backbone in the helical structure [4]. To reproduce this
effects we allow the base pairs to move on planes whose distanceh is fixed at
the approximate B-DNA base pair step,h = 3.4 Å; then we describe the link
between neighboring bases along the strands, due to the rigid backbone segments
in between, by elastic rods. We then fix the elastic rod length to a valueL greater
thenh, in such a way that the rods have to be inclined in their equilibrium positions
(Figure 4). The constantL is chosen as in B-DNA

L =
√
h2+ 4R2

0 sin2
(20

2

)
> h (2)
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and the resulting geometry is such that the corresponding rotation of neighboring
base pairs is20 = 36◦, i.e. the B-DNA equilibrium twist value. The elastic rods
have in a generic, distorted configuration, lengths equal to√

h2+ r2
n−1 + r2

n − 2rn−1rn cos(ϕn − ϕn−1) (3)

and correspondingly, we introduce in the Lagrangian of the system quadratic terms
depending on the differences between these lengths andL.

Because there is no constraint on the direction of the rotation for each rod, we
could have at this point a zig-zag behavior with the rods randomly inclined left-
or right-handed; to have a true helical shape, we have then to add a curvature term
which essentially constrains each twist angle to have almost the same value as that
of the previous one.

Our final Lagrangian [1] then reads

L =∑n

(
mṙn

2+mrn2ϕ̇n
2
)−D(e−α(rn−R0) − 1

)2
−
∑
n

K
(√
h2+ r2

n−1 + r2
n − 2rn−1rn cos(ϕn − ϕn−1)− L

)2
−∑n G0

(
ϕn+1+ ϕn−1 − 2ϕn

)2
. (4)

For the elastic constantsK andG0 we use the valuesK = 1 eV Å−2 andG0 =
KR2

0/2. We have to stress that, as we shall discuss again in the conclusions, at this
stage this choice is quite arbitrary and it is useful just in the context of this first
study. A more appropriate choice will have to be made after all the properties of
the model will be completely characterized, if one wants to refer to real biological
features.

We have now a model whose equilibrium state is the helix. Furthermore, we
obtain, as a consequence of the introduced geometrical constraint, a good coupling
between the two degrees of freedom. It is in fact easy to understand that trying
to stretch a single base pair, the neighboring pairs are pulled by the rods in such
a way that the twist angles tend to decrease, as expected from the geometrical
considerations sketched in the introduction; if instead we rotate the neighboring
base pairs in opposite direction, bringing them towards a common vertical plane,
the rigidity of the backbone rods acts on the direction of pushing the central base
out of its equilibrium position, breaking the hydrogen bonds.

This can be easily verified by numerical integration of the equation of mo-
tion of the system with special initial conditions. In all the graphs presented in
Figure 5 we report the difference between the radial, angular and twist variables
with respect to the equilibrium, and we show the time evolution, performed by
numerical integration of the equations of motion derived from Lagrangian 4, of
a chain initially at rest with the exception of a small region in which the radius
is stretched (Figure 5a) or the twist is decreased (Figure 5b). In the first case the
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Figure 5. Simple initial distortions and consequent model behavior. We integrate the complete
equations of motion of the system with, as initial conditions: (a) a local radial stretched region,
(b) a local untwisted region. The system configuration is then shown after integrating for 120
time units (1 t.u. = 1.02 10−14 s). The expected untwist effect of an initial hydrogen bond
stretching is clearly visible in (a); in (b), the coupling between opening and untwisting is
evident.
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deformation induces a rotation of all the angles of a positive value upstream and
of a negative value downstream the initial distortion, so that there is a reduction of
twist in correspondence to the stretched region. In the case of an initial untwisted
region, we see how a positive distortion in the radial variables is induced.

3. Small amplitude approximate solutions of the model

The existence of moving breathers in the planar PB model suggests to look for
analogous solutions in the generalized helicoidal model.

In order to look for soliton-like solutions we need an extension of a mathem-
atical tool, namely the multiple scale expansion technique, to the case of more
than one degree of freedom per site, which is not a trivial point. This can be
made in a general way, as explained in [2]. The aim is the derivation of small
amplitude soliton-like solutions whose envelopes obey a Non-Linear Schrödinger
(NLS) equation: the central point of the derivation is to look for a wave packet
solution where a weak dispersion effect is balanced by a weak nonlinearity. The
weakly dispersive wave packet is built as a superposition of normal modes whose
wave vectors lie in a small interval around a central valueq0, so that one can write
for each wave numberq contributing to the wave packetq = q0+εq1: the resulting
wave packet is then given by the central mode oscillation modulated by a slowly
varying envelope function. The expansion in multiple scales consists essentially in
introducing sets of independent variables to describe on one hand the slow envelope
time-space behavior and on the other the central mode fast oscillatory motion; it
can be proved [2] that the same result can be obtained in a more efficient way from
the expansion, in small variationsεq1, of the linear system that gives, in the wave
vector space, the dispersion relationsω(q) for the normal modes. With respect to
the case of systems with only one degree of freedom per site, in the case of vectorial
fields the linear part corresponds to an eigenvalue-eigenvector problem, so that one
has to perform a perturbative expansion instead of a Taylor series expansion.

Besides this perturbative expansion that treats the dispersive part of the equa-
tions of motion, one has to consider small amplitude solutions in order to introduce
the nonlinear terms into the equations as successive corrections at increasing orders
of accuracy. To combine the two effects of dispersion and nonlinearity one has
then to perform two parallel expansions with the common small parameterε; they
can be treated in an unique scheme to obtain the NLS equation for the envelope
function in the general case of vectorial lattices with nonlinear on-site potentials
and eventually, non-cartesian coordinate systems [2].

The general solution one finds with this technique has a mainO(ε) wave packet
like contribution, proportional to exp(q0t − ω(q0)x), q0 andω(q0) being a chosen
central wavenumber and the corresponding frequency on one chosen branch. In
addition one has some smallerO(ε2) terms corresponding to the eigenvector per-
turbative correction and to the d.c. and second harmonic contributions produced by
the nonlinearity. According to [2] this solution can be written in the form
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EE(n) = εei(q0x−ω(q0)t)( EV − iε EV (1) ∂

∂(εx)
)A(εx, εt, ε2t)

+ε2e2i(q0x−ω(q0)t) Eγ (εx, εt, ε2t)+ ε2 Eµ(εx, εt, ε2t) + c.c. (5)

Here EV and ε EV (1) are respectively the central mode eigenvector and its first
order perturbative correction. The slowly varying amplitudesEγ andEµ can be solved
as functions ofA which is the amplitude for which the NLS equation holds.

With this extended technique we are able to solve for approximate analytical
solutions, well stable for sufficiently small amplitudes, which represent the gen-
eralization of the breather solutions of the planar model [1]. We first rescale in
an appropriate way the system variables passing to adimensional variables that
represent small displacements with respect to the equilibrium configuration:

yn = α(rn − R0) (6)

φn = αR0( ϕn − n20 ) (7)

with a rescaled timet = √
Dα2/m t ; then we approximate the Lagrangian rod

terms and the Morse potentials respectively to the second and to the fourth order in
yn andφn so that, finally, the approximated equations of motion can be written as

ÿn =
(
1+ yn

R0

) 1

R0
φ̇2
n − (yn −

3

2
y2
n +

7

6
y3
n)

−Kyyě(yn+1 + yn−1 + 2yn)− Kyφ2
(φn+1 − φn−1) (8)

φ̈n = − 2

R0
ẏnφ̇n − 2

R0
ynφ̈n − 2

R2
0

ynẏnφ̇n − 1

R2
0

y2
nφ̈n

+Kφφ ě(φn+1 + φn−1 − 2φn)+ Kyφ2
(yn+1 − yn−1)

−G(φn+2 + φn−2 − 4φn+1 − 4φn−1 + 6φn) (9)

where

Kyy = [KR2
0/(Dα

2L2)](1− cos20)
2 (10)

Kφφ = [KR2
0/(Dα

2L2)](sin220) (11)

Kyφ = 2[KR2
0/(Dα

2L2)](sin20)(1− cos20) (12)

G = G0/(Dα
2R2

0) . (13)
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We have applied the results of [2] to these equations of motion, looking for
a general envelope soliton solution. Their special form is such that anO(ε) d.c.
second component exists, so we have added a term of the typeε Eσ(εx, εt, ε2t) to
the general solution (5).

The final solution we have derived for the small amplitude approximate excit-
ations are again of the form of a breather in the radial variables, which is now
accompanied by a non oscillating,O(ε) kink-like angular distortion, depending on
the spatial integral of the squared modulus of the envelope function:

y(x, t) = ε(V1− iεV (1)
1

∂

∂(εx)
)Aeiθ + c.c.+ ε2γ1cA

2e2iθ + c.c.+ ε2µ1c|A|2

+O(ε3) (14)

φ(x, t) = (εσc + ε2µ2c)

∫
|A|2d(εx)+ ε(V2− iεV (1)

2

∂

∂(εx)
)Aeiθ + c.c.

+ε2γ2cA
2e2iθ + c.c.+O(ε3). (15)

Hereγ1c, γ2c, µ1c, µ2c, σc are constants,θ = (q0x − ω(q0)t) and the envelope
functionA is

A(x, t) = A sech[ ε
Le
(x − Vet)]exp[i ue

2P
(x − Vct)] (16)

with

A =
√
u2
e − 2ueuc

2PQ
(17)

Le = 2P√
u2
e − 2ueuc

(18)

Ve = V + εue (19)

Vc = V + εuc , (20)

ue and uc are arbitrary (small) constants,V is the group velocity for the wave
packet andP ,Q are the dispersion and nonlinearity NLS equation parameters [1].

Figure 6 shows the time evolution of the theoretical solutions (14), (15) in the
case of a wave packet central mode withq0 = 0.1 and with the corresponding
frequency chosen on the upper dispersion branch. The solution is shown in the
original unrenormalized variables in a chain of 300 bps. The total time interval
correspond to a few internal oscillations. The spatially localized, oscillating radial
solution, and the coupled, non oscillating angular part can be recognized. There
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Figure 6. Analytical solution (14), (15). We show here (a): the radial displacementrn(t)−R0,
obtained with the model parameters indicated below and with solution parametersε = 0.1,
ue = −0.1, uc = 0.1. The typical breather oscillation is clearly visible; its period is of 105.1
time units. The amplitude 2εA/α and the half height width, which is about 2.77Le/ε, are
respectively 0.016 Å and 20 b.p. (b): the corresponding angular displacementϕn(t). The
main contribution to this solution is the kink-like termεσcLeA2 tanh(η(x − Vet)) of (15).
(c): the twist angle, given by the difference between neighboring angles,1ϕn(t). We stress
that the breather opening mode in the radial variables corresponds to an untwisted region.

are, in addition, smaller oscillations corresponding to the next orders corrections.
Other details are reported in the figure caption.

As the twist is defined as the difference between neighboring base pairs angles
ϕn, it is immediately clear that the kink-like deformation in the angles corresponds
to an untwist, that moves together with the breather along the chain: we can see this
negative twist distortion in Figure 6c where the differencesϕn − ϕn−1 have been
plotted. Since the radial breather represents in average an opening of the helix, the
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Figure 7. Numerical integration (obtained with a Runge Kutta algorithm) of the initial con-
dition which corresponds to the analytical solution of Figure 6. The amplitude and width
parameters preserve their initial values 2εA ∼ 0.016 Å and 2.77Le/ε ∼ 20 b.p. with good
accuracy, as well as the oscillation period. The total simulation time corresponds to 2234
oscillation periods. We introduce here absorbing boundary conditions to avoid noise effects
produced by reflection of the small amount of radiated energy (less then 10−5 of the total
energy). (a): radial displacementrn(t)−R0; (b): angular displacementϕn(t) generated by the
numerical integration of the same initial conditions; (c): twist angle.

fact that the twist is decreased in the breather core, confirms that our model leads to
a correct coupling between radii and angles, inducing a behavior that fits quite well
with the known DNA geometrical effects discussed in the introduction. The result
even shows how the localized excitations of the planar PB model can actually be
extended to the more realistic helicoidal model.

If, as in the case reported in Figure 6, we deal with small enough amplitudes,
the analytical solution can be used as an initial condition for a direct integration of
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the real equations of motion of the model, derivable from the complete Lagrangian
(4). We report in Figure 7 the result of this integration with initial conditions which
correspond to the analytical solution of Figure 6. This shows that the derived ana-
lytical functions are actually quasi-solutions of the model, in the sense that they
maintain their stability for long times with a very small loss of energy: in the case
reported in Figure 7 the total integration time is of more than 2 103 periods of
oscillation, and the total energy loss is less then 10−5 of the total initial excitation
energy.

Going to bigger amplitudes, the analytical solutions are no longer almost exact
solutions of the model. They tend to radiate energy and stabilize to a smaller solu-
tion of the type described in [1]. It is however important to notice that the model
does sustain localized solutions, and some preliminary tests starting from a broad
initial excitation have even shown that energy tends to self-localize in the system.

4. Conclusions

We described here a geometrical DNA model which aims at providing a rather
realistic representation for the structural and dynamical behavior of the helix while
staying simple enough to allow the study of long DNA segments which would
not be possible within the molecular dynamics simulations of a full DNA model.
We then showed the results of an analytical study of the dynamical properties of
the model, solving in particular for approximate small amplitude envelope soliton
solutions, and discussed how their shape could be well interpreted by the known
helical constraints.

These solutions can be considered as a generalization of the breather solutions
of the planar PB model, for which there are accurate studies regarding their form-
ation in the presence of a thermal bath or by modulational instability, their mutual
interactions in collisions, their interactions with chain local inhomogeneities. One
possible future direction for our work is to study further the breather/kink solu-
tions to see if they can be thermally induced, how they interact, if they could be
trapped by local inhomogeneities; more generally, we will study in more details
their dynamical behavior.

Besides this, we can focus our attention on the possible features arising from
the geometrical properties of our two degrees of freedom model, considering e.g.
large amplitude distortions, or the possibility of different propagating solutions.We
found, for example, a different kind of distortion, that looks quite stable and could
be built in a numerical way starting from special initial conditions: it is a localized
overtwist (but also a symmetrical undertwist) propagating along the chain together
with a very small radial deformation, which is not oscillating but with constant
profile. This solution does not belong to the same class as the breather/kink solu-
tion discussed above because it is topologically different.It can perhaps also be
obtained analytically as an approximated solution of the equations of motion.

jobp346.tex; 5/06/1999; 19:23; p.16



A TWIST OPENING MODEL FOR DNA 113

Clearly the model, with one more degree of freedom per site, is richer than
the PB model because it allows a different combination of distortions which could
propagate along DNA. Furthermore one can consider the fact that our model allows
transitions from a right-handed to a left-handed form to investigate the effects of Z-
DNA segments on the transcription process, or use the known relation which links
the various forms of coiling of the molecule to try to take into account, at least in
an indirect way, the supercoling effects.

Before going on with these projects, we have however to improve our model for
what concerns the choice of the various parameters. While the parameters of the
Morse potential can be quite well chosen, the elastic constantK and the curvature
constantG0 are not easy to determine. For what concerns the choice of the con-
stantG0 the main difficulty arises from the fact that the corresponding Lagrangian
curvature term is zero for homogeneous twist distortions, i.e. for distortions equally
distributed along the chain, that is always the case in today‘s experimental works
on the elastic properties of the molecule [18, 19, 20, 21]. It is true, on the other
hand, that for the same reason this term is not too relevant as long as we deal with
sufficiently smooth distortions. The elastic constantK is instead more important,
and we can refer to different experimental and theoretical data but each one probes
one aspect of the properties of DNA and they lead to different values ofK so that
we don’t have yet a well determined value forK. Numerical experiments could
be performed on the model to make comparisons with biological and experimental
data (in particular thermal denaturation) in order to chose more accurately this
parameter, before going on in studying the properties of our model.
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