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Solitons and Nondissipative Diffusion
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The dynamical correlation spectra of the Toda chain are obtained by a molecular dynamics simulation
and analyzed in terms of Bethe-ansatz-based soliton phenomenology. The spectrum of local temperature
fluctuations exhibits a feature which can be unambiguously assigned to solitons. Detailed linewidth
analysis demonstrates the phenomenon of nondissipative soliton diffusion, i.e., the stochastic sequence
of spatial shifts experienced by the soliton as it moves through the lattice and interacts with other
excitations without momentum exchange. Our results provide strong support for the dynamical
predictions of the finite-temperature Bethe ansatz excitation spectrum.
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Diffusion is in general accompanied by dissipation. If
a test particle is injected in a diffusing medium with a
velocity above the thermal velocity, it slows down at a
rate predicted by the fluctuation-dissipation theorem. This
happens because the constant exchange of momentum
between the test particle and the medium is equivalent
to a white spectrum of random forces acting on the test
particle. Weaker randomness, i.e., richer-than-white force
spectra, can lead to an enhanced, nondissipative diffusion,
which is not mirrored in macroscopic friction; this has
been widely recognized in the context of thermal ratchets.
The present paper deals with another, perhaps more
extreme, example of weak randomness: the nondissipative
diffusive motion of thermal solitons.

Solitons, or solitonlike objects, are common in low
dimensional systems and account for a variety of phe-
nomena where nonlinear wave propagation is especially
robust (hydrodynamics, optical fibers, Josephson junc-
tions arrays, biomolecules). In its purest form, a soliton
maintains both shape and velocity as it moves through
a medium; it can do that because its interaction with
the other components of the medium consists of spatial
shifts, “jumps,” rather than momentum exchanges. Put
more formally, the system is completely integrable and
soliton canonical momenta are conserved action variables.
At finite temperatures the sequence of spatial shifts be-
comes intrinsically stochastic, reflecting the randomness
of the initial conditions. In the absence of any further
perturbations, a soliton is thus expected to perform a sto-
chastic motion, a random walk, in addition to its bal-
listic motion. As long as the system is unperturbed by
an extrinsic sources (e.g., impurities), there is no macro-
scopic friction. Stochasticity is confined to the “random”
subset of the motion, and the ensuing diffusion is thus
nondissipative.

Although the above scenario for stochastic soliton mo-
tion had been proposed long ago [1–3], the corresponding
“signature” in the spectrum of dynamical correlations has
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never been observed, either experimentally or in a numeri-
cal simulation. In fact, most of the debate has concen-
trated on how “conventional” diffusive processes, due to
“real” perturbations from exact integrability, could effec-
tively mask any nondissipative diffusion (e.g., [4,5]). This
is indeed the typical situation if a soliton is exact only in
the continuum limit; since all experiments—physical or
numerical—involving thermal solitons are performed on
a lattice, discreteness perturbs the exact soliton property
and eventually leads to macroscopic friction and concomi-
tant conventional diffusion.

In this paper, we report our findings, numerical and
theoretical, on the finite-temperature dynamics of the Toda
chain. We have chosen this particular model because it
exhibits the exact soliton property on the lattice; i.e., the
discreteness is a condition for integrability rather than a
perturbing factor.

The classical Toda chain supports supersonic localized
excitations (solitons) as well as extended, wavelike, sub-
sonic objects [6]. The statistical distribution of the two
types of objects has been determined both numerically [7]
and theoretically [8]. The fundamental (zero temperature)
dynamics is governed by the inverse scattering theory [9];
the thermodynamics is described by the classical limit of
the Bethe ansatz (BA) [10–12]; there is as yet no consen-
sus regarding the dynamical significance of quasienergies
derived within the BA formalism [13,14]. An analysis
of dynamical correlation spectra in terms of soliton phe-
nomenology [15] (i.e., by exploiting the availability of ex-
act equilibrium statistical mechanical properties in phonon
and soliton “sectors” of phase space, in order to formulate
an approximate theory of dynamical correlations) yields
two essential results: (i) it shows that nondissipative (soli-
ton and phonon) diffusion exists and is observable in a
nonlinear lattice, and (ii) it allows us to identify unam-
biguously a soliton peak in the kinetic energy autocorre-
lation spectra; this assignment allows us in turn to give a
precise dynamical meaning to the equilibrium BA solution
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(in particular, the soliton dispersion relation derived within
the BA).

Numerical simulations.—Dynamical correlations have
been observed by molecular dynamics (MD) simulations
on a Toda chain of N � 1024 atoms using a fourth-order
Runge-Kutta integrator. The interaction potential was
V �rn� � exp�2rn� 1 rn 2 1, where rn � yn 2 yn21 is
the difference in displacement of neighboring atoms. Ini-
tial conditions were “canonical,” in the sense that (i) the
velocities �yn were Gaussian distributed, and (ii) relative
displacements rn were random variables distributed ac-
cording to the distribution function exp�2bV �r��, where
b is the inverse temperature.

We have computed the spectra

SAA�q, v� �
Z 1`

2`
dt e2ivt

X
m,n

eiqa�n2m��An�t�Am�0�� ,

(1)

where An � rn (relative displacement autocorrelations) or
An � Tn � �y2

n�2 (kinetic energy autocorrelations); a is
the lattice constant, which is taken equal to unity at zero
temperature. The angular brackets denote an ensemble
average; ergodicity is not assumed. Typically, we im-
plemented this by repeating the simulation for a set of
636 initial conditions. Each initial condition was inte-
grated for 512 time units. The integration time step and
the fast-Fourier transform sampling step were equal to 0.01
and 0.5, respectively (in dimensionless time units). Fig-
ures 1 and 2 display the rr and TT spectra, respectively,
for a temperature T � 0.25. Results are in broad agree-
ment with previous work [16]. The interpretation is new
and reflects, among other things, the detailed knowledge
achieved by the BA solution.

Phonon phase diffusion and soliton diffusion.—The
numerical observations can be understood theoretically
by investigating the interactions between the two types
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FIG. 1. r-r spectra of the Toda chain at T � 0.25. Results of
molecular dynamics are shown for qa�p � 1.0 (open squares).
The full curve is Eq. (7). The linewidth of the zone-boundary
phonon is attributed entirely to the diffusion of the phonon
phase.
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of objects supported by the Toda chain, phonons and
solitons.

Consider first a phonon l interacting with a gas of
objects (solitons or phonons) characterized by a parameter
a, which in turn specifies the objects’ densities na and
velocities ya . The phonon experiences a phase shift
u�a, l� from each object; the current naya causes a
stochastic frequency shift,

vl �
X
a

nayau�a, l� , (2)

of the phonon mode l. On the average, this process leads
to a frequency “drift” v̄l; in the case of zero-wavelength
phonons, we have computed this average drift and found
it to be identical with the BA frequency [13,14]. In
addition, if the densities fluctuate according to

�dna�t�dna0�t0�� � ��dna�2�d�a 2 a0�d�t 2 t0� , (3)

the frequency will fluctuate according to

�dvl�t�dvl�t0�� � Gld�t 2 t0� , (4)

where

Gl �
X
a

��dna�2�y2
au�a, l�2. (5)

If the statistics of the density fluctuations are Gaussian,
the fluctuating phase of the phonon wave function will
average to

�e2i
Rt

0
dt0 vl�t0�� � e2iv̄lte2Gljtj�2. (6)
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FIG. 2. T-T spectra of the Toda chain at T � 0.25. Re-
sults of molecular dynamics are shown for qa�p � 0.1 (open
squares) and qa�p � 0.2 (open diamonds). Dotted lines de-
note (for both q values) the background (2-phonon) con-
tribution [Eq. (8)]. Dash-dotted lines represent the soliton
contribution [Eq. (9)]. Full curves are the sum of the two
contributions. The inset demonstrates the quantitative effect
of stochastic dynamics on the soliton motion at qa�p � 0.2.
The dash-dotted line is a redrawing of the soliton contribution
[Eq. (9)] (in agreement with the MD data, cf. body of the fig-
ure). The dashed line is the same, except that the diffusion
constant has been set equal to zero; i.e., the broadening origi-
nates solely in the distribution of soliton velocities. The dotted
line has zero diffusion and bare soliton velocities (no “negative
fraction”).
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Equations (4) and (6) above are well known in the
literature in the context of the phase diffusion model
of the laser [17]. In the context of the present Letter,
they are supplemented by the identification of the source
of randomness (fluctuations in soliton and/or phonon
densities, which in turn originate in the randomness of
the initial conditions implicit in the canonical ensemble);
this allows the calculation of the diffusion rate.

The argument sketched above can be readily applied
to solitons, the difference being that (i) phase shifts are
substituted by spatial shifts, and (ii) the fluctuating quan-
tity is now the soliton position, rather than the phonon
phase. Although the ballistic speed of the solitons is not
modified by soliton-soliton or soliton-phonon interactions,
the spatial “jumps” associated with each binary collision
give rise to a fluctuating shift in the soliton velocity, by
analogy with Eq. (2). Consequently, instead of the aver-
age drift in phonon frequency there is an average drift in
soliton velocity [3]; and instead of the phonon phase dif-
fusion, there is spatial soliton diffusion [1–3]. In both
cases, this results, in Fourier space, in broadening Dirac
delta functions to Lorentzians.

The above ideas can be applied in order to calculate
the observed dynamical correlations by introducing the
appropriate densities, velocities, and occupation numbers.
Only the basic theoretical outline is sketched here. Details
will be reported elsewhere [18].

r-r correlations.—Phonons near the Brillouin zone
edge are known [11] to be the best candidates for
soliton-phonon phenomenology. In addition, it can be
shown that this particular correlation function has no
soliton contribution, since the corresponding form factor
is vanishingly small. The calculated spectrum is

Srr �q, v� �
1
p

Gqṽ2
q

�v2 2 ṽ2
q�2 1 G2

qv
Srr �q� . (7)

In Eq. (7) the static structure factor Srr �q� is given by the
product vqn̄q, where vq and n̄q are, respectively, the har-
monic frequency and phonon occupation number of the
mode q; ṽq is the thermally renormalized frequency ob-
tained in the BA solution [13,14]; the phonon occupa-
tion number has been identified as the number of holes in
the BA solution. The total phonon phase diffusion con-
stant Gq�p�a � 0.120 is a sum of both soliton (0.094)
and phonon (0.026) contributions. We have used known
expressions for both phonon-soliton [19] and phonon-
phonon [11,20,21] phase shifts. The calculated spectrum
for qa � p is shown in Fig. 1. The integrated intensity
agrees with the exact (transfer-integral) result [16]—and
with MD— to within 1%. The calculated lineshape is also
in agreement with MD. To our knowledge, this is the only
case where a phonon lineshape has been accounted for by
a nonperturbative mechanism which does not imply decay,
rather than a perturbatively computed decay rate.

T -T correlations.—Autocorrelations of the local ki-
netic energy (i.e., a measure of the local temperature)
contain contributions from both 2-phonon (sum and dif-
ference processes) as well as a direct soliton part. The
2-phonon contribution is

S
ph
TT �q, v� �

1
2p

Z 1p

2p
dq0 R�q0�

T
ṽq0

T
ṽq00

3
Gq0,q00

�v 2 Vq0,q00�2 1 G
2
q0,q00

. (8)

In Eq. (8), R�q� is the phonon density of states in q
space as modified by the presence of other excitations;
q00 � 6�q 2 q�0, for sum and difference processes, re-
spectively; finally Vq0,q00 is the sum or difference of the
phonon frequencies involved in the process. The phase
diffusion Gq0,q00 in principle includes contributions from
both phonon-soliton and phonon-phonon collision pro-
cesses. Our analysis includes only the phonon-soliton
contributions. The 2-phonon (background) contribution
to the T -T spectrum (dashed line in Fig. 2) consists of a
broad peak at low frequencies and a very broad feature at
higher frequencies (v 	 3.5, outside the scale of Fig. 2).

The direct soliton contribution is given by

Ssol
TT �q, v� �

1
p

Z `

2`
da n̄�a�

3
Daq2

�v 2 qya�2 1 �Daq2�2 j fT �q, a�j2.

(9)

In Eq. (9), the integral runs over all soliton parameters,
i.e., forward and backward moving solitons; n̄�a�, ya ,
and Da are, respectively, the density, velocity, and
diffusion constant of solitons with internal parameter a;
finally, fT �q, a� � �2p sinha�a�� sinh��qp�2��a� 2


sin�q�2� cosha 2 ��q�2��a� cos�q�2� sinha� is the static
form factor appropriate to local kinetic energy fluctua-
tions. The soliton density is given directly in terms of
the BA solution (cf. Ref. [8], where the low-temperature
T1�3 dependence of the total soliton density is derived).
The soliton velocity follows from a literal interpretation
of the BA quasimomenta h�k� and quasienergies e�k�
above the Fermi level as soliton momenta [8,21] and
energies, respectively; the resulting slope ≠e�≠h defines
the soliton velocity at finite temperatures [13]. This
thermally renormalized velocity is systematically higher
than the bare soliton velocity. In effect, the BA solution,
by incorporating all phase-shift interactions exactly, has
built-in effects such as the velocity drift for solitons, or
the frequency drift for phonons (cf. above). Finally, we
note that the diffusion constant calculated according to
Eq. (5) contains contributions from both soliton-phonon
and soliton-soliton parts.

The direct soliton contribution to the spectrum [Eq. (9),
dotted line in Fig. 2] can be unambiguously identified
with the main peak observed in MD. The total calculated
spectrum [sum of Eqs. (8) and (9), solid line in Fig. 2]
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is in reasonable agreement with MD. The integrated in-
tensity is 7% higher than the exact (q-independent) theo-
retical value Sth

TT �q� � T2�2 [16] for qa�p � 0.1; it
coincides with the exact value for qa�p � 0.2; for higher
values of q, agreement becomes worse, probably reflect-
ing the limitations of soliton-phonon phenomenology.

A number of comments are in order here.
(i) The exact correspondence of the position of the

predicted soliton peak with the MD result can be obtained
only with the fully renormalized soliton velocities of the
BA. Using the bare velocities in Eq. (9) results in soliton
peak positions shifted to lower frequencies, as well as in
systematic errors in the q dependence and intensity of the
peak (cf. inset of Fig. 2). Thus, although the effect of
thermal renormalization on the soliton velocity is small
(approximately 5% at T � 0.25), the evidence provided
for it by the present work is compelling. This in turn
implies that BA quasiparticles, although derived strictly
within the context of equilibrium statistical mechanics,
are legitimate dynamical entities at finite temperatures.
Furthermore, to the extent that the BA solution contains
the velocity drift effect, this Letter provides indirect
evidence for the negative friction exerted by the phonon
gas on the soliton, a suggestion first made in the context
of the sine-Gordon model [3].

(ii) A point we would like to emphasize is the sig-
nificance of identifying a purely solitonic feature in the
spectrum. In view of the fact that various authors have
stressed the generic character of (nontopological) soliton-
like objects in one-dimensional chains—even if they do
not possess the exact soliton property—our findings im-
ply that it is possible to investigate whether other, less
“pathological” models exhibit similar solitonlike signa-
tures in the spectra of dynamical correlations of the local
kinetic energy. Preliminary results for the Lennard-Jones
chain confirm this expectation.

(iii) A final comment concerns the magnitude of
the diffusion constants. The average soliton diffusion
constant at T � 0.25 is, in dimensionless units, equal to
0.09. The linewidth associated with it is quite small; it
accounts for approximately 25% of the total linewidth;
the rest originates in the natural distribution of soliton
velocities (cf. inset of Fig. 2). Thus, although observable,
the effect of nondissipative diffusion on soliton spectra
is small. In contrast, the diffusion of the phonon phase
leads to a much more pronounced broadening of phonon
features (cf. Fig. 1).

In conclusion, our parameter-free analysis of the finite-
temperature spectral properties of the Toda lattice has
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identified characteristic solitonic features. Our results
strongly suggest that the BA quasiparticles can be used to
describe the unusual stochastic dynamics (negative fric-
tion, nondissipative diffusion) of soliton-bearing systems.

Part of this work has been supported by the Greek-
French bilateral cooperation program Plato.

[1] Y. Wada and J. R. Schrieffer, Phys. Rev. B 18, 3897
(1978).

[2] N. Theodorakopoulos, Z. Phys. B 33, 385 (1979).
[3] K. Fesser, Z. Phys. B 39, 47 (1980).
[4] M. Ogata and Y. Wada, J. Phys. Soc. Jpn. 55, 1252 (1986).
[5] F. Marchesoni and C. R. Willis, Europhys. Lett. 12, 491

(1990).
[6] M. Toda, Theory of Nonlinear Lattices (Springer-Verlag,

Berlin, 1981).
[7] V. Muto, A. C. Scott, and P. L. Christiansen, Phys. Lett. A

136, 33 (1989); Physica (Amsterdam) 44D, 75 (1990).
[8] N. Theodorakopoulos and N. C. Bacalis, Phys. Rev. B

46, 10 706 (1992); an approximate calculation of the
soliton density has been performed by F. Marchesoni and
C. Lucheroni [Phys. Rev. B 44, 5303 (1991)].

[9] H. Flashka, Phys. Rev. B 9, 1924 (1974).
[10] B. Sutherland, Rocky Mt. J. Math. 8, 413 (1978).
[11] N. Theodorakopoulos, Phys. Rev. Lett. 53, 871 (1984).
[12] M. Opper, Phys. Lett. 112A, 201 (1985).
[13] P. Grüner-Bauer and F. G. Mertens, Z. Phys. B 70, 435

(1988).
[14] M. Fowler and N.-C. Yu, J. Phys. A 22, 3095 (1989).
[15] J. Krumhansl and J. R. Schrieffer, Phys. Rev. B 11, 3535

(1975).
[16] T. Schneider, in Solitons, edited by S. E. Trullinger,

V. E. Zakharov, and V. I. Pokrovsky (Elsevier, New York,
1986), p. 389; T. Schneider and E. Stoll (unpublished).
These authors tentatively identify the broad feature in the
T -T spectrum with second sound and the main peak with a
“bound-state-like resonance.” Although the position given
for the second-sound peak would be roughly consistent
with observation, our calculation for the total spectrum
is internally consistent without invoking second-sound
contributions.

[17] For example, G. S. Agarwal, Phys. Rev. Lett. 37, 1383
(1976).

[18] N. Theodorakopoulos (to be published).
[19] N. Theodorakopoulos and F. G. Mertens, Phys. Rev. B 28,

3512 (1976).
[20] N. Theodorakopoulos (unpublished).
[21] H. Takayama and M. Ishikawa, Prog. Theor. Phys. 77, 820

(1986).


