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Take home messages:
Proteins swim in molasses and
walk in a hurricane

l. Viscous drag is so large that a protein is
in mechanical equilibrium at every instant

ll. Thermal noise is so large that
nanoscale motions of a protein are best
described as a random walk



Colloidal dispersion

Barometric Distribution

m = 471r°(pp — pu)/3




Single particle “non-equilibrium” perspective
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Overdamped Limit - Mechanical Equilibrium
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second Law of Thermodynamics Violated

pature  sclenceupdate

Second law broken



Overdamped Limit - Mechanical Equilibrium
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Gaussian probability distribution
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Time has disappeared! Use the relation

D = kgT'/~

and we recover the “equilibrium” barometric distribution



Second Law:

< mgh > < (

Probability densities are normalized

/M P(h,t)dh = /m P(—h,t)dh = 1
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Now we have an equality:
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G.N. Bochkov and Yu. E. Kuzovleyv, Physica 106A, 443-479 (1981),



P[Q(r); X (7)] exp{ "y f X (1)O(7) dT}
= PleQ(—T1);eX(—171)]

This FDT form is obvious enough from the physical point of view. From
(2.11) one can see that the ratio of the probability of some macroscopic
trajectory of a system to the probability of the time reversal trajectory is
equal to exp(/3E). Therefore those trajectories relatively are more probable,
for which E>0

(exp(—BE)) =1 (exp(—435)) =1

Let us summarize briefly the results of the first part of the paper. The main
result, which the developed fluctuation-dissipation theory is based upon, are
time symmetry relations for the probability functional of arbitrary macro-
variables (the generalized FDT). The generalized FDT is established both for
the system perturbated dynamically from nonequilibrium state and for the
system developed from nonequilibrium state thermally. Both variants of the
theorem are direct consequence of microscopic motion reversibility but lead
straight to irreversibility of macroscopic evolution.

G.N. Bochkov and Yu. E. Kuzovlev, Physica |06A, 443-479 (1981),



Microscopic Reversibility
and Detailed Balance
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The importance of being Gaussian
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Onsager-Machlup
Thermodynamic Action

Ra =X +e€

e "Near Equilibrium”
® "Linear Regime”

e (Gaussian behavior
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External work
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Dissipated work
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Time dependent potential function

Flat) = U'(z) + f(t)

energy absorbed energy dissipated
from external source in the environment
Xq, T
orfo (X, 1) (%1, 1)
——
fw
energy absorbed energy transduced
from the environment to the external source
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vh = F + \/2vkpT&(t)

For discretized time

P(&k) e e—g%&t/Q
Probability for any sequence of “Brownian™ kicks
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In the continuum limit
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Rearrange the langevin equation
é(t) = (h— F/v) /v2D

To write
PlE(t)] oc e™/P
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The ratio of probabilities for forward and reverse paths

PIEE)] _ (wele@®)-A0) k5T
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The work probability density function (not gaussian) is

P(Was) = ff D) S(Wasy — wanl€ (0) PIE)

with the ratio

P(Wdis) — BWdis/kBT
P(_Wdis)

and finally
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extension
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Enzyme Cycle Kinetics




effective rate constants
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T.L. Hill, Biochemistry, 14:2127-2137 (1975)



Nat-K* transport ATPase
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“lon pumps do not function by a power stroke mechanism;
instead, pump operation involves transitions between mol-
ecular states, each of which is very close to thermal equi-
librium with respect to its internal degrees of freedom, even
at very large overall driving force.”

Peter Lauger, “Ion motive ATPases”
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Vext

Serpersu and Tsong, (1984) JBC 259, 7155; Liu, Astumian, and
Tsong, (1990) JBC 265, 7260
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(_D_)Na+ Efflux (amol/RBC/Hr)
(—a—)2xRb Influx (amol/RBC/Hr)
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Robertson B, Astumian RD (1991) Frequency dependence of cata-
lyzed reactions in a weak oscillating field. J Chem Phys 94:7414—
7419
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