Physics of Moleculer Machines Les Houches 2006

Chemomechanical Coupling in Myosin II : Experiment vs. Theory

Clive R. Bagshaw Department of Biochemistry http://www.le.ac.uk/biochem



## Topics: Myosin II

- States identified from crystal structures
- Switch movements probed by tryptophan fluorescence
- Domain movements probes by other fluorophores
- Coupling of movements to Pi release

## Crossbridge cycle based on crystal structures



Model based on two (now three) crystal structures of myosin and em of decorated filaments

Does the neck really swing?

How is tail swing reversed by actin?

Is the lever arm swing the only mechanism contributing to sliding?

Animation by Ken Holmes



From Geeves & Holmes 2005

#### A.M (actomyosin)



#### Cleft closed, Switch 1 and Switch 2 open



#### Switch 1 closes, Cleft opens, actin dissociates

#### M\*.ADP.Pi



Switch 2 closes, ATP hydrolysis occurs



Actin binds, cleft closes, Switch 1 opens

#### A.M\*.ADP



#### Pi released and Switch 2 opens = stroke

## But ....

Holmes, Schröder, Sweeney & Houdusse (2004) *Phil. Trans. R. Soc. B* **359,** 1819-1828

They proposed that relay helix could unkink without switch 2 having to open. This was brought about by the twisting of the core 7-strand  $\beta$ -sheet which moved F652 (the proposed cause of the relay helix kinking)



#### Cleft closes, Switch 1 opens

## A.M\*.ADP.Pi The $\beta$ -sheet twist model



Switch 2 remains closed during lever arm swing

#### Stroke = Sw2 opening +Pi release



#### Stroke = Sw2 opening before Pi release



#### Stroke = relay helix unkinking due to $\beta$ sheet twist



#### Key crystal sates

| Author   | myosin  | state    | 50K    | switch 1 | switch 2               | β sheet  | lever | jargon     |
|----------|---------|----------|--------|----------|------------------------|----------|-------|------------|
|          |         |          | actin  |          |                        |          | arm   |            |
|          |         |          | cleft  |          |                        |          |       |            |
| Rayment  | Dicty   | ADP.BeFx | open   | closed   | open                   | straight | down  | post rigor |
|          | 1MMD    |          |        |          |                        |          |       |            |
| Rayment  | Dicty   | ADP.AIF4 | open   | closed   | closed                 | straight | up    | pre        |
|          | 1MND    |          |        |          |                        |          |       | power      |
| Courreux | myosinV | apo      | closed | open     | different <sup>1</sup> | twist    | down  | rigor-like |
|          | 10E9    |          |        |          | closed <sup>2</sup>    |          |       |            |
|          |         |          |        |          | open <sup>3</sup>      |          |       |            |





- 1 = Houdusse
- 2 = Holmes (but not quite the same closed)
- 3 = Kull (P loop as ref)

| Author      | myosin   | state    | 50K       | cleft  | switch 1 | switch 2               | $\beta$ sheet | lever           | jargon     |
|-------------|----------|----------|-----------|--------|----------|------------------------|---------------|-----------------|------------|
|             |          |          | actin     | base   |          |                        |               | arm             |            |
|             |          |          | cleft     |        |          |                        |               |                 |            |
| Rayment     | skeletal | apo βS04 | open      | open   | closed   | open                   |               | down            | post rigor |
|             | 1 mys    |          |           |        |          |                        |               |                 |            |
| Rayment     | Dicty    | ADP.BeFx | open      | open   | closed   | open                   |               | down            | post rigor |
|             | 1MMD     |          |           |        |          |                        |               |                 |            |
| Holmes/Kull | Dicty    | ADP.BeFx | open      | closed | closed   | closed                 |               | up              | pre-       |
| unpublished |          |          |           |        |          |                        |               |                 | power      |
| Rayment     | Dicty    | ADP.AIF4 | open      | closed | closed   | closed                 |               | up              | pre        |
|             |          |          |           |        |          |                        |               |                 | power      |
|             | 1MND     |          |           |        |          |                        |               |                 | stroke     |
| Houdusse    | Scallop  | ADP      | open      |        | closed   | open                   |               | more            |            |
|             | B7T      |          |           |        |          |                        |               | down            |            |
| Courreux    | myosinV  | apo      | closed    | open   | open     | different <sup>1</sup> | twist         | down            | rigor-like |
|             | 10E9     |          |           |        |          | closed <sup>2</sup>    |               |                 |            |
| Reubold     | Dicty    | apo      | intermedi |        | open     | opop <sup>3</sup>      | twist         | down            | on the     |
|             | 105G     | -P -     | ate       |        | opon     | open 2                 | e vi ise      | <b>u</b> o ((11 | way to     |
|             | 1020     |          | uc        |        |          | closed                 |               |                 | rigor      |
|             |          |          |           |        |          |                        |               |                 | ngoi       |

- 1 = Houdusse
- 2 = Holmes
- 3 = Kull (P loop as ref)

## Fluorescence Probes of domain movement



## **Computational Chemistry**

G. Li, Q. Cui, (2004) Mechanochemical coupling in myosin. A theoretical analysis of ATP hydrolysis with molecular dynamics and combined QM/MM reaction path calculations, J. Phys. Chem. B 108, 3342-3357.

G. Li, Q. Cui, (2004) Analysis of functional motions in "Brownian molecular machines" with an efficient block normal mode approach. Myosin-II and Ca2+-ATPase Biophys. J., 86, 743-763

Schwarzl, S. M., J. C. Smith, and Fischer, S. (2006). "Insights into the Chemomechanical Coupling of the Myosin Motor from Simulation of Its ATP Hydrolysis Mechanism." Biochemistry **45**(18): 5830-5847

### Nucleotide binding to W501+

(saturating [nucleotide] at 20°C)



M\*.ADP.Pi

#### M<sup>†</sup>.ATP $\gamma$ S $\leftrightarrow$ M<sup>\*</sup>.ATP $\gamma$ S

M<sup>†</sup>.ADP

## ATP Hydrolysis Step has been Resolved into Two Steps

Pressure



## Conclusions from W501 fluorescence

- Model independent
  - Relay helix and/or converter domain moves in response to ATP binding, but hydrolysis is required to make equilibrium favorable
  - Reaction is freely reversible, even when hydrolysis occurs
  - Actin has no direct effect on this reaction
- Model dependent
  - W501 senses switch 2 and lever arm movement (consistent with crystal structures)
  - Actin influences lever arm movement through Switch 1

## Key Question

What is the difference between the lever arm swing in the absence and presence of actin?

Depends on Switch 1 position ?

# Coupling between actin binding and switch 1

- Is there a 1:1 coupling between cleft closure and switch 1 opening?
- Answer: not simple as there multiple states of switch 1 conformation
- ..... but there is evidence of some reciprocity between 50k cleft closure and switch 1 opening.

## Conclusions from W239+

- Apo and +MgADP states comprise a mixture of conformers
- MgATP and actin lock the W239 in a "single" state with respect to W239 with low and high fluorescence respectively.
- This is consistent with structural ideas about switch 1, but there are more than two states

### Comparison of W501 and W239

W501

W239

MgADP and apo single states

MgADP two states

MgATP and MgATPγS two states

MgATP and MgATPγS single states

Little sensitivity to actin binding

Sensitive to actin binding

## Effect of intramolecular GFP-BFP association



## Conclusions from FRET experiments

| Author       | Construct     | FRET<br>efficiency | Distance<br>change | Uncertainty       |
|--------------|---------------|--------------------|--------------------|-------------------|
| Suzuki et al | Apo GFP-M-BFP | 0.439              | + 15Å              | ± 1.4 Å           |
| Nature 1998  | + ATP         | 0.082              |                    | (S.D.)            |
| Zeng et al   | Apo GFP-M-BFP | 0.70               | + 1.5 Å            | <b>± 13</b> Å     |
| 2006         | + ATP         | 0.66               |                    | (K <sup>2</sup> ) |
| Zeng et al   | Apo YFP-M-CFP | 0.58               | <b>- 1.5</b> Å     | <b>±</b> 10 Å     |
| 2006         | + ATP         | 0.61               |                    | (K <sup>2</sup> ) |