Kinesin stepping mechanism

Stepping mechanism of kinesin

Microtubule dynamics

• During dwells, one head is bound, the other is parked

Biochemical kinetics

- Binding stoichiometries confirm I binding site per heterodimer
- Weak & strong binding states
- Heads trap ADP in absence of microtubules. Microtubule binding activates ADP release ~1000x
- Only one ADP is released when a 2-headed kinesin binds to a microtubule. Release of the second ADP depends on ATP binding.
- Roadblock experiment indicates not much forwards strain sensitivity
- ATP-gated ADP release with tubulin as well as microtubules ..

Cross R.A. (2004) The kinetic mechanism of kinesin Trends in Biochemical Sciences **89** 301-309

Controversy | the structure of the waiting state

Kinesin's moonwalk *Current Opinion in Cell Biology* **18** 61-67

ATP-dependent binding of a second tubulin heterodimer

Single molecule mechanics

- 8 nm steps
- Alternate-heads stepping

Single beam optical trap

Kaseda et al (2003) Alternate fast and slow stepping of a heterodimeric kinesin molecule *NCB* Asbury et al (2003) Kinesin moves by an asymmetric hand-over-hand mechanism *Science* Yildiz et al (2004) Kinesin walks hand over hand *Science* Higuchi et al (2004) Rapid double 8-nm steps by a kinesin mutant *EMBO J*

Rat kinesin, 2μ M ATP, trap stiffness 0.018pN/nm, 10ms median filter applied.

Rat kinesin, 2μ M ATP, trap stiffness 0.018pN/nm, 10ms median filter applied.

Rat kinesin, $2\mu M$ ATP, trap stiffness 0.018pN/nm, 10ms median filter applied.

Pull backwards or forwards on walking kinesin molecules..

Brief period of force-feedback moves the microtubule (piezo. stage) till the kinesin is loaded by approximately 14pN.

Multiple events. At 14pN, kinesin usually detaches before many back-steps. (The number of 8nm back-steps, indicated over each event.)

Forwards pull

At 4pN trigger point, the stage is moved until more than 13pN forward load is applied to the kinesin molecule.

(Conditions: *Drosophila* kinesin, 560nm beads, 20kHz sampling, 1mM ATP, K_{trap}=0.06pN/nm)

Kinesin can walk processively backwards from forces > stall force

Individual steps are too noisy - need stepfinder & averaging

- 1. Scan *t* test through entire data set, mark where value goes over a threshold.
- 2. Do a global exponential fit across all steps in data set, mark step-origins.
- 3. Line up the steps and average them together.

Kinesin approaching stall force

Kinesin approaching stall force.

Raw data

100 400

150 500 1000

200 600 1100

300 800 1200

0

10

20

50

900

(Conditions: *Drosophila* kinesin, 500nm beads, 100kHz sampling, 1mM ATP, K_{trap}=0.054pN/nm)

14.0Mb (100.0%)

36.79

Θ

Focus

Z=0

Z=1

ON

Bench

mark

Conditions D 500nm T 23.5°C

Buffer BRB80-GOC, 5mMDTT, 1mMATP

Motor Drosophila kinesin (JH)

Users Nick

GO.

Focus

0

Z=0

Z=1

ON

Bench

mark

900

Conditions D 500nm T 23.5°C

Buffer BRB80-GOC, 5mMDTT, 1mMATP

Motor Drosophila kinesin (JH)

Users Nick

Locating steps automatically...

<u>T-Test applied to</u> the unfiltered data.

Up-spikes for forward steps, down-spikes for back steps.

Averaged forward and back-steps from multiple traces

500nm beads

Fore-steps (n=1693) time const.=15.3µs

Back-steps (n=316) time const.=19.4µs

800nm beads

Fore-steps (n=565) time const.=35.9µs

Back-steps (n=68) time const.=37.3µs

10µs between data points. Dependence of step duration on bead size

Mechanics of the kinesin step Nick Carter & Rob Cross

- Fore and backsteps are single microsecond events: <u>no substeps</u>
- At high backwards loads kinesin walks processively backwards
- Backsteps require ATP Dwell-times for backsteps are insensitive to load
- Dwell times for forward steps under high backwards load depend exponentially on load Dwells under forward load are insensitive to load.

Mechanics of the kinesin step

- Fore and backsteps are single microsecond events: <u>no substeps</u>
- At high backwards loads kinesin walks processively backwards
- Backsteps require ATP Dwell-times for backsteps are insensitive to load
- Dwell times for forward steps under high backwards load depend exponentially on load Dwells under forward load are insensitive to load.

Back step pathway

Forward step pathway

to do ..

http://mcll.mcri.ac.uk/motorhome.html

to do ..

- neck linker docking cycle
- protofilament tracking (straddle/tightrope)
- 2 parked states (?)
- roadblocks
- low-friction attached states
- product rebinding under load

http://mcll.mcri.ac.uk/motorhome.html