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Overview

Introduction: Powerstroke versus Brownian Motor
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Basic myosin superfamily

Same motor domain
Debate over how they move

Expect motor domains of
different subtypes to operate
in similar manner

Different models for
different myosin types

GOAL: Try to explain by
first modeling single motor
domain, then extend model
to different myosin types
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Introduction

e Ongoing debate between powerstroke and Brownian
motor models for motor proteins

» Generally agreed upon:

— ATP hydrolysis leads to cycling between a series of bound
and unbound states that motor protein uses to convert
chemical energy to mechanical work

— Series of conformational changes in protein structure

 How do motor proteins put the elements of motion
together mechanically? Are they a Brownian ratchet?
Or a mechanical engine?



Powerstroke

Conformational change in neck shifts protein forward in
deterministic fashion

Recovery stroke resets protein for the next binding cycle

Motion arises from the protein continuing to make one step per
cycle

Working
distance

Recovery
stroke

Howard (2001)




Brownian Motor

» General mechanism for rectifying thermal fluctuations
« Some experimental evidence that doesn’t work with a powerstroke model
— Multiple steps per ATP hydrolysis?
— Backward steps?
— Steps too large to be explained with a powerstroke
— In some experiments, step size does not depend on neck length
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Monomeric motor proteins In experiments

e Myosin Il single motor domain
— Kitamura, et al. (1999)

* Myosin IXb
— Inoue, et al. (2002): a single-
headed, processive motor

— Kambara, et al. (2005): Unique
insert keeps motor tethered to
actin

* Myosin V single motor domain

— Watanabe, et al. (2004): single
domain still processive

Brownian motion



Model:
Rotation-translation Coupling

Two degrees of freedom, x and &
Bound state potential V(X,,0)=U_ (0)+U,.. (X)

Only requirement for U,,..(Xp) \
L esin(0) \. X(t)

U trans (XP) =U trans (XP T L) : '
e
6(t)

Rotation-translation coupling
Xp =X—/fSInf~=X—-16 Xp ¥

U trans (XP) =U trans (X — 1 e) L




Two state Brownian motor with powerstroke
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Mathematical Model:
Overdamped Langevin equations

F = External Load

X:_aV(;,é’,t) +«/5§X+F

X V(x,6,t) =V, (x, O)[1- o ()] +V, (x, ) (t)
H— g oV (x,0,1) +2aD ] (D) = {O, unbound
o7 1, bound
2 kT 4 /! - -
o=t pXL (EME ) =0, -t) i, ]e(x0)
Vo U,
V.(x,0)=U_,(0)+U, . . (X—16)
U, (0)=%(0-6)° Length, time and
B energy have been
U trans (X) =U trans (X + L) normalized




Conformational change (¢A6) vs. Velocity

U trans (X) — COS(27[(X —/ 0))
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Velocity vs. Applied load
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* Linear response

In velocity to
applied load

Increasing
contribution of
powerstroke
Increases F.

Doesn’t amount
to much force
(F < 1.0 pN)



Three conformational states

;E.i nim
~5.5 nm
» Motor protein r Veigel (1999)
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e Protein structure
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data
Three distinct conformational states
o At least three of scallop S1 /.
distinct protein Sahine, | e
conformations Lister (2004)
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status of bound
nucleotide
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Three states
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Trajectory for three state model

« Transition between state 2 and 3 (powerstroke) moves one
potential period

o Simulation steps multiple periods per cycle
* QOccasionally takes backward steps
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Three State System: Results

velocity

Increasing contribution of Brownian
mechanism

Maximum contribution of Brownian
phase (€A6,,=0.5) nearly triples motor
speed

Motor takes approximately two
additional steps per ATP cycle

Linear response to load

Motor capacity against applied
load considerably (F,,, = 2.0 pN)
increased over the two state
system (F...,; < 1.0 pN)
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velocity
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Dimeric processive  rock

(2005)
Motors
B
 MyosinV
— Long neck length, long step size
— Hand-over-hand motion
* Myosin VI
— Much shorter neck than V
— Same stepping distance (36 nm)
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Dimer Model

LN
Each motor domain described by xB(t)Mp

three-state model = A%
- 16.() \
Motors connected by springs K . J
Force dependent reaction rates v/4 d
stemming from intra-molecular P - et T
strain B B B i
— Forward pull increases ADP release ) : L
— Backward force decreases ADP . z U
release W\/\/
[Purcell, et al. (2005); Veigel, et al.
(2005)]
Switch mechanism based on strain Myosin V Myosin VI
Large ¢ Small ¢
Xy — X, | —d
r ‘ a b 0
Kap = Kay (14 tanh[ Ad j) Small d, Large d,
Large K,g Small K g

Tight coupling Weak coupling




Distance Traveled (nm)
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Myosin VI

» Hand-over-hand motion
» Reasonable model for Myosin

VI 50
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7600

Tight spring
Long neck length

Veigel, et al. (2002):
Myosin V 36-nm
step length is made
of a 25-nm
powerstroke plus 11-
nm diffusive step

Combination
powerstroke and
Brownian motion

Telemark-stance



Dimer:
Velouty vs. Applied load

» More than twice the stall
load compared with
monomer

— Myosin VI . [Watanabe, et al. PNAS (2004)]

Do o Y . Monotonic approach to
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e Kinetics
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[poster]

e Monomers coupled to
backbone via spring

e Why are single
molecule Myosin Il
experiments different
from muscle fiber
experiments?

e Hybrid monomers
behave more like
powerstroke monomers



Conclusions

Unified system with both powerstroke and Brownian motor
mechanisms for single motor domain

Angular conformational change incorporated into model
Directionality determined by conformational change
Asymmetry in U, hot necessary for Brownian motor

Dimer:
— Brownian motion plays large role in Myosin VI
— Combination powerstroke and brownian motion in Myosin V

Thanks to: Kimberly Farris, Erin Darnell, NSF GK-12 Award No. 0139108
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