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Enerqgy in Biological systems:

1 Photon =400 pN.nm
1 ATP =100 pN.nm
1 lon moving across a membrane = 10 pN.nm
Thermal energy (¥2k,T) 4 pN.nm

{1pN.nm = 1x10-21Joules}




At the level of cell biology (and smaller) mechanical
systems are overdamped (Reynold’s number <<1).

Reynold’s number is the ratio of kinetic energy to
viscous drag energy.

K.E./Viscous work = ¥2mv?/6nnavl

Where “I” is a characteristic length and m o«cpl3. Giving
the ratio of energies: Y2pl3v2/6mnl4v:

Reynold’s number = plv/n

However, this does not preclude resonant or
oscillatory behaviours.



Diffusion can limit the rate of cell processes and
even some chemical reactions in the cell.

D=k, T/6nnr
D = Yo<x2>/t (<x> = V2Dt)
Distance moved is proportional to square root of time.
Diffusion
coefficient Time taken to diffuse
(cm?/sec) lum 10 um 1 mm
small molecule 5 X 106 1 msec 0.1 sec 16.7 min
protein molecule 5 x 10”7 10 msec 1 sec 2.8 hr
virus or vesicle 5x 108 0.1 sec 10 sec 27.8 hr
bacterium 5x 109 1 sec 100 sec 11.6 day
animal cell 5x 10-10 10 sec 16.7 min 116 days

ATP binding to acto-myosin is approx 107 M-1.s1 = diffusion limited



Diffusion over an energy barrier
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Kramers, HA (1940) Physica 7:284-304
where :

B = viscous damping, from stoke’s law = 6ninr = 1.5x1019N.s

Q = mechanical work done in stretching the spring by 6x (nanometres) = %k(6x)?2
oX =5 nm (distance to diffuse to next binding site)
k = stiffness of myosin = 2pN.nm-1 (2x10-3 N.m-1)
KT = thermal energy = 1.38x10-21 * 300 = 4 pN.nm (or 4x1021J)

7 ~ 10 microsceonds



Numerous possibilities:

300 amino acids gives 20390 primary sequences
~ 10400
5 unique C-N bond angles per amino acid gives
(10490)5 = 102000 conformations

1) How many will fold correctly and how many will be
functional?

2) Do folding and function go hand-in-hand?



Why do living things heed motors?

 To compete in the modern world... diffusion is too slow and too
random even things as small as bacteria and viruses need
motors.

30nm beads 600 nm beads 2 um beads

50um



Bacteria have true rotary motors:

Tethered
E. coli bacteria




Animal cells use a wide variety of linear motors to power
iInternal (motility) and external (locomotory) movements




Plants have motors too:

But none have muscles but some have microscopic contractile organelles

100um
H Up to
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Diversity of muscles gives insights into mechanism:
E.g. insect flight and Molluscan catch + adductor muscles:

Pecten maximus

10ecm

Lethocerus maximus

Insect flight muscles Catch muscle Adductor muscle



Insect flight muscles form part of an self-oscillatory

system.
1 K
1:res =~ ® \/:
27T I
Where:
K = complex stiffness of the muscles

= moment of inertia of the wings
What happens if you mutate one amino acid in myosin?

Wild Type Mutant
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Figure 2.3 Indicalion of the antagonistic arrangement of pairs of muscles such as the
biceps and triceps. (O: origin; [+ nsertion)



Acto-myosin In muscle :

Myosin containing, thick filament
0.5 um

v

< Sarcomere

acto-myosin “cross-bridges”



Filament sliding causes muscle to shorten:
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Muscle learns to add:
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Cross-bridges are independent force generators:
AF Huxley, Gordon & Julian (1966)
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Fig. 3.7. Developed tension vs. length for a single fiber of frog semitendinosus muscle. The length
of the segment was fixed for each measurement by the spot-follower servo. The sliding-filament
diagrams in the lower part of the figure show the appearance of the sarcomere striation pattern at
the lengths corresponding to the numbers in the force-length diagram. Modified from Gordon,
Huxley, and Julian (1966b).




L esson 1.

Muscle learns to compromise:

Since the molecular spacing on the thick filament is fixed
— short sarcomeres generate smaller forces.




How do the myosin heads work?
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The duty cycle:

ATTACHED
Attachment 7T | detachment

(f) | J (9)
DETACHED



Huxley (1957)
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Swinging Cross-bridge hypothesis:
H.E. Huxley, 1969

Micrographs and x-ray
diffraction of insect flight
muscle

Reedy, Holmes and Tregear (1966)
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Myosin learns to multiply:
Two levers In series (impedance matching?)
Can also multiply by -1

(x3) x (x5) = x15
{or —3x5 =-15}

domain

Cartoon of myosin | domain structure



Physical

Biochemical pathways and
Molecular mechanisms

E+S— ES — EP — E+P
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Experiment

l

Data Analysis
(curve-fitting)




Molecular Characterisation




Acto-myosin ATPase pathway

Strong binding states
POWER STROKE

> 2 7 3

S = AM.ADP g; AM

000

000

Weak binding states
RECOVERY STROKE




Chemical and mechanical free enerqy profile for the

reaction pathway.

Free energy

Pi -release B

ADP-release

A

ADP + Pi

External work

Acto-myosin
ATPase

Reaction coordinate
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Single MoleculeTechnologies

e Atomic Force Microscopy

e Patch-Clamp (ion channels)

* Electron Cryo-microscopy

o Total Internal Reflection Fluorescence
e Optical Tweezers



Why work with individual molecules?

e Single molecule experiments can give unequivocal
Information about how enzymes work and can provide new
Insights into enzyme mechanism.

e Sequential steps that make up biochemical pathways can
be observed directly. The chemical trajectory of an
Individual enzyme can be followed in space and time.

e There Is no need to synchronise a population in order to
study the biochemical kinetics

« Single molecule data sets can be treated in a wide variety of
ways — e.g. can specifically look for heterogeneity in
behaviour (ie strain dependence of rate constants, effects of
membrane structure, etc).
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Acto-myosin in vitro motility assay

10pum



Optical tweezers — single molecule mechanics

optical tweezers

—
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actin

myosin







Optical tweezers

Time series data Power Spectra
0 (nm) # s e s ST R
50 E Bead in polyacrylamide
1 second ' " 1 s o
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Bead in optical tweezer
2 secs + acto-myosin interactions
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Example data from optical tweezers experiment

Thermal vibration of the bead in the tweezer: 1/2k, T=1/2K<x>?

60 1,
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Size of the power-stroke

Powerstroke ~ 4nm

Raw data trace

Myo1lc displacement data
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Acto-myosin ATPase
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slow
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Ensemble Average
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Rapid mechanical experiments
using single muscle fibres:

Experiment ->
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Huxley & Simmons (1971)
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Huxley & Simmons (1971)

Al (nm)
10 15 See Excel model!




Acto-myosin | subjected to controlled length change

(Jontes & Milligan)
BBM1
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Force vs. Displacement

>uM ADP 10uM ATP

15

-15
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