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1 Photon = 400 pN.nm

1 ATP = 100 pN.nm

1 Ion moving across a membrane =   10 pN.nm

Thermal energy (½kbT) =     4 pN.nm
{1pN.nm = 1x10-21Joules}

Energy in Biological systems:Energy in Biological systems:



At the level of cell biology (and smaller) mechanical 
systems are overdamped (Reynold’s number <<1).

Reynold’s number is the ratio of kinetic energy to 
viscous drag energy. 

K.E./Viscous work = ½mv2/6πηavl

Where “l” is a characteristic length and m ∝ρl3. Giving 
the ratio of energies: ½ρl3v2/6πηl2v:

Reynold’s number = ρlv/η

However, this does not preclude resonant or 
oscillatory behaviours.



Diffusion can limit the rate of cell processes and 
even some chemical reactions in the cell.

D = kbT / 6πηr
D = ½<x2>/t                (<x> = √2Dt)

Distance moved is proportional to square root of time.
Diffusion 
coefficient Time taken to diffuse
(cm2/sec) 1μm 10 μm 1 mm

small molecule 5 X 10-6 1 msec 0. 1 sec 16.7 min
protein molecule 5 x 10-7 10 msec 1 sec 2.8 hr
virus or vesicle 5 x 10-8 0.1 sec 10 sec 27.8 hr
bacterium 5 x 10-9 1 sec 100 sec 11.6 day
animal cell 5 x 10-10 10 sec 16.7 min 116 days

ATP binding to acto-myosin is approx 107 M-1.s-1 = diffusion limited



Diffusion over an energy barrierDiffusion over an energy barrier
κ β

δx

κ β

where :
β = viscous damping, from stoke’s law = 6πηr = 1.5x10-10 N.s
Q = mechanical work done in stretching the spring by δx (nanometres) = ½κ(δx)2

δx = 5 nm (distance to diffuse to next binding site)
κ = stiffness of myosin = 2pN.nm-1 (2x10-3 N.m-1)
kT = thermal energy = 1.38x10-21 * 300 = 4 pN.nm (or 4x10-21J)

τ ~ 10 microsceonds
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Numerous possibilities:Numerous possibilities:

300 amino acids gives 20300 primary sequences
~ 10400

5 unique C-N bond angles per amino acid gives
(10400)5 = 102000 conformations

1) How many will fold correctly and how many will be 
functional?

2) Do folding and function go hand-in-hand?



Why do living things need motors?
• To compete in the modern world… diffusion is too slow and too 

random even things as small as bacteria and viruses need 
motors.

30nm beads 600 nm beads 2 μm beads

50um



Bacteria have true rotary motors:

Tethered 
E. coli bacteria



Animal cells use a wide variety of linear motors to power 
internal (motility) and external (locomotory) movements



Plants have motors too: 

But none have muscles but some have microscopic contractile organelles

Up to
60μm.sec-1

100μm



Diversity of muscles gives insights into mechanism:
E.g. insect flight and Molluscan catch + adductor muscles:

Insect flight muscles Catch muscle Adductor muscle

Pecten maximus



Insect flight muscles form part of an self-oscillatory 
system.

Where:
k = complex stiffness of the muscles
I = moment of inertia of the wings

What happens if you mutate one amino acid in myosin?

MutantWild Type

I
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1



Muscle contraction



Myosin containing, thick filament

Actin containing, thin filaments

acto-myosin “cross-bridges”

Acto-myosin in muscle :

Sarcomere

0.5μm

0.5 μm

0.1 μm

1 μm



Filament sliding causes muscle to shorten:

myofibril

sarcomere

Light micrograph

Electron micrograph



Muscle learns to add:



Cross-bridges are independent force generators:
AF Huxley, Gordon & Julian (1966)



Since the molecular spacing on the thick filament is fixed 
– short sarcomeres generate smaller forces.

Lesson 1.

Muscle learns to compromise:



How do the myosin heads work?

Ratchet

or

Powerstroke

or BOTH?



ATTACHED
Attachment   ↑ ⏐ detachment

(f) ⏐ ↓ (g)
DETACHED

The duty cycle:



Huxley (1957)

f g

ATT

DET



Force-velocity relation



100 nm

Swinging CrossSwinging Cross--bridge hypothesisbridge hypothesis::
H.E. Huxley, 1969

Micrographs and x-ray 
diffraction of insect flight 
muscle 

Reedy, Holmes and Tregear (1966)



Myosin learns to multiply:
Two levers in series (impedance matching?)
Can also multiply by -1

Cartoon of myosin I domain structure
ACTIN

Calmodulin light chains

Lever arm
Motor 
domain

(x3) x (x5) = x15
{or –3x5 = -15}

x3
x5



Biochemical pathways and
Molecular mechanisms

Model

Experiment

Data Analysis
(curve-fitting)

E+S E.S E.P E+P

PhysicalPhysicalBiochemistryBiochemistry



Molecular Characterisation



AM.ATP AM.ADP.PI AM.ADP AMAM

Acto-myosin ATPase pathway

Weak binding states
RECOVERY STROKE

Strong binding states
POWER STROKE

M.ATP M.ADP.Pi M.ADPM M
SLOW

duni



Chemical and mechanical free energy profile for the 
reaction pathway.

Acto-myosin 
ATPase
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Keep it real!

Legalise it!

Respect, 
Hill and others



Single MoleculeTechnologies

• Atomic Force Microscopy
• Patch-Clamp (ion channels)
• Electron Cryo-microscopy
• Total Internal Reflection Fluorescence
• Optical Tweezers



Why work with individual molecules?Why work with individual molecules?
• Single molecule experiments can give unequivocal 

information about how enzymes work and can provide new 
insights into enzyme mechanism.

• Sequential steps that make up biochemical pathways can 
be observed directly. The chemical trajectory of an 
individual enzyme can be followed in space and time.

• There is no need to synchronise a population in order to 
study the biochemical kinetics

• Single molecule data sets can be treated in a wide variety of 
ways – e.g. can specifically look for heterogeneity in 
behaviour (ie strain dependence of rate constants, effects of 
membrane structure, etc).





Acto-myosin in vitro motility assay :

myosin
F-actin

10μm



Optical tweezers – single molecule mechanics



Optical Tweezers



1 second
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Time series data Power Spectra

Optical tweezers :
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Bead in optical tweezer         
+ acto-myosin interactions





Thermal vibration of the bead in the tweezer: 1/2kbT=1/2κ<x>2

Example data from optical tweezers experiment



Size of the power-stroke

Raw data trace Powerstroke ~ 4nm
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Acto-myosin ATPase

50
nm 0.5 sec

AM.ATP

M.ATPM.ADP.Pi

AM.ADP.PI AM.ADP AMAM.ADP
slow fast

ADP



Ensemble Average

synchronise 
events and 

average

TimeD
is

p
la

ce
m

e
n
t



force

length

T2

T2

Δl
Huxley & Simmons (1971)

Rapid mechanical experiments Rapid mechanical experiments 
using single muscle fibres:using single muscle fibres:

Experiment ->



Huxley & Simmons (1971)

Rapid tension recovery consistent with a spring + “actuator”
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Acto-myosin I subjected to controlled length change
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Force vs. Displacement
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