Acto-myosin: from muscles to single molecules.

Justin Molloy MRC National Institute for Medical Research LONDON

Energy in Biological systems:

- 1 Photon = 400 pN.nm1 ATP = 100 pN.nm
- 1 Ion moving across a membrane = 10 pN.nm
- Thermal energy $(\frac{1}{2}k_bT) = 4 \text{ pN.nm}$ $\{\underline{1\text{pN.nm} = 1\text{x}10^{-21}\text{Joules}}\}$

At the level of cell biology (and smaller) mechanical systems are overdamped (<u>Reynold's number <<1</u>).

Reynold's number is the ratio of kinetic energy to viscous drag energy.

K.E./Viscous work = ½mv²/6πηavl

Where "I" is a characteristic length and $\mathbf{m} \propto \rho \mathbf{I}^3$. Giving the ratio of energies: $\frac{1}{2}\rho I^3 v^2/6\pi \eta I^2 v$:

Reynold's number = ρ **lv**/ η

However, this does not preclude resonant or oscillatory behaviours.

<u>Diffusion</u> can limit the rate of cell processes and even some chemical reactions in the cell.

$$\frac{D = k_b T / 6\pi \eta r}{D = \frac{1}{2} < x^2 > /t} \qquad (= \sqrt{2}Dt)$$

Distance moved is proportional to square root of time.

	Diffusion coefficient	Tin	Time taken to diffuse	
	(cm ² /sec)	1µm	10 µm	1 mm
small molecule	5 X 10 ⁻⁶	1 msec	0. 1 sec	16.7 min
protein molecule	5 x 10 ⁻⁷	10 msec	1 sec	2.8 hr
virus or vesicle	5 x 10 ⁻⁸	0.1 sec	10 sec	27.8 hr
bacterium	5 x 10 ⁻⁹	1 sec	100 sec	11.6 day
animal cell	5 x 10 ⁻¹⁰	10 sec	16.7 min	116 days

ATP binding to acto-myosin is approx 10^7 M^{-1} .s⁻¹ = diffusion limited

<u>Diffusion over an energy barrier</u>

Kramers, HA (1940) Physica 7:284-304

<u>where :</u>

 β = viscous damping, from stoke's law = $6\pi\eta r = 1.5 \times 10^{-10} \text{ N.s}$

Q = mechanical work done in stretching the spring by $\delta \mathbf{x}$ (nanometres) = $\frac{1}{2}\kappa(\delta \mathbf{x})^2$

 $\delta x = 5 \text{ nm}$ (distance to diffuse to next binding site)

 κ = stiffness of myosin = 2pN.nm⁻¹ (2x10⁻³ N.m⁻¹)

kT = thermal energy = 1.38x10⁻²¹ * **300 = 4 pN.nm (or 4x10**⁻²¹**J**)

$\tau \sim 10$ microsceonds

Numerous possibilities:

300 amino acids gives 20^{300} primary sequences ~ 10^{400}

5 unique C-N bond angles per amino acid gives

1) How many will fold correctly and how many will be functional?

2) Do folding and function go hand-in-hand?

Why do living things need motors?

 To compete in the modern world... diffusion is too slow and too random even things as small as bacteria and viruses need motors.

50um

Bacteria have true rotary motors:

E. coli bacteria

Animal cells use a wide variety of linear motors to power internal (motility) and external (locomotory) movements

Plants have motors too:

100µm

But none have muscles but some have microscopic contractile organelles

Up to 60µm.sec⁻¹

<u>Diversity of muscles gives insights into mechanism:</u> E.g. insect flight and Molluscan catch + adductor muscles:

Insect flight muscles form part of an self-oscillatory system.

$$f_{res} = \frac{1}{2\pi} \bullet \sqrt{\frac{k}{I}}$$

Where:

k = complex stiffness of the muscles
I = moment of inertia of the wings
What happens if you mutate one amino acid in myosin?

(E

Mutant

<u>Muscle contraction</u>

Figure 2.3 Indication of the antagonistic arrangement of pairs of muscles such as the biceps and triceps. (O: origin; J: insertion.)

Acto-myosin in muscle :

acto-myosin "cross-bridges"

Filament sliding causes muscle to shorten:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	x;}};x;;};x;;;;;x;;;;;x;;;;;;;;;;;;;;;
		allinallinallinallinallinallinallin
		allia al

Muscle learns to add:

<u>Cross-bridges are independent force generators:</u> AF Huxley, Gordon & Julian (1966)

Fig. 3.7. Developed tension vs. length for a single fiber of frog semitendinosus muscle. The length of the segment was fixed for each measurement by the spot-follower servo. The sliding-filament diagrams in the lower part of the figure show the appearance of the sarcomere striation pattern at the lengths corresponding to the numbers in the force-length diagram. Modified from Gordon, Huxley, and Julian (1966b).

Lesson 1.

Muscle learns to compromise:

Since the molecular spacing on the thick filament is fixed – short sarcomeres generate smaller forces.

How do the myosin heads work?

Ratchet

or

Powerstroke

or BOTH?

The duty cycle:

Attachment ↑ detachment (f) ↓ (g) DETACHED

Swinging Cross-bridge hypothesis: H.E. Huxley, 1969

Micrographs and x-ray diffraction of insect flight muscle

Reedy, Holmes and Tregear (1966)

(010) Intin

Myosin learns to multiply:

Two levers in series (impedance matching?) Can also multiply by -1

(b)

Myosin

Acid guench

Ram

ATP

Callbrated tube

Biochemical pathways and Molecular mechanisms

Molecular Characterisation

Acto-myosin ATPase pathway

Chemical and mechanical free energy profile for the reaction pathway.

Respect, Hill and others

Single MoleculeTechnologies

- Atomic Force Microscopy
- Patch-Clamp (ion channels)
- Electron Cryo-microscopy
- Total Internal Reflection Fluorescence
- Optical Tweezers

Why work with individual molecules?

- Single molecule experiments can give unequivocal information about how enzymes work and can provide new insights into enzyme mechanism.
- Sequential steps that make up biochemical pathways can be observed directly. The chemical trajectory of an individual enzyme can be followed in space and time.
- There is no need to synchronise a population in order to study the biochemical kinetics
- Single molecule data sets can be treated in a wide variety of ways – e.g. can specifically look for heterogeneity in behaviour (ie strain dependence of rate constants, effects of membrane structure, etc).

Acto-myosin in vitro motility assay : **F**-actin myosin

Optical tweezers – single molecule mechanics

Optical Tweezers

4.50 vert 135 TV

1 sal

Ó

Ö

Optical tweezers :

Actin Filament Held Between Two Latex Beads

Coated with : Monomeric NEM-Myosin & BSA-TRITC

> Interacting with : 1.7µm glass bead

> > Coated with : HMM @ 50ug/ml

> > > EATPI = 2MM

Example data from optical tweezers experiment

-50 -

Size of the power-stroke

Acto-myosin ATPase

(Rate Constant)

(b)

 T_2

 T_2

Huxley & Simmons (1971)

See Excel model!

Acto-myosin I subjected to controlled length change

(Jontes & Milligan) BBM1

Force vs. Displacement

