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ABSTRACT:  The strain-dependent kinetics of the myosin working stroke under load is 
derived from a flat-energy-landscape model for its untethered lever-arm, and compared with 
other scenarios in the literature. The ‘flat-landscape’ scenario is compatible with muscle-fibre 
experiments, but is more critically relevant to single-myosin experiments with an optically-
trapped actin filament.  In such experiments, the strain-dependence of stroke kinetics may be 
explored by comparing event-averaged and time-averaged displacements of the filament.  
With a specific kinetic model of the crossbridge cycle, we have previously shown that the 
event-averaged displacement underestimates the working stroke. Here we predict that the two 
kinds of averaging give diverging estimates  of the working stroke as the resolving time of the 
event detector is decreased to 1ms or less, the discrepancy being critically dependent on the 
strain-dependence of the stroke rate. Such analysis of trap displacement data offers the 
possibility of testing the strain-dependent stroke rate predicted by the flat-landscape model.  
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INTRODUCTION 
 
It is generally believed that myosin makes force and movement in muscle by a working stroke 
when bound to actin; the kinetics of this transition is governed by the difference in elastic 
strain energies of the initial and final states and therefore depends on the initial strain. In this 
paper we suggest how the kinetics of the stroke can be explored with optical-trap experiments.  
        To this end, we first derive expressions for the rate constants from the reaction-energy 
profile first suggested by Huxley and Simmons (1), which is broadly consistent with the 
atomic structures of myosin with stereospecific positions of its neck region for pre-stroke and 
post-stroke states (2-4). In the absence of a load, the lever-arm is assumed to swing freely on a 
flat energy plateau between sharp potential wells for the pre-stroke and post-stroke states. 
Under isometric conditions, where the distal end of the neck and the actin filament are both 
held fixed, the stroke may be inhibited by the energy cost of bending the lever, and the plateau 
region becomes a parabolic function of lever-arm orientation, the angle of minimum energy 
being determined by the position of the tethering point. The strain-dependent stroke rate of 
this ‘flat-landscape’ model is then calculated from Kramers’ theory of unimolecular reactions 
in the limit of overdamping. Other scenarios, in which all strain-dependence has been 
assigned to the forward or the backward rate, have been used as discussed below. All 
scenarios must comply with the strain-dependent equilibrium constant of the stroke transition 
prescribed by the change in strain energy. 
        Turning now to single-myosin experiments with an optically-trapped actin filament, we 
have shown previously (5) that the determination of the working stroke from these 
experiments is complicated by strain-dependent mechanochemistry. A statistical treatment  is 
necessary because the pre-stroke bound state is not observed in non-processive myosins such 
as myosin II. The conventional method of analysis uses the event-averaged displacement of 
the actin filament, which is the unweighted average of the mean displacements in each period 
of attachment following a binding event (6,7): after a small correction for the stiffness of the 
traps, this mean displacement is equated with the working stroke.  This result is expected if 
the  myosin always makes a stroke, or strokes with the same probability, after binding to 
different sites on the actin, in which case the forward stroke rate must be strain-independent. 
This assumption is contra-indicated by length-step experiments in the muscle fibre, where the 
rate of phase-2 tension recovery is a strongly decreasing function of the size of the step (1,8); 
this recovery has been modelled by putting all the strain-dependence in the forward rate.  
Thus it is desirable to have a first-principles model of the kinetics of the working stroke. 
        To establish terminology, it is convenient to use the same kinetic scheme throughout for 
actin-myosin-nucleotide states, namely 
 

                  k          g )(1 xk )(2 xk 3

  1           2           3          4         1
               )(1 xk− )(2 xk− 3−k

         
                 
 
 
 
                                                            Scheme 1 
                                                    
where state 1 is M.ADP.Pi, 2 and 3 are the pre-stroke and post-stroke A.M.ADP.Pi states,  
and state 4 is the rigor state A.M. The detachment step 4→1 requires ATP binding. For 
simplicity, A.M.ADP states and states with bound ATP are omitted. This omission is justified  
for trap experiments at micromolar levels of ATP.  
      This scheme has been analyzed for application to low-frequency trap data (5), where the 
minimum duration between detectable events (minimum resolving time) is  The event-.ms 5≥
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averaged mean displacement was predicted by assuming that the only detectable bound state 
was the rigor state A.M. Under these conditions, the event-averaged displacement is 
controlled by the strain-dependent equilibrium constant of the stroke, not the rate constants of 
the forward and backward transitions.  Testing this model is difficult because the predicted 
deflation factor (mean bound-state displacement/working stroke) varies substantially with 
kinetic parameters such as the equilibrium constant of the stroke and the rate of pre-stroke 
detachment from actin, which are not under experimental control. Consequently, the observed 
mean displacement is a lower bound for the working stroke. In the discussion section, we 
suggest ways around this problem. 
         High-frequency trap data, in which the minimum resolving time is  should reveal 
the initial short-lived post-stroke state A.M.ADP.Pi as well as the downstream states 
A.M.ADP and A.M,  but there appears to be no obvious way of detecting  the former if no 
additional stroke is associated with the release of phosphate. A possible handle for this 
problem is the use of two types of averaging in analyzing displacement data. The conventional 
method uses event-averaging, which  assigns unit weight to each binding event: one can also 
construct the time-averaged displacement, which assigns unit weight to each displacement in a 
uniformly-sampled time recording. The fundamental significance of time averaging is that, 
under equilibrium conditions when the ergodic theorem applies,  time averaging is equivalent 
to ensemble averaging as used in statistical mechanics. Note that time averaging is equivalent 
to a weighted form of event averaging where the mean displacement in each period of 
attachment is weighted by its lifetime, provided that the mean displacement in detached 
periods is zero. If the lifetime of the detected bound states is strain-independent, as for A.M in 
Scheme 1, then the same lifetime applies to all actin sites and the two averaging methods  give 
the same result. At higher time resolution where the A.M.ADP.Pi state is detected, the two 
averages are not expected to be the same because the lifetime of this state depends on the rate 
of stroke reversal, which can  be  strain-dependent. Thus different scenarios for the strain-
dependence of the stroke rate control the difference between event-averaged and time-
averaged displacements in high-frequency data, even though the ratio of the strain-dependent 
forward and backward rates is determined from detailed  balancing. Using both kinds of 
averaging should give information on the strain-dependence of stroke kinetics, and also shed 
more light on the relation between these average displacements and the true working stroke.  

,ms 1≤

     To demonstrate these relationships, event-averaged and time-averaged mean displacements 
have been calculated from Scheme 1 as a function of different kinetic scenarios and the time 
resolution of the event detector. For high-frequency data, these average  displacements are 
numerically different, the difference being an increasing function of how much of the strain-
dependence of stroke equilibrium is assigned to the rate of stroke reversal. As detection is 
degraded by increasing the resolving time of the event detector, this difference reduces 
smoothly to zero for resolving times above 5 ms where the influence of the strain-dependent 
lifetime of the A.M.ADP.Pi state is negligible, as modelled previously.   
         To apply stroke-kinetic scenarios to trap data, consider how actomyosin transition rates 
are affected when the actin filament is weakly tethered by the traps. In this case, working-
stroke events are far from isometric; as the lever arm swings, the actin-beads dumbbell is 
pulled smoothly out of the traps and any large strain-energy barrier associated with the 
isometric transition is avoided. To analyse this effect, note that the working stroke is driven 
not only by thermal  fluctuations in the myosin but also by thermally-generated displacement 
fluctuations of the actin-beads assembly.  The effective stroke rate then depends on the 
relative time scales of filament fluctuations and the stroke. If filament fluctuations are more 
rapid than the working stroke, the initial distribution of displacements is in Boltzmann-
equilibrium; we then show that the stroke rate is obtained from its isometric form by replacing 
myosin stiffness by the stiffness of myosin and the traps connected in series. This limit is 
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realized experimentally; the damping frequency of the actin-beads ‘dumbbell’ with myosin 
bound is of the order of  whereas the fastest measured stroke rate is under  ,s10 15 − .s10 14 −

         The above ‘Brownian-averaged’ reaction rates are then applied to kinetic models of trap 
displacement data. With high-frequency data, the event-averaged mean displacement is 
controlled by the strain-dependence of the stroke rate, and a model with binding and stroke 
transitions is sufficient.  Predictions at finite time resolution are made using Scheme 1, by 
inserting the probability that  the lifetime of the post-stroke  states exceeds the resolving time. 
 
THE STROKE RATE OF THE FLAT-LANDSCAPE MODEL 
 
In this section the strain-dependent rate constant of the working stroke is calculated from the 
reaction-energy profile of the flat-landscape model. Evidence for this model derives from 
known atomic structures of myosin-ligand complexes. The crystallized post-stroke state was 
the near-rigor state A.M.ADP (2). Under ATP-cycling conditions, the pre-stroke state is the 
products state A.M.ADP.Pi which readily releases the products of hydrolysis, so a vanadate 
analogue was used for crystallization (3). In these two states, the orientations of the neck 
region of the myosin heavy chain are stable,  at 110o and 40o respectively to the plus-end of 
the actin filament; these observations are consistent with those obtained from cryo-EM in 
insect flight muscle (4), and spin-label and fluorescent probes (9,10).  Between these states, 
the C-terminus of the  neck region is displaced by 10-11nm. A recent molecular-dynamics 
simulation of the return stroke (11) suggests that the neck region of detached myosin does 
swing freely between these limits, thus acting as a lever arm. This lever arm, including its 
converter connection to the motor domain,  exhibits elastic compliance and bends by 2nm 
under isometric tension in the muscle fibre (12). This compliance may be distributed along the 
lever-arm, but there is evidence that at least part of it is localized in the converter (13).  
         The flat-landscape model is summarized in Figure 1. If the distal end of the lever-arm is 
unconstrained, the lever-arm swings  on a flat energy surface )(B θG  between the orientational 
potential wells of the pre-stroke and post-stroke states, at angles 2θ and .3θ   This situation is 
almost realized  for myosin-S1 bound to a weakly-trapped actin filament, as in the three-bead 
trap experiment. Weak restoring forces generated by the traps allow large-scale movements of 
the actin-beads ‘dumbbell’ relative to the tethered myosin; nevertheless, there will be a small 
additional energy cost to the stroke reaction when the stroke pulls the dumbbell out of the 
traps. In striated muscle, the positional constraints are much stronger and limited by the 
elasticity of the filaments.  
       It is convenient to calculate the stroke rate under isometric conditions, where the actin 
filament and the C-terminus of the neck region are held fixed.  In this case the bound myosin 
must stroke against the elastic energy of its own deformation,  commonly assumed to be a 
bending of the lever arm. The energy cost will be considerably in excess of thermal energy  
unless the lever-arm is initially bent in the opposite direction, in which case that strain would 
be relieved by the stroke (Figure 1B). Let x be the longitudinal distance from myosin to actin 
site, such that x is also the bending strain of the bound myosin in its pre-stroke state. Then the 
Gibbs energy is  ),()(),( B θθθ xVGxG +=  where 2

22
1 )}cos(cos{),( θθθ −+= RxkxV  for 

bending stiffness k,  and the working stroke is )cos(cos 23 θθ −≡ Rh  where R is the length of 

the lever-arm. The strain energies of the initial and final states are 2
2
1 kx and ,)( 2

2
1 hxk +  

which differ by );2/( hxkh +  thus the working stroke is energetically favourable when 
 and subject to an extra energy barrier of this amount when  If the 

reaction rate is limited only by the highest energy in the pathway, then the isometric stroke 
rate as a function of x would in the first case be flat, and in the second case reduced by the 

,2/hx −< .2/hx −>
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factor ))2/(exp( hxkh +−β where ./1 BTk=β   Rates of tension recovery in fibres after a 
length step can be reproduced in this way (14,15).  
      However, the above result cannot be used under trap conditions, which are far from 
isometric. When the stroke pulls the actin filament out of the traps, the highest strain-energy 
barrier barely exceeds thermal energy and the ‘highest-energy-barrier’ approximation breaks 
down. Then a more sophisticated kinetic model is required. In the next subsection, the 
isometric stroke rate is calculated from first principles, giving a formula  valid for all positive 
values of k. With this result to hand, the kinetics of the working stroke can be derived under 
conditions of weak elastic tethering, as required for analysing weak-trap displacement data. 
        The flat-landscape model of the working stroke exhibits inversion symmetry between the 
forward and backward transitions, but at different values of the pre-stroke strain. 
Mathematically,  ),(),( θθ ′′= xVxV  where hxx −−=′  and .coscoscoscos 23 θθθθ −=′−  
This symmetry is reflected in the kinetics: )()( 22 xCkhxk ≡−−−   where C is a constant. 
Detailed balancing in the form ))2/(exp()(/)( 222 hxkhKxkxk +−≡− β  can be used to 
eliminate the backward rate,  giving ).())2/(exp()( 222 xkhxkhCKhxk +≡−− β  Replacing  x 
by  gives hx −− ).())2/(exp()( 222 hxkhxkhCKxk −−+−≡ β  Hence  and inversion 
symmetry for the isometric stroke rate is expressed by the identity  

,12 =CK

 
)())2/(exp()( 22 xkhxkhhxk +≡−− β                                           (1) 

 
for the stroke rate  This symmetry alone is sufficient to predict the mean displacement 
of trap displacement experiments in the limit of perfect time resolution.  

).(2 xk

 
Kramers-Smoluchowski theory 
For application to trap data, it is necessary to go beyond the ‘highest-energy-barrier’ 
approximation for the strain-dependent stroke rate. Specific predictions can be made from 
Kramers’ theory of unimolecular reactions (16), using the reduction to Smoluchowski’s 
equation which is valid in the limit of high damping (17). This approximation is appropriate 
for a concerted transition in a large protein. 
       The Kramers-Smoluchowski formula for the forward stroke rate  is )(2 xk
 

,
cos )),(exp(

)(/)( 2
2

∫
=

θθβ dxG
xZDxk                                                    (2) 

where  

∫
+

−
−=

δθ

δθ
θθβ2

2

 

 2 cos )),(exp()( dxGxZ                                             (3) 

 
is  the  partition  function for the pre-stroke state, defined by a narrow angular range .2δ   D is 
the rotational diffusion constant of the swinging lever-arm. In this context, 

),exp()( 2
2
1

22 kxZxZ β−≈  neglecting the variation in elastic energy over the width of the pre-
stroke  potential well in ).(B θG  The integral in Eqn. 2 is dominated by the region between 
wells, in which the integration reduces to standard functions. Thus  
 

)~()~~(

~)(
)2/~~(~2

2

2

xFhxFe
h

k
xk

hxh −+
=

+
                                              (4)  
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in terms of the dimensionless parameters  xkx 2/1)2/(~ β=  and hkh 2/1)2/(~ β= .  Here 
 is the stroke rate for the unloaded filament, obtained by setting k = 0, and 

 is Dawson’s integral. Inversion symmetry in the form of Eqn. 1 is 

satisfied because F(x) is an odd function of x. 

hZDRk 22 /=

∫=
x

dttxF
 

0 
2 )exp()(

       The predicted stroke rate is shown in Figure 2A, plotted against scaled strain x~ . The 
‘highest-energy-barrier’ formula,  in which  is constant for )(2 xk 2/hx −<  and exponentially 
decaying with decay constant khβ  for ,2/hx −>  is approached when 1~

>>h . Similar 
statements apply to the backward rate (Figure 2B). The highest-barrier  formula is an 
approximation, valid only to logarithmic accuracy (neglect of a power-law variation outside 
the exponential); Figure 2 shows that the forward rate rises linearly above as x falls below 

 and the backward rate also rises linearly above as x increases above  Thus 
Kramers’ theory provides improved stroke-rate formulae for trap experiments 

2k
,2/h− 2−k .2/h−

)0.1~( <h  and 
the muscle fibre ).5~( ≈h   

          Kramers’ theory predicts that  if   and 14
2 s10 −≈k ,s10 16 −=D nm10== hR

)exp( 22 BZ β−=  with  D is obtained via Einstein’s relation from the rotational 
damping constant of the swinging lever-arm in solution, for which crude estimates can be 
made (18). The quantity  B

.pN.nm202 =B

2 is the depth of the pre-stroke energy well in ),(B θG  which is 
probed by the temperature dependence of the stroke rate. The above value of B2 gives 

 for the fractional rise in rate over 108.1Q10 = oC,  which is similar to values observed in 
fibres (19).  Thus the model can account numerically for the expected stroke rate. 
 
MYOSIN KINETICS FOR A WEAKLY-TRAPPED FILAMENT 
 
In the last section, strain-dependent reaction rates for the actomyosin working stroke were 
derived under isometric conditions. If the actin filament is moving relative to myosin, strain-
dependent transition rates are smoothed in a way which depends on the extent and speed of  
motion. In particular, we wish to calculate effective transitions rates for a weakly-trapped 
actin filament, as  in optical-trap experiments. It is sufficient to consider the actin-binding and 
working-stroke transitions. Suppose that the actin-binding constant  and the 
equilibrium constant  and rate constant of the working stroke, are known 
functions of x for a fixed filament (the isometric case).  We now show that the corresponding 
quantities 

),(1 xK
)(2 xK )(2 xk

)(1 xK , )(2 xK and )(2 xk for a weakly-trapped filament undergoing rapid Brownian 
motion are obtained by replacing myosin stiffness k  by the stiffness )/( tt κκκ +≡ kk  of 
myosin and traps acting in series.  
        For binding to actin, let and  be the rate constants for a given initial 
filament displacement u (in opposition to x). The  elastic energies in states 1 and 2 of Scheme 
1 are respectively 

),(1 uxk ),(1 uxk−

2
t2

1 uκ and .))()(()( 2
2
12

2t2
12

2
12

t2
1 xxUukuxku κκκ +−+≡−+  In state 2, 

)/()( t2 κ+= kkxxU  is the mean displacement and myosin and the traps act in parallel. 
Averaging over the corresponding Boltzmann distributions gives  
 

, ),()(
2

t2
1

1

2/1

1 2
t dueuxkxk uβκ

π
βκ −∫⎟

⎠
⎞

⎜
⎝
⎛=                                                  (5) 
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⎠

⎞
⎜⎜
⎝

⎛
=
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π
κβ

                              (6) 

 
 
Detailed balancing says that ))(exp(),(/),( 2

2
1

111 uxkKuxkuxk −−≡− β  where  is the 
strain-free affinity. Hence 

1K

   

).exp(
)(
)()( 2

2
1

1

2/1

t

t

1

1
1 xK

kxk
xkxK βκ

κ
κ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=≡
−

                                         (7) 

 
       The same line of reasoning, with the appropriate Boltzmann factor for state 3 with mean 
displacement ),/()()( t3 κ++= khxkxU  can be used to establish the Brownian-averaged 
equilibrium constant of the working stroke, namely 
 

)).2/(exp()( 22 hxhKxK +−≡ βκ                                                   (8) 
 
The stated rule  for generating )(2 xk  from  can be demonstrated within the flat-
landscape model,  provided  that  filament Brownian motion is faster than the stroke rate. 
Then the distribution  of displacement   fluctuations equilibrates to a  Boltzmann distribution 
at each stage of the stroke  reaction. A formal method for motional  averaging is Gardiner’s 
adiabatic elimination procedure (20), which replaces the strain energy  

)(2 xk

2
t2

12
22

1 )}cos(cos{),,( uRuxkuxV κθθθ +−+−≡  of myosin and traps with the average 
potential 

constant,))cos(cos(           

ln),(

2
22

1

),,(1

+−+=

−= ∫ −−

θθκ

βθ θβ

Rx

duexV uxV

                               (9) 

 
the constant being proportional to  The first term in this equation is just as for an 
isomeric filament,  but with k replaced by κ.  It describes the variation of strain energy along 
the valley floor of 

.BTk

),,( θuxV  as a function of u and θ (Figure 3), which follows the pathway 
)/()}cos(cos{),( t2 κθθθ +−+== kRxkxUu .  

      Figure 2 shows that under trap conditions =κ( 0.02-0.08pN/nm, =h~ 0.5-1.0), the strain-
dependence of the stroke rate is much smoother than in the muscle fibre 1-3 pN/nm, =k(

=h~ 4-6), even after scaling the pre-stroke strain x to its dimensionless form. Thus the high-
barrier formula is simply not applicable to the weakly-trapped actin filament. 
      Our analysis requires that the corner frequency of Brownian filament motion with myosin 
bound is faster than the rates of detachment and stroking.  The upper roll-off frequency of the 
noise spectrum is ζκλ /)( t+= k  (radians/s) where ζ  is the viscous drag coefficient of the 

actin-beads assembly. Thus  for two 1µm-diameter beads,  and 
weak traps. This frequency is higher than the values of and  used in the last 
section, justifying the assumption of rapid Brownian motion. 

14s108 −= Xλ pN/nm 2=k
,1−k 2k 2−k
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HIGH-FREQUENCY TRAP DATA 
 
We now seek to show how the strain-dependent stroke rate  might be studied 
experimentally from high-frequency optical-trap displacement data (minimum resolving time 

 such that most post-stroke events present in the data are detected). In this limit, 
modelling shows that the mean displacement is sensitive to the kinetics of the stroke and the 
initial binding event. Hence more diagnostic tools are needed to characterize experimental 
records. More information can be obtained by working with event-averaged and time-
averaged mean displacements in bound periods: experimentally, both kinds of averages can be 
calculated after detection of binding events.   

)(2 xk

,ms 1  ≤

        To demonstrate sensitivity to the functional form of , we use two alternatives to the 
flat-landscape model (Scenario I). Length-step data in muscle fibres is qualitatively consistent 
with the formula 

)(2 xk

))2/(exp()( 22 hxkhkxk +−= β  for all x, so that the rate of stroke-reversal is 
strain-independent (Scenario II).  Finally, suppose that is independent of x (Scenario 
III), so that myosin strokes with equal probability on all binding sites. These alternatives are 
generated by reaction-energy landscapes which differ from the flat-landscape model (Figure 
1); scenario II requires a large repulsive barrier protecting the post-stroke state even at 
negative strains, and scenario III a similar repulsive barrier for the pre-stroke state. Such 
barriers would drastically alter the kinetics of the stroke transition on detached myosin.  

)(2 xk

        We now discuss the interpretation and analysis of  low-frequency and high-frequency 
trap data in terms of Scheme 1, with x-dependent rate constants replaced by their Brownian 
averages. Assuming that only post-stroke states are detected, the event-averaged and time-
averaged bound-state displacements defined in the introduction are given by the expressions 
  

 
)(

)()(
       ,

)(

)()(

34

34
T

3

3
E

∫
∫

∫
∫ +

=
+

=
dxxp

dxxphx
U

dxxJ

dxxJhx
U                             (10) 

 
where )()()( 223 xpxkxJ =  is the flux into state 3 and  is the probability of the post-
stroke states. These formulae apply to  high-resolution trap data, such that all arrivals in the 
first post-stroke state 3 are detected. The ratios and  are deflation factors. Simple 
formula can be obtained in the limit in which all transitions are in equilibrium, as expected in 
the complete absence of ATP; these results are a useful starting point for understanding the 
behaviour predicted under cycling conditions.  

)(34 xp

hU /E hU /T

 
The equilibrium limit   
Setting g = 0 gives state populations in equilibrium, such that 112 )()( pxKxp =  and so on. 
Then ,)()()( 1123 pxKxkxJ =  which is proportional to ))(exp( 2

2
1 hx +− βκ  for scenario II and 

)exp( 2
2
1 xβκ− for scenario III (Figure 4). These forms give event-averaged displacements 
 and  respectively. The flat-landscape model (scenario I) gives  

regardless of the way in which the kinetics is derived. This somewhat magical result is a 
consequence of inversion symmetry. Eqn. 1 (with k replaced by κ) and Eqn. 7 imply that 

 thus the entry rate is an even function about the point  where  
states 2 and 3 have the same strain energy (Figure 4). If trap experiments could be made under 
these conditions, a mean displacement of 5-6 nm would indeed correspond to the 10-12nm 
working stroke required by the crystal structures. 

0E =U hU =E ,2/E hU =

);()( 33 xJhxJ =−− 2/hx −=
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       In equilibrium, the time-averaged displacement is zero; no mechanical work is obtained 
as expected from thermodynamics. To check, note that ))(exp()( 2

2
1

34 hxxp +−∝ βκ  
independently of any kinetic scenarios. 
          
Steady-state cycling 
Previous calculations for low-resolution trap data were made with Scheme 1, assuming that 
only state 4 could be detected (5).  They showed that the irreversibility of the post-stroke 
product-release transitions was sufficient to drive the binding step out of equilibrium even at 
micromolar levels of ATP. Hence the equilibrium results are not expected to apply under the 
conditions commonly used for trap experiments  with  ATP.  The  state  probabilities  under 
steady-state cycling can be expressed in terms of pseudo-equilibrium constants 

)),(/()( 211 xgkxk +−  ))(/()( 322 gxkxk +−  and )/( 33 gkk +−  respectively, where 
))(/()()( 32322 gxkgxkxg += −  and )./( 333 gkgkg += −  From these expressions, the two 

kinds of mean displacement  can be calculated in terms of the kinetic parameters and the 
dimensionless working stroke .)2/(~ 2/1 hh βκ≡  
      The deflation factors were calculated with parameter-values about the standard set 

  ,    and ,s 1000 1
1

−
− =k ,s 250 1

2
−

− =k 202 =K ,s 75 1
3

−=k ,s 05.0 1
3

−
− =k 1s 10 −=g 0.1~

=h  

used in (5). Fibre experiments with M.ATPγS give (21), and  values of 10-40 for 
 can be estimated from length-step data (15). The value of  is obtained from a stopped-

flow experiment (22), which shows that myosin achieves rapid equilibrium with actin and that 
phosphate release is the rate-limiting post-stroke transition to rigor. As the stroke transition is 
close to equilibrium  hence  which suggests that  in 
solution. The above value of  applies for 1mM Pi and micromolar levels of ADP, and g is 
for 5µM ATP (7). Figure 5 shows the transition from equilibrium to irreversible cycling as a 
function of g,  which is proportional to [ATP]. The equilibrium results are recovered in the 
limit  which requires subnanomolar ATP concentrations. However, the lifetime 

 of state 4 would then be about  requiring excessively long experimental 
records. In the opposite limit  the post-stroke transitions are  irreversible and  the 
deflation factors approach asymptotic values. Here the event-averaged deflation factors vary 
significantly with the kinetic model of the working stroke, namely 0.82, 0.52 and 1.23 for 
scenarios I, II and III respectively. However, the time-averaged factors for the three scenarios 
are very similar and cluster around 0.5. For scenario II, event-averaged and time-averaged 
deflation factors are identical, because the rate of stroke reversal which affects the 
lifetime of state 3 is independent of x.  

1
1 s 400~ −

−k

2K 3k

),( 32 kk >>− 321 kKk >−
1

1 s 1000 −
− >k

3−k

,3−<< kg

32 / −kK ,s 400 1−

,3−>> kg

)(2 xk−

       At high time resolution, the deflation factors also vary with the size of the stroke and the 
stiffness of the traps, through the dimensionless stroke as shown in Figure 6. As described 
previously for low resolution data, the amount of deflation is sensitive to the detachment rate 

 and the stroke equilibrium constant . These variations are shown in Figure 7. In spite 
of these uncertainties, the major result of this modelling exercise is that event-averaged and 
time-averaged displacements for high-frequency data are generally different. Also, both 
quantities are slowly decreasing function of trap stiffness and resolving time, variables which 
are under experimental  control.  Both effects are a function of the strain-dependent kinetics of 
the stroke rate. In this way, it may be possible to test the different scenarios proposed here by 
optical-trap experiments. 

1−k 2K
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THE EFFECTS OF FINITE TIME RESOLUTION 
 
The time resolution of detected attachment events in current trap displacement data (sampling 
frequency ~ 10KHz) is currently limited by the need to construct a running variance record 
(6,7), and is typically about 5ms.  In this interval, the myosin may escape from state 3 by a 
reverse stroke at about  rather than by release of phosphate and ADP. We now 
generalize the previous treatment of Scheme 1 to data in which events have been detected 
with an arbitrary resolving time s. In the process, the previous results obtained with event-
averaging  (5) are recovered when   

,s 250 1−

ms. 5 ≥s
        For a given resolving time, exact formulae can be obtained in terms of the probability 

 that myosin arriving in state 3 survives in either state 3 or state 4 over time t. This 
object can be calculated from  modified rate equations for these states, in which is set 
equal to zero (23). The required solution is  

),(34 txP
)(2 xk
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      For event-averaging, we require the frequency of detected events at time resolution s, 
which is obtained by inserting the filtering function    For time averaging,  each 
detected event must be weighted with its lifetime, which must exceed the resolving time.  The 
mean lifetime is   
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where ttxPtx ∂−∂= /),(),( 3434ρ  is the distribution of the lifetime t. Hence   
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Thus event-averaged and time-averaged displacements at finite time-resolution are given by 
Eqn. 10 with and  replaced by their filtered counterparts   )(3 xJ )(34 xp
 

),,()(),( 343
)F(

3 sxPxJsxJ ≡                                                (16a) 
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(F)
34 sxsxPxJsxp τ≡                                       (16b) 
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When  s = 0, the right-hand side of Eqn. 16a reduces to  and that of Eqn. 16b to an 
expression proportional to  These formulae were used to calculate both deflation 
factors as a function of resolving time (Figure 8). The results of the previous section for high-
frequency data, which discriminate between the three stroke-rate scenarios and between 
event-averaging and time-averaging, are reproduced when s = 0, and approximately so when 

 The low-frequency limit is achieved when  in this case, the three stroke-
rate scenarios give almost identical results and there is no difference between  event-averaged 
and time-averaged displacements. The critical resolving time  separating high-frequency 
and low-frequency data is estimated by 

)(3 xJ
).(34 xp

ms. 1  ≤s ms; 5  ≥s

*s
;1)( *32 =+− skk  for the standard parameter set,  

 .ms 3* =s
        For low-frequency data, the above predictions correspond to those obtained by assuming 
that only state 4 could be detected (5). The two methods of calculation are not mathematically 
equivalent, but closely related for realistic values of kinetic parameters. To demonstrate this 
relationship, we simplify Eqns. 12-13 by setting ,03 =−k  a limit which can be taken when 

 The eigenvalues in Eqn. 12 are then the lifetimes of states 3 and 4:  .3−>> kg

32 )()( kxkx += −+λ  and .)( gx =−λ  As s increases from zero, the filtering function  
drops from unity to a plateau of height 

),(34 sxP
))(/( 323 kxkk +−  in a range of resolving times such 

that  which defines the range of low-frequency data. This range exists  if 
 which is satisfied experimentally. Then  

,1
*

−<<< gss
,32 gkk >>+− ),()( 43 xJxJ F ≅   the rate  of 

entry to state 4, which validates the simpler approach used in (5) to calculate the event-
averaged displacement.  

)(33 xpk

        Time-averaging of low-frequency data gives the same mean displacement as event-
averaging, because the mean lifetime ),(34 sxτ  reduces to   which is independent of x. 
This result can also be understood in terms of the previous treatment which assumed that only 
state 4 could be detected. In that case, 

,1−+ gs

)()( 334 xpkxJ = is proportional to  because the 
ratio   is  also x-independent. 

)(4 xp
)/()(/)( 3334 gkkxpxp += −

       
DISCUSSION 
 
Testing different scenarios for the stroke rate  
The true strain-dependence of the stroke rate of bound myosin can be tested through 
experiments on the muscle fibre or on a single myosin-S1. With intact fibres, length-step 
experiments rule out scenario III constant)  and can in principle discriminate between 
scenarios I (flat-landscape model) and II  constant) through the variation of the rate of 
phase-2 tension recovery on the size of the release step (15). In practice, the differences would 
appear only for large releases  and may be obscured by experimental artifacts.   

)(( 2 xk
)(( 2 xk−

)nm 5(>
      For single-myosin displacement data from weak-trap experiments with ATP, our 
predictions for the three scenarios of the strain-dependent stroke rate are summarized in 
Figures 6-8.  The different scenarios are manifest only in high-frequency data,  where the 
minimum resolving time is under 1ms; in this limit the event-averaged displacement during 
bound periods is much more sensitive than the time-averaged displacement to the details of 
stroke kinetics (Figure 7). This occurs because the three scenarios affect averaged 
displacements through their effect on the strain-dependence of the stroke rate, which affects 
the populations of post-stroke states on different actin sites. Complementary effects on the 
rate of the backward stroke may generate strain-dependent lifetimes for these states, which 
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generate numerical differences between event-averaged and time-averaged displacements in 
bound periods.  Such experiments could also confirm that myosin exists in a post-stroke state 
during the observed bound periods. 
        Consider three aspects of the problem from an operational standpoint. How could we tell 
that a particular data-set lies in the high-frequency range? What method of analysis would 
best reveal  which stroke-rate scenario fits the data? How can such measurements provide 
estimates for the myosin working stroke, given that both kinds of deflation factor (mean 
displacement/working stroke) are still sensitive to the parameters of the model? 
      The first question is addressed by noting that high-frequency data should display some 
correlation between the displacements and the lifetimes of (post-stroke) bound states. This 
information could be obtained from a scatter plot which would reflect fluctuations in the mean 
displacement and Poisson fluctuations in the lifetime of each bound period in the data. No 
such correlation has been observed in existing data (minimum resolving time ~ 5ms) from the 
trap group at King’s College London. The scale of the effect to be expected can be judged 
from Figure 9, which presents the variation of the mean lifetime of the post-stroke states 3 and 
4 as a function of displacement/working stroke; there is a large variation of lifetime with 
displacement for scenarios I and III, but none for scenario II.  However, the range of observed 
displacements is proscribed by the population curves in Figure 4, which have a half-width of 
about unity in the ordinate; thus a five-fold variation in mean lifetime could be expected from 
the scatter diagram if scenarios I or III apply. This procedure should provide a simple test of 
stroke kinetics from high-frequency data. 
       If  the data is thought to be of sufficient time resolution, we then require analyses which 
discriminate between these scenarios, given that the size of the stroke cannot easily be 
extracted from the data. For example, event-averaged displacements could  be measured over 
a wide range of values of trap stiffness; the event-averaged deflation factor (Figure 6A) 
increases according to the amount of strain-dependence assigned to the rate of the reverse 
stroke. More information is obtained from the ratio of event-averaged and time-averaged 
displacements, which is also the ratio of the deflation factors. For time-averaging, the 
deflation factor for all stroke scenarios is close to 0.5 (Figure 6B), so that the ratio of event-
averaged to time-averaged deflation factors at very low trap stiffness )1.0~( =h  is 
approximately 2, 1 and 3 for scenarios I,II and III. Exact ratios can be obtained from the 
figures for higher values of .~h  Lastly, high-frequency displacement-time records can be 
analysed over a range of resolving times for event detection. Figure 8A shows that these 
values are reproduced by the ratio of event-averaged displacements at high and low time 
resolution, since the corresponding deflation factors of all scenarios are the same in the low-
resolution limit.  
         In practice, these methods should not be regarded as exact, because the predicted 
deflation factors vary significantly with the kinetic parameters  and  (see 
Figure 7). However, the ratio of event-averaged and time-averaged factors shows much less 
variation (Figure 7C) and should therefore be used in preference when values of the 
associated parameters are not known. 

,1−k ,2k 2−k 3k

 
Estimating the working stroke from trap experiments   
Do these methods of analysis help us to estimate the myosin working stroke from high-
frequency trap displacement data? At first glance, we appear to be in the same situation 
pertaining to low-frequency data (5); both kinds of mean displacement are predicted to vary 
widely with kinetic parameters. The ability to measure two kinds of mean displacements as 
functions of trap stiffness and time resolution might permit a global fit to the model as a 
function of  and  particularly if the kinetics of the working stroke is known.  1−k ,2k
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Related considerations 
Our predictions are tied to a particular model of actin-myosin kinetics, which includes the 
assumption that no second stroke is associated with ADP release. Until recently (24), there 
has been no substantive evidence for a second stroke in myosin II. If a second stroke of 1-2 
nm does occur after Pi release, its strain-dependent kinetics should be largely washed out by 
Brownian averaging, and the predictions of our current model should be qualitatively correct 
apart from the different mean displacements associated with states before and after the second 
stroke. The model could easily be amended in this way.  
     The model also applies to trap displacement data under conditions where no ATP is 
present. In the absence of an energy source, the data should sample attachment events under 
conditions of thermodynamic equilibrium and the time-averaged displacement should be zero.   
The equilibrium case of the model discussed in section three predicts non-zero event-averaged 
displacements of h/2 and h for scenarios I and III respectively and high-frequency data, where 
all post-stroke states are detected. In this case, the event-averaged displacement is indifferent 
to the presence of the phosphate-release step after the working stroke, and the same results  
hold at any time resolution for a three-state model defined just by binding and stroking 
transitions. Previous observations of zero mean displacement for myosin complexed with 
various non-hydrolysable nucleotide analogues (AMPPNP, ATPγS, PPi)  can be assessed in 
the light of these predictions, without changing the conclusions drawn (25). If these 
complexes did make a working stroke after actin-binding and scenario I applies as expected, 
then the size of the stroke must have been less than 2 nm. Most of these complexes are 
thought to have an open  nucleotide pocket, for which the lever arm is in a post-stroke 
configuration; thus these complexes bind without changing the orientation of their lever arm. 
A complete discussion is given in  the original paper. 
       Finally, note that none of the above analysis would be necessary if the pre-stroke state 
could be detected directly in trap experiments. The inverse lifetime of the strained pre-stroke 
state is ,)( 12 −+ kxk  which varies from at large positive x to values in excess of 1−k 12 −+ kk  
at large negative x (Figure 2).  Thus resolution times of 0.1 ms or less would be required to 
see this state on all sites.  There are two possible developments which might allow detection 
of sub-millisecond events. One is to use considerably smaller beads (diameter < 0.2 µm),  so 
that the corner frequency (the upper roll-off of the power spectrum of Brownian filament 
motion) is raised to the required value. Single-bead experiments are being carried out on 
kinesin with beads of this size (26), but dumbbell experiments present extra problems to be 
solved to facilitate experiments with such small beads. If changes in the variance of bead 
position are to be used to detect attachment events on a millisecond time scale, then the corner 
frequency of the trapped bead must be raised by a combination of smaller beads and stiffer 
traps.  An alternative approach is to detect binding events directly from the position-time 
records of the beads,  rather than from constructed running- variance records.  This approach 
requires that the relative positions of the free dumbbell and the myosin-bearing fixed bead 
remain constant at the level of 1nm for the duration of the experiment, and is a realistic goal 
for the near future.     
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FIGURE CAPTIONS 
 
Figure 1.  Cartoons of the myosin working stroke when bound to actin, and Gibbs energies of 
the ‘flat landscape’ model as a function of lever-arm angle θ.  A: for unloaded myosin, the 
lever arm swings by distance h (the working stroke) parallel to the filament, with a flat 
landscape )(B θG  between narrow potential wells at the pre-stroke and post-stroke angles 

., 32 θθ  B: When the distal end of the lever arm is fixed, the stroke works against the elastic 
energy ),( θxV  of bending the arm, and the energy landscape  ),()(),( B θθθ xVGxG +=   is a 
function of myosin-site distance x, plotted for x = 0 (unstrained before stroking), hx −=  
(unstrained after stroking) and  (no change in strain). For clarity, strained states are 
depicted by distributed curvature in the lever arm. Parabolic strain-energy curves were 
generated with and  Energies are measured from the plateau.  

2/hx −=

nm 10=h nm./pN 1=k
 
Figure 2:  Strain-dependent rate constants for the working stroke (A) and its reversal (B),   
predicted from the flat-landscape model using Kramers’ theory in the limit of large damping 
(Eqn. 4), and plotted against the scaled offset-distance  The family of curves 
is generated by the scaled working stroke  

.)2/(~ 2/1 xkx β=

,)2/(~ 2/1 hkh β=   in multiples of 0.5. Both rates are 
shown as fractions of the solution rate, obtained by setting k = 0. 
 
Figure 3:  The two-dimensional flat-landscape model for the working stroke on an elastically 
loaded filament, showing Gibbs energy ),,()(),,( B θθθ uxVGuxG +=  (see main text) as a 
function of lever angle θ  and filament displacement u for x = 0 (A) and   (B). The 
surfaces  are drawn for a load stiffness of 0.05 pN/nm, as in an optical trap, with values of h 
and k as in Figure 1. Arrows indicate the valley path of least energy; the highest energy barrier 
on this pathway is limited by the stiffness of the load and is much smaller than in Figure 1. 

nm 10−=x

 
Figure 4: The frequency  of entry to the first post-stroke state 3 (arbitrary vertical scale) 
under equilibrium conditions, against filament displacement x+h as a fraction of the working 
stroke h. Here x is the myosin-site distance along the resting filament. For scenarios I,II,III for 
the stroke rate  the uncorrected mean displacements are respectively h/2, 0 and h. For 
scenario I (the flat-landscape model), Eqn. 4 was used for the stroke rate,  but any rate 
function satisfying inversion symmetry (Eqn. 1) will give the same mean displacement.   

)(3 xJ

),(2 xk

Figure 5:  Deflation factors  and  (uncorrected mean displacement/working 
stroke)  for high-resolution trap data and kinetic Scheme 1, as a function of the rate g of ATP-
induced detachment from rigor.  All curves were generated with standard values of the 
remaining parameters. Event-averaging was used in graph A and time-averaging in graph B.  
The former depend markedly on different scenarios for the strain-dependent stroke rate (see 
main text). As g increases, the extent of departure from equilibrium is determined by the 
rate  of reversing the product-release transitions, steps, here set at   

hU /E hU /T

3−k .s  05.0 1−

 
Figure 6:  Deflation factors (uncorrected mean displacement/working stroke) for high-
resolution data, as a function of reduced stroke size ,)2/(~ 2/1 hh βκ≡  using A: event-
averaging and B: time-averaging. Typical values for  h~  in trap experiments lie between 0.5 
and 1.0. In this region, the event-averaged factor is particularly sensitive to the different 
stroke-rate scenarios I,II,III.    
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Figure 7:  Deflation factors for high-resolution trap data as a function of  (strain-free 
equilibrium constant of the working stroke) and  (detachment rate of the pre-stroke state), 
for stroke-rate scenarios I-III with A: event-averaging and B: time-averaging. Graphs C show 
the ratio of event-averaged to time-averaged deflation factors. The behaviour shown in A is 
similar to that presented in (5) for low-resolution data.   

2K

1−k

 
Figure 8:  The effects of changing the time resolution of the event detector. A: event-averaged 
and B: time-averaged deflation factors move from the high-resolution limit to the low-
resolution regime as the resolving time is increased through 3ms. In the low-resolution limit, 
event-averaged and time-averaged deflation factors are equal and agree with those predicted 
by assuming that only rigor states were detected (5). 
 
Figure 9: The mean lifetime of the bound states 3 and 4 as a function of normalized mean 
displacement on site x for scenarios I-III, calculated from Eqn. 14 with s = 0 using  the 
standard  parameters of the main text. In conjunction with Figure 4, this graph is intended as a 
guide to scatter diagrams of experimental bound-state lifetimes versus their displacements for 
high-frequency trap data.  
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