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Solutions of the homework assignement: on the zero set of B

Exercise 1 — Triviality.
We have Leb(Z) =

∫∞
0
1Bt=0 dt. But since (ω, t) 7→ 1Bt(ω)=0 is measurable positive, then

Fubini’s theorem tells us that Leb(Z) is a measurable random variable whose expectation
is E[Leb(Z)] =

∫∞
0

P(Bt = 0)dt =
∫

0 = 0.

Exercise 2 — For your personal enjoyment.
This is a classic application of Baire’s category theorem: If E is a countable complete
metric space, then ∅ = ∩x∈EE \ {x}. But for every x, E \ {x} is open and dense in E
(otherwise x would be isolated). Hence ∅ is dense in E and E is empty.

Exercise 3 — For your personal enjoyment.
The lim is a sup because as δ → 0 we take an inf on smaller and smaller sets. Moreover,
with ε > 0, we have

inf
(Ui)i∈P(E)N

∀i,diam(Ui)≤δ⋃
i Ui⊃A

(∑
i∈N

diam(Ui)
(α+ε)

)
≤ δε inf

(Ui)i∈P(E)N

∀i,diam(Ui)≤δ⋃
i Ui⊃A

(∑
i∈N

diam(Ui)
α

)

which gives lemma 1. Now if E is a metric space and λE is obtained by scaling the distances
by λ > 0, it is clear that Hα(λA) = λα(E).
Apparently there is no such thing as finite additivity for Hausdorff measure. So computing
the Hausdorff dimension of self-similar sets is harder than I thought (of course upper
bounds are always easy...) Sorry I was misleading you...

Exercise 4 — Last 0 before time 1 (Second arcsine Law).

Denote by B̃ another BM, independent of B.

P(G1 ≤ t) = P(Bt > 0, min
s∈[0,1−t]

B(t)
s > −Bt) + P(Bt < 0, max

s∈[0,1−t]
B(t)
s < −Bt)

= P(Bt > 0, max
s∈[0,1−t]

B(t)
s < Bt) + P(Bt < 0, max

s∈[0,1−t]
B(t)
s < −Bt)

= P( max
s∈[0,1−t]

B(t)
s < |Bt|)

= P(|B̃1−t| < |Bt|) = P(
√

1− t|B̃1| <
√
t|B1|).

Let θ = arg(B̃1 + iB1). Then θ is uniform in [−π, π] and our probability rewrites as

P(| tan(θ)| < | tan(arcsin(
√
t))|) = 2

π
arcsin

√
t

1
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Then the equality π
2
− arcsin(

√
1− t) = arcsin(

√
t) implies a rather surprising symmetry

property of G1: P(G1 > 1 − t) = P(G1 < t). Now by Brownian scaling, the probability
that there is a 0 in [x, x+ ε] is the same as the probability that there is a 0 in [x/(x+ ε), 1],

which is P(G1 > x/(x+ε)) = P(G1 > 1−ε/(x+ε)) = 2
π

arcsin(
√
ε/(x+ ε)) ≤ 2

√
ε/(x+ ε).

Exercise 5 — Upper bound.

(1)

E[
∑
I∈Cn

diam(I)α] =
2n−1∑
k=0

2−αn P(Z intersects [k2−n, (k + 1)2−n])

≤ 2
2n−1∑
k=0

2−αn
√

1/(k + 1)

≤ 2( 1
2
−α)n+1

2n∑
k=1

1√
2−nk

.

The prefactor goes to 0 when α > 1/2, and the sum goes to
∫ 1

0
t−1/2dt = 1.

(2) We want to show that when α > 1/2, then lim infn→∞
∑

I∈Cn
diam(I)α = 0 almost

surely. The previous question and Fatou’s lemma give this immediately.
(3) This shows that when α > 1/2, we can almost surely find a sequence of coverings of

largest diameter going to 0, such that the sum of diameters to the α goes to 0. This
implies that Hα(Z) = 0 almost surely for every α > 1/2 and hence dimH(Z) ≤ 1/2
almost surely.

Exercise 6 — Lower bound.

(1) Let Ui be a covering. Then if supi diam(Ui) < δ, then∑
i∈N

diam(Ui)
α =

∑
i∈N

diam(Ui)
α ≥ 1

C

∑
i∈N

µ(Ui) ≥ 1
C
µ(E).

Taking the infimum on all coverings of max diameter < ε < δ and letting ε → 0
gives theorem 1.

(2) Let B be a Brownian motion. Then Lévy’s M-B theorem says that B∗ − B is
distributed as |B|. But the zero set of B is the same as the zero set of |B|, which
is then distributed as the zero set of B∗ −B, which is R = {t ≥ 0, Bt = B∗t }.

(3) B∗ is a weakly increasing continuous function, so we can build a random measure
µ on R+ by setting µ((a, b)) = B∗b −B∗a. Then let us show that open intervals that
avoid R have zero measure. By contraposition, if µ((x, y)) > 0, then max[x,y]B >
B∗(x). Take t to be the first time in [x, y] where B hits u = (max[x,y]B+B∗(x))/2.
Then y > t > x and t is the first time in R+ where B hits u. Hence t ∈ R and R
intersects (x, y). We have shown that almost surely µ is supported on R.

(4) Almost surely µ([0, 1]) is nonzero and µ is supported on R so µ([0, 1]∩R) > 0. Let
α < 1/2. Then we know that almost surely B is α-Hölder on [0, 1]. Let C < ∞
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a.s. be the α-Hölder constant and consider U closed in [0, 1]. Then U ⊂ [x, y]
with y − x = diamU . We have µ(U) ≤ B∗y − B∗x ≤ Bξ − Bx where ξ is the first
hitting time of the maximum of B on [x, y]. This last quantity is bounded by
C(ξ − x) ≤ C(y − x) = C diam(U). Then we can apply theorem 1 and show that
dimHR ≥ dimH(R∩ [0, 1]) ≥ α almost surely. This transfers to Z as Z and R have
the same distribution.

(5) Combining the two bounds gives the final answer.


