ENS de Lyon - Math Department
Master 1 - Spring 2018
Brownian Motion and Stochastic Processes
E. Jacob \& M. Maazoun

Solutions of the homework assignement: on the zero set of B

Exercise 1 - Triviality.
We have $\operatorname{Leb}(Z)=\int_{0}^{\infty} \mathbb{1}_{B_{t}=0} d t$. But since $(\omega, t) \mapsto \mathbb{1}_{B_{t}(\omega)=0}$ is measurable positive, then Fubini's theorem tells us that $\operatorname{Leb}(Z)$ is a measurable random variable whose expectation is $\mathbb{E}[\operatorname{Leb}(Z)]=\int_{0}^{\infty} \mathbb{P}\left(B_{t}=0\right) d t=\int 0=0$.

Exercise 2 - For your personal enjoyment.
This is a classic application of Baire's category theorem: If E is a countable complete metric space, then $\emptyset=\cap_{x \in E} E \backslash\{x\}$. But for every $x, E \backslash\{x\}$ is open and dense in E (otherwise x would be isolated). Hence \emptyset is dense in E and E is empty.

Exercise 3 - For your personal enjoyment.
The lim is a sup because as $\delta \rightarrow 0$ we take an inf on smaller and smaller sets. Moreover, with $\epsilon>0$, we have

$$
\inf _{\substack{\left(U_{i}\right) \in \mathcal{P}(E)^{\mathbb{N}} \\ \forall i, \operatorname{diam}\left(U_{i}\right) \leq \delta \\ U_{i} U_{i} \supset A}}\left(\sum_{i \in \mathbb{N}} \operatorname{diam}\left(U_{i}\right)^{(\alpha+\epsilon)}\right) \leq \delta^{\epsilon} \inf _{\substack{\left(U_{i}\right)_{i} \in \mathcal{P}(E)^{\mathbb{N}} \\ \forall i, \operatorname{diam}\left(U_{i}\right) \leq \delta \\ U_{i} U_{i} \supset A}}\left(\sum_{i \in \mathbb{N}} \operatorname{diam}\left(U_{i}\right)^{\alpha}\right)
$$

which gives lemma 1 . Now if E is a metric space and λE is obtained by scaling the distances by $\lambda>0$, it is clear that $\mathcal{H}_{\alpha}(\lambda A)=\lambda^{\alpha}(E)$.
Apparently there is no such thing as finite additivity for Hausdorff measure. So computing the Hausdorff dimension of self-similar sets is harder than I thought (of course upper bounds are always easy...) Sorry I was misleading you...

Exercise 4 - Last 0 before time 1 (Second arcsine Law).
Denote by \widetilde{B} another BM, independent of B.

$$
\begin{aligned}
\mathbb{P}\left(G_{1} \leq t\right) & =\mathbb{P}\left(B_{t}>0, \min _{s \in[0,1-t]} B_{s}^{(t)}>-B_{t}\right)+\mathbb{P}\left(B_{t}<0, \max _{s \in[0,1-t]} B_{s}^{(t)}<-B_{t}\right) \\
& =\mathbb{P}\left(B_{t}>0, \max _{s \in[0,1-t]} B_{s}^{(t)}<B_{t}\right)+\mathbb{P}\left(B_{t}<0, \max _{s \in[0,1-t]} B_{s}^{(t)}<-B_{t}\right) \\
& =\mathbb{P}\left(\max _{s \in[0,1-t]} B_{s}^{(t)}<\left|B_{t}\right|\right) \\
& =\mathbb{P}\left(\left|\widetilde{B}_{1-t}\right|<\left|B_{t}\right|\right)=\mathbb{P}\left(\sqrt{1-t}\left|\widetilde{B}_{1}\right|<\sqrt{t}\left|B_{1}\right|\right) .
\end{aligned}
$$

Let $\theta=\arg \left(\widetilde{B}_{1}+i B_{1}\right)$. Then θ is uniform in $[-\pi, \pi]$ and our probability rewrites as

$$
\mathbb{P}(|\tan (\theta)|<|\tan (\arcsin (\sqrt{t}))|)=\frac{2}{\pi} \arcsin \sqrt{t}
$$

Then the equality $\frac{\pi}{2}-\arcsin (\sqrt{1-t})=\arcsin (\sqrt{t})$ implies a rather surprising symmetry property of $G_{1}: \mathbb{P}\left(G_{1}>1-t\right)=\mathbb{P}\left(G_{1}<t\right)$. Now by Brownian scaling, the probability that there is a 0 in $[x, x+\epsilon]$ is the same as the probability that there is a 0 in $[x /(x+\epsilon), 1]$, which is $\mathbb{P}\left(G_{1}>x /(x+\epsilon)\right)=\mathbb{P}\left(G_{1}>1-\epsilon /(x+\epsilon)\right)=\frac{2}{\pi} \arcsin (\sqrt{\epsilon /(x+\epsilon)}) \leq 2 \sqrt{\epsilon /(x+\epsilon)}$.

Exercise 5 - Upper bound.
(1)

$$
\begin{aligned}
\mathbb{E}\left[\sum_{I \in C_{n}} \operatorname{diam}(I)^{\alpha}\right] & =\sum_{k=0}^{2^{n}-1} 2^{-\alpha n} \mathbb{P}\left(Z \text { intersects }\left[k 2^{-n},(k+1) 2^{-n}\right]\right) \\
& \leq 2 \sum_{k=0}^{2^{n}-1} 2^{-\alpha n} \sqrt{1 /(k+1)} \\
& \leq 2^{\left(\frac{1}{2}-\alpha\right) n+1} \sum_{k=1}^{2^{n}} \frac{1}{\sqrt{2^{-n} k}} .
\end{aligned}
$$

The prefactor goes to 0 when $\alpha>1 / 2$, and the sum goes to $\int_{0}^{1} t^{-1 / 2} d t=1$.
(2) We want to show that when $\alpha>1 / 2$, then $\lim \inf _{n \rightarrow \infty} \sum_{I \in C_{n}} \operatorname{diam}(I)^{\alpha}=0$ almost surely. The previous question and Fatou's lemma give this immediately.
(3) This shows that when $\alpha>1 / 2$, we can almost surely find a sequence of coverings of largest diameter going to 0 , such that the sum of diameters to the α goes to 0 . This implies that $\mathcal{H}_{\alpha}(Z)=0$ almost surely for every $\alpha>1 / 2$ and hence $\operatorname{dim}_{\mathcal{H}}(Z) \leq 1 / 2$ almost surely.

Exercise 6 - Lower bound.
(1) Let U_{i} be a covering. Then if $\sup _{i} \operatorname{diam}\left(U_{i}\right)<\delta$, then

$$
\sum_{i \in \mathbb{N}} \operatorname{diam}\left(U_{i}\right)^{\alpha}=\sum_{i \in \mathbb{N}} \operatorname{diam}\left(\overline{U_{i}}\right)^{\alpha} \geq \frac{1}{C} \sum_{i \in \mathbb{N}} \mu\left(U_{i}\right) \geq \frac{1}{C} \mu(E) .
$$

Taking the infimum on all coverings of max diameter $<\epsilon<\delta$ and letting $\epsilon \rightarrow 0$ gives theorem 1.
(2) Let B be a Brownian motion. Then Lévy's M-B theorem says that $B^{*}-B$ is distributed as $|B|$. But the zero set of B is the same as the zero set of $|B|$, which is then distributed as the zero set of $B^{*}-B$, which is $R=\left\{t \geq 0, B_{t}=B_{t}^{*}\right\}$.
(3) B^{*} is a weakly increasing continuous function, so we can build a random measure μ on \mathbb{R}_{+}by setting $\mu((a, b))=B_{b}^{*}-B_{a}^{*}$. Then let us show that open intervals that avoid R have zero measure. By contraposition, if $\mu((x, y))>0$, then $\max _{[x, y]} B>$ $B^{*}(x)$. Take t to be the first time in $[x, y]$ where B hits $u=\left(\max _{[x, y]} B+B^{*}(x)\right) / 2$. Then $y>t>x$ and t is the first time in \mathbb{R}_{+}where B hits u. Hence $t \in R$ and R intersects (x, y). We have shown that almost surely μ is supported on R.
(4) Almost surely $\mu([0,1])$ is nonzero and μ is supported on R so $\mu([0,1] \cap R)>0$. Let $\alpha<1 / 2$. Then we know that almost surely B is α-Hölder on $[0,1]$. Let $C<\infty$
a.s. be the α-Hölder constant and consider U closed in $[0,1]$. Then $U \subset[x, y]$ with $y-x=\operatorname{diam} U$. We have $\mu(U) \leq B_{y}^{*}-B_{x}^{*} \leq B_{\xi}-B_{x}$ where ξ is the first hitting time of the maximum of B on $[x, y]$. This last quantity is bounded by $C(\xi-x) \leq C(y-x)=C \operatorname{diam}(U)$. Then we can apply theorem 1 and show that $\operatorname{dim}_{\mathcal{H}} R \geq \operatorname{dim}_{\mathcal{H}}(R \cap[0,1]) \geq \alpha$ almost surely. This transfers to Z as Z and R have the same distribution.
(5) Combining the two bounds gives the final answer.

