Solutions of the homework assignment: on the zero set of B

Exercise 1 — Triviality.

We have $\operatorname{Leb}(Z) = \int_0^\infty \mathbb{1}_{B_t=0} dt$. But since $(\omega, t) \mapsto \mathbb{1}_{B_t(\omega)=0}$ is measurable positive, then Fubini's theorem tells us that $\operatorname{Leb}(Z)$ is a measurable random variable whose expectation is $\mathbb{E}[\operatorname{Leb}(Z)] = \int_0^\infty \mathbb{P}(B_t = 0) dt = \int 0 = 0.$

Exercise 2 — For your personal enjoyment.

This is a classic application of Baire's category theorem: If E is a countable complete metric space, then $\emptyset = \bigcap_{x \in E} E \setminus \{x\}$. But for every $x, E \setminus \{x\}$ is open and dense in E (otherwise x would be isolated). Hence \emptyset is dense in E and E is empty.

Exercise 3 — For your personal enjoyment.

The lim is a sup because as $\delta \to 0$ we take an inf on smaller and smaller sets. Moreover, with $\epsilon > 0$, we have

$$\inf_{\substack{(U_i)_i \in \mathcal{P}(E)^{\mathbb{N}} \\ \forall i, \operatorname{diam}(U_i) \leq \delta \\ \bigcup_i U_i \supset A}} \left(\sum_{i \in \mathbb{N}} \operatorname{diam}(U_i)^{(\alpha+\epsilon)} \right) \leq \delta^{\epsilon} \inf_{\substack{(U_i)_i \in \mathcal{P}(E)^{\mathbb{N}} \\ \forall i, \operatorname{diam}(U_i) \leq \delta \\ \bigcup_i U_i \supset A}} \left(\sum_{i \in \mathbb{N}} \operatorname{diam}(U_i)^{\alpha} \right)$$

which gives lemma 1. Now if E is a metric space and λE is obtained by scaling the distances by $\lambda > 0$, it is clear that $\mathcal{H}_{\alpha}(\lambda A) = \lambda^{\alpha}(E)$.

Apparently there is no such thing as finite additivity for Hausdorff measure. So computing the Hausdorff dimension of self-similar sets is harder than I thought (of course upper bounds are always easy...) Sorry I was misleading you...

Exercise 4 - Last 0 before time 1 (Second arcsine Law). Denote by \widetilde{B} another BM, independent of B.

$$\begin{split} \mathbb{P}(G_1 \le t) &= \mathbb{P}(B_t > 0, \min_{s \in [0, 1-t]} B_s^{(t)} > -B_t) + \mathbb{P}(B_t < 0, \max_{s \in [0, 1-t]} B_s^{(t)} < -B_t) \\ &= \mathbb{P}(B_t > 0, \max_{s \in [0, 1-t]} B_s^{(t)} < B_t) + \mathbb{P}(B_t < 0, \max_{s \in [0, 1-t]} B_s^{(t)} < -B_t) \\ &= \mathbb{P}(\max_{s \in [0, 1-t]} B_s^{(t)} < |B_t|) \\ &= \mathbb{P}(|\widetilde{B}_{1-t}| < |B_t|) = \mathbb{P}(\sqrt{1-t}|\widetilde{B}_1| < \sqrt{t}|B_1|). \end{split}$$

Let $\theta = \arg(\widetilde{B}_1 + iB_1)$. Then θ is uniform in $[-\pi, \pi]$ and our probability rewrites as

$$\mathbb{P}(|\tan(\theta)| < |\tan(\arcsin(\sqrt{t}))|) = \frac{2}{\pi} \arcsin\sqrt{t}$$

Then the equality $\frac{\pi}{2} - \arcsin(\sqrt{1-t}) = \arcsin(\sqrt{t})$ implies a rather surprising symmetry property of G_1 : $\mathbb{P}(G_1 > 1-t) = \mathbb{P}(G_1 < t)$. Now by Brownian scaling, the probability that there is a 0 in $[x, x+\epsilon]$ is the same as the probability that there is a 0 in $[x/(x+\epsilon), 1]$, which is $\mathbb{P}(G_1 > x/(x+\epsilon)) = \mathbb{P}(G_1 > 1-\epsilon/(x+\epsilon)) = \frac{2}{\pi} \arcsin(\sqrt{\epsilon/(x+\epsilon)}) \leq 2\sqrt{\epsilon/(x+\epsilon)}$.

Exercise 5 — Upper bound.

(1)

$$\mathbb{E}\left[\sum_{I \in C_n} \operatorname{diam}(I)^{\alpha}\right] = \sum_{k=0}^{2^n - 1} 2^{-\alpha n} \mathbb{P}(Z \text{ intersects } [k2^{-n}, (k+1)2^{-n}])$$
$$\leq 2 \sum_{k=0}^{2^n - 1} 2^{-\alpha n} \sqrt{1/(k+1)}$$
$$\leq 2^{\left(\frac{1}{2} - \alpha\right)n + 1} \sum_{k=1}^{2^n} \frac{1}{\sqrt{2^{-n}k}}.$$

The prefactor goes to 0 when $\alpha > 1/2$, and the sum goes to $\int_0^1 t^{-1/2} dt = 1$.

- (2) We want to show that when $\alpha > 1/2$, then $\liminf_{n \to \infty} \sum_{I \in C_n} \operatorname{diam}(I)^{\alpha} = 0$ almost surely. The previous question and Fatou's lemma give this immediately.
- (3) This shows that when $\alpha > 1/2$, we can almost surely find a sequence of coverings of largest diameter going to 0, such that the sum of diameters to the α goes to 0. This implies that $\mathcal{H}_{\alpha}(Z) = 0$ almost surely for every $\alpha > 1/2$ and hence $\dim_{\mathcal{H}}(Z) \leq 1/2$ almost surely.

Exercise 6 — Lower bound.

(1) Let U_i be a covering. Then if $\sup_i \operatorname{diam}(U_i) < \delta$, then

$$\sum_{i \in \mathbb{N}} \operatorname{diam}(U_i)^{\alpha} = \sum_{i \in \mathbb{N}} \operatorname{diam}(\overline{U_i})^{\alpha} \ge \frac{1}{C} \sum_{i \in \mathbb{N}} \mu(U_i) \ge \frac{1}{C} \mu(E).$$

Taking the infimum on all coverings of max diameter $< \epsilon < \delta$ and letting $\epsilon \to 0$ gives theorem 1.

- (2) Let B be a Brownian motion. Then Lévy's M-B theorem says that $B^* B$ is distributed as |B|. But the zero set of B is the same as the zero set of |B|, which is then distributed as the zero set of $B^* B$, which is $R = \{t \ge 0, B_t = B_t^*\}$.
- (3) B^* is a weakly increasing continuous function, so we can build a random measure μ on \mathbb{R}_+ by setting $\mu((a, b)) = B_b^* B_a^*$. Then let us show that open intervals that avoid R have zero measure. By contraposition, if $\mu((x, y)) > 0$, then $\max_{[x,y]} B > B^*(x)$. Take t to be the first time in [x, y] where B hits $u = (\max_{[x,y]} B + B^*(x))/2$. Then y > t > x and t is the first time in \mathbb{R}_+ where B hits u. Hence $t \in R$ and R intersects (x, y). We have shown that almost surely μ is supported on R.
- (4) Almost surely $\mu([0, 1])$ is nonzero and μ is supported on R so $\mu([0, 1] \cap R) > 0$. Let $\alpha < 1/2$. Then we know that almost surely B is α -Hölder on [0, 1]. Let $C < \infty$

a.s. be the α -Hölder constant and consider U closed in [0,1]. Then $U \subset [x,y]$ with $y - x = \operatorname{diam} U$. We have $\mu(U) \leq B_y^* - B_x^* \leq B_{\xi} - B_x$ where ξ is the first hitting time of the maximum of B on [x,y]. This last quantity is bounded by $C(\xi - x) \leq C(y - x) = C \operatorname{diam}(U)$. Then we can apply theorem 1 and show that $\operatorname{dim}_{\mathcal{H}} R \geq \operatorname{dim}_{\mathcal{H}}(R \cap [0,1]) \geq \alpha$ almost surely. This transfers to Z as Z and R have the same distribution.

(5) Combining the two bounds gives the final answer.