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Leftover exercises from 2018

Exercise 1 — Limit in distribution of Gaussian vectors.
Let (Xn)n≥0 be a sequence of Gaussian variables (Xn)n≥0. Give a necessary and sufficient
condition for convergence in distribution, show that the limit is always Gaussian, and
determine its parameters.

Solution 1 — Limit in distribution of Gaussian vectors.
We restrict ourselves to gaussian variables. It is rather easy to lift this up to vectors
afterwards. Let µn and σn be the parameters of Xn If we have convergence in distribution,
then we have convergence of the characteristic functions to the one of the limit. So there

exists a characteristic function f : R→ R such that for all t ∈ R, fn(t) = eiµnt−
σ2n
2
t2 → f(t).

Now taking the modulus then the log yields σ2
n → − 2

t2
log(|f(t)|) = σ2 ≥ 0. We deduce

that |f(t)| = e−
σ2

2
t2 . Now eiµnt = e

σ2n
2
t2fn(t) → e

σ2

2
t2f(t) = u(t), which is a continuous

function in C of modulus 1 (with u(0) =: 1). So it can be lifted up to a continuous real
function, i.e. there exists h continuous with h(0) = 0 such that u(t) = eih(t) for all t. We
have

ei(µnt−h(t)) → 0.

We shall now show that (µn)n is bounded. This important step is treated with a proba-
bilistic proof: we use the fact that the distribution of Xn is symmetric about its mean1.
Suppose there is an increasing subsequence µkn → ∞. Then P(Xkn ≥ µkn) = 1/2 for all
n, and P(Xkn ≥ µkp) ≥ 1/2 for all n ≥ p. So by taking n → ∞ with fixed p we get
P(X ≥ µkp) ≥ 1/2 for all p, which is absurd as µkp →∞.
So (µn)n is bounded above and the symmetric argument allows to show that it is bounded
below.
Back to our problem, we shall now show that A = {t ∈ R : µnt→ h(t)} is the whole of R.

• It is nonempty as it contains 0.
• It is closed because of the uniform control of µn in n.
• It is open: let t ∈ A. For s ∈ R we have ei(µnt−h(t)−µns+h(s))→ 0. By the bound on
µn and continuity of h we can find ε > 0 such that for all s ∈ (t− ε, t+ ε) and all n,
|µnt− h(t)− µns+ h(s)| < π/2. But for |θ| < π/2, θ 7→ eiθ is an homeomorphism.
We deduce µnt− h(t)− µns+ h(s)→ 0 and hence s ∈ A.

We conclude by connectedness of R. We get that for every t 6= 0, µn → h(t)/t, so µn

converges to some µ and h(t) = µt. This proves that f(t) = eiµt−
σ2

2
t2 , so X is a Gaussian

with parameters µ = limµn and σ2 = limσ2
n. Conversely these convergences directly imply

convergence in distribution.

1Since we know that σn is bounded, we could as well use the fact that Xn concentrates around its mean
1
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Exercise 2 — The precise constant (Lévy, 1937).
We want to show that with probability one,

lim sup
h↓0

mB(h, [0, 1])√
2h log(1/h)

= 1.

(1) Show that if X is standard Gaussian and x > 0, then

1√
2π(x+ 1/x)

e−x
2/2 ≤ P(X ≥ x) ≤ 1√

2πx
e−x

2/2.

(2) For c <
√

2, show that almost surely for all ε > 0 there exists s, t ∈ [0, 1] with

|t − s| ≤ ε and |B(t) − B(s)| ≥ c
√
|t− s| log(1/|t− s|). (Hint: divide [0, 1] in

intervals of length 2−n).
(3) Fix m ≥ 1 and define the following families of intervals:

Λn(m) =
{

[(k/m− 1)2−n/m, (k/m)2−n/m], m ≤ k ≤ m2n/m
}
, n ≥ 1.

For c >
√

2, show that almost surely, for n large enough and any interval [s, t] in

the family Λn(m), |B(t)−B(s)| ≤ c
√
|t− s| log(1/|t− s|).

(4) Fix ε > 0, show that there exists m ≥ 1 such that any interval [s, t] ⊂ [0, 1] can be
approximated with an interval [s′, t′] ∈ Λ(m) = ∪n≥1Λn(m), with |t− t′|, |s− s′| ≤
ε|t− s|, and |t′ − s′| ≤ |t− s|.

(5) Deduce that almost surely, for h small enough, mB(h, [0, 1]) ≤ C
√
h log(1/h), for

a constant C that can be brought arbitrarily close to
√

2. Conclude.

Solution 2 — The precise constant (Lévy, 1937). (1) The upper bound comes from the

inequality
∫∞
x
e−t

2/2dt ≤
∫∞
x

t
x
e−t

2/2dt. The lower bound can be obtained by differ-
entiating the difference.

(2) First of all, P(Ek,n) = P(B(k+1)2−n−Bk2−n ≥ c
√

2−n log(2n)) = P(B1 ≥ c
√
n log 2) ≥

1
1000c

√
n
2−c

2n/2. Then

P(∀0 ≤ k ≤ 2−n,B(k+1)2−n −Bk2−n < c
√

2−n log(2n)) = P(
⋂
k

E{
k,n)

=
∏
k

(1− P(Ek,n)) ≤ (1− 1

1000c
√
n

2−c
2n/2)2

n ≤ exp(−2n
1

1000c
√
n

2−c
2n/2)

= exp(− 1

1000c
√
n

2(1−c2/2)n) = summable inn.

So by Borel-Cantelli, we get that infinitely often in n, there is an increment of
length 2−n that exceeds c

√
2−n log(2n). This implies the claim.
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(3)

P(∃[s, t] ∈ Λn(m), |B(t)−B(s)| > c
√
|t− s| log(1/|t− s|))

≤ m2n/m P(|B1| ≥ c
√
n/m log 2)

≤ m2n/m
1√

2πc
√
n/m log 2

2−(c
2/2)n/m = summable in n

So almost surely, for n large enough, any interval in Λn(m) has the required growth
bound.

(4) Take m to be determined later in terms of ε. Then given t and s, we can find
n so that 1 ≤ |t − s|/2−n/m ≤ (21/m) ≤ 1 + ε/3. We can now find k so that
|s − k

m
2−n/m| ≤ 1

m
2−n/m ≤ 1

m
|t − s|. Set s′ = k

m
2−n/m, t′ = ( k

m
+ 1)2−n/m. Then

|s′− s| ≤ 1
m
|t− s| and |t′− t| ≤ |t′− s′|+ |s′− s| ≤ (21/m− 1)|t− s|+ 1

m
|t− s|. Now

choose retrospectively m so that 21/m − 1 + 1
m
< ε and 1

m
< ε makes everything

work. Remark that we additionaly get |t′− s′| ≤ |t− s| which eases the solution of
the next question.

(5) Fix ε and m accordingly. Now almost surely, there is n0 such that for n ≥ n0, all
intervals in Λn(m) have the growth bound with the constant c. Moreover, from
the lecture, almost surely there is a h0 such that all intervals of length < h0 have
the growth bound with the constant C from the lecture. Now take s, t such that
|s− t| ≤ ε, ε|s− t| ≤ h0 and |s− t| ≤ 2−n0/m. Then consider s′, t′ as in the previous
question. It comes that |t′− t|, |s′− s| ≤ h0 and that |s′− t′| ∈ Λn(m) with n ≥ n0.
Hence

|Bt −Bs| ≤ |Bt −B′t|+ |Bs −B′s|+ |Bt −Bs|

≤ C
√
|s′ − s| log(1/|s′ − s|) + C

√
|t′ − t| log(1/|t′ − t|) + c

√
|t′ − s′| log(1/|t′ − s′|)

≤ 2C
√
ε|t− s| log(1/(ε|t− s|)) + c

√
|t− s| log(1/|t− s|)

≤ (2C
√
ε(1 + 1) + c)

√
|t− s| log(1/|t− s|).

Where at the second inequality we used the increasing character (close to 0) of

x 7→
√
x log(1/x) and at the last one we used log(1/ε) ≤ log(1/|s − t|). The

constant obtained can be brought arbitrarily close to
√

2 as c was arbitrary >
√

2,
ε arbitrary > 0 and C fixed.

Exercise 3 — A bit more on differentiability.
We know that almost surely, B is nowhere differentiable. Set D∗B(t) = lim suph↓0

1
t
(Bt+h−

Bt) and D∗B(t) = lim infh↓0
1
t
(Bt+h −Bt).

(1) Show that B almost surely not bounded above nor below. Deduce that D∗B(0) =
+∞ a.s. and D∗B(0) = −∞ a.s.

(2) Deduce that almost surely, the Lebesgue measure of times t such thatD∗B(t) 6= +∞
or D∗B(t) 6= −∞ is 0.
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(3) Show that with probability one a fixed point t is not a one-sided local maximum of
B. Deduce that with probability one there exists a density of exceptional random
times where D∗B(t) ≤ 0.

(4) Show that there almost surely exists an uncountable density of points t where
D∗(t) = 0. (Hint : consider τ(x) = inf{t ≥ 0, Bt = x}. Show that this is almost
surely a strictly increasing function whose discontinuity points are dense and deduce
that Vn = {x ≥ 0,∃h ∈ (0, 1/n), τ(x − h) < τ(x) − nh} is open and dense. What
can be said about

⋂
n≥1 Vn ?)

Solution 3 — A bit more on differentiability.
We know that almost surely, B is nowhere differentiable. Set D∗B(t) = lim suph↓0

1
t
(Bt+h−

Bt) and D∗B(t) = lim infh↓0
1
t
(Bt+h −Bt).

(1) We showed earlier that almost surely, lim supBt = +∞ and lim inf Bt = −∞ almost
surely (actually we showed that the rate stricly more than

√
t) Hence the claim by

time inversion.
(2) E[Leb{t ≥ 0, D∗B(t) 6= +∞ or D∗B(t) 6= −∞}] =

∫
R dtP(D∗B(t) 6= +∞ or D∗B(t) 6=

−∞) =
∫
R

0 = 0, where we used Fubini and Markov.
(3) We know that 0 is almost surely not a local extremum at its right because there is

an accumulation of instants where B is strictly positive and negative near 0. For a
fixed point t, we treat the right side by Markov and the left side by time reversal.
Now for fixed p, q ∈ Q+ almost surely p, q are not one-sided local extrema. Hence
the maximum of B on [p, q] is reached somewhere in the interior, and that is a point
inside (p, q) where D∗B ≤ 0. We get the claim by countable union.

(4) We consider τ(x) = inf{t ≥ 0, Bt = x}. This is by definition strictly increasing
function, and if it were continuous on some open interval, then B would be mo-
notonous on some open interval, which it is almost surely not. Now if we consider
Vn = {x ≥ 0,∃h ∈ (0, 1/n), τ(x − h) < τ(x) − nh}, it is open because τ is càglàd
strictly increasing. It is dense because otherwise we found an open interval of x
where ∀h ∈ (0, 1/n), τ(x) − nh ≤ τ(x − h) ≤ τ(x), implying continuity on some
open interval. Then by the Baire category theorem,

⋂
n≥1 Vn is uncountable and

dense. Let x be in this set, and t = τ(x). Then there exists a sequence tn ↑ t,
B∗(tn) > t − 1/n, tn < t − nB∗(tn). Hence the lower left derivative of B at t is 0.
The upper left derivative is 0 too by definition. We get the claim by time reversal.


