Leftover exercises from 2018

Exercise 1 - Limit in distribution of Gaussian vectors.
Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of Gaussian variables $\left(X_{n}\right)_{n \geq 0}$. Give a necessary and sufficient condition for convergence in distribution, show that the limit is always Gaussian, and determine its parameters.

Solution 1 - Limit in distribution of Gaussian vectors.
We restrict ourselves to gaussian variables. It is rather easy to lift this up to vectors afterwards. Let μ_{n} and σ_{n} be the parameters of X_{n} If we have convergence in distribution, then we have convergence of the characteristic functions to the one of the limit. So there exists a characteristic function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $t \in \mathbb{R}, f_{n}(t)=e^{i \mu_{n} t-\frac{\sigma_{n}^{2}}{2} t^{2}} \rightarrow f(t)$. Now taking the modulus then the \log yields $\sigma_{n}^{2} \rightarrow-\frac{2}{t^{2}} \log (|f(t)|)=\sigma^{2} \geq 0$. We deduce that $|f(t)|=e^{-\frac{\sigma^{2}}{2} t^{2}}$. Now $e^{i \mu_{n} t}=e^{\frac{\sigma_{n}^{2}}{2} t^{2}} f_{n}(t) \rightarrow e^{\frac{\sigma}{2}_{2}^{2}} t^{2} f(t)=u(t)$, which is a continuous function in \mathbb{C} of modulus 1 (with $u(0)=: 1$). So it can be lifted up to a continuous real function, i.e. there exists h continuous with $h(0)=0$ such that $u(t)=e^{i h(t)}$ for all t. We have

$$
e^{i\left(\mu_{n} t-h(t)\right)} \rightarrow 0 .
$$

We shall now show that $\left(\mu_{n}\right)_{n}$ is bounded. This important step is treated with a probabilistic proof: we use the fact that the distribution of X_{n} is symmetric about its mean ${ }^{1}$. Suppose there is an increasing subsequence $\mu_{k_{n}} \rightarrow \infty$. Then $\mathbb{P}\left(X_{k_{n}} \geq \mu_{k_{n}}\right)=1 / 2$ for all n, and $\mathbb{P}\left(X_{k_{n}} \geq \mu_{k_{p}}\right) \geq 1 / 2$ for all $n \geq p$. So by taking $n \rightarrow \infty$ with fixed p we get $\mathbb{P}\left(X \geq \mu_{k_{p}}\right) \geq 1 / 2$ for all p, which is absurd as $\mu_{k_{p}} \rightarrow \infty$.
So $\left(\mu_{n}\right)_{n}$ is bounded above and the symmetric argument allows to show that it is bounded below.
Back to our problem, we shall now show that $A=\left\{t \in \mathbb{R}: \mu_{n} t \rightarrow h(t)\right\}$ is the whole of \mathbb{R}.

- It is nonempty as it contains 0 .
- It is closed because of the uniform control of μ_{n} in n.
- It is open: let $t \in A$. For $s \in \mathbb{R}$ we have $\left.e^{i\left(\mu_{n} t-h(t)-\mu_{n} s+h(s)\right.}\right) \rightarrow 0$. By the bound on μ_{n} and continuity of h we can find $\epsilon>0$ such that for all $s \in(t-\epsilon, t+\epsilon)$ and all n, $\left|\mu_{n} t-h(t)-\mu_{n} s+h(s)\right|<\pi / 2$. But for $|\theta|<\pi / 2, \theta \mapsto e^{i \theta}$ is an homeomorphism. We deduce $\mu_{n} t-h(t)-\mu_{n} s+h(s) \rightarrow 0$ and hence $s \in A$.
We conclude by connectedness of \mathbb{R}. We get that for every $t \neq 0, \mu_{n} \rightarrow h(t) / t$, so μ_{n} converges to some μ and $h(t)=\mu t$. This proves that $f(t)=e^{i \mu t-\frac{\sigma^{2}}{2} t^{2}}$, so X is a Gaussian with parameters $\mu=\lim \mu_{n}$ and $\sigma^{2}=\lim \sigma_{n}^{2}$. Conversely these convergences directly imply convergence in distribution.

[^0]Exercise 2 - The precise constant (Lévy, 1937).
We want to show that with probability one,

$$
\limsup _{h \downarrow 0} \frac{m_{B}(h,[0,1])}{\sqrt{2 h \log (1 / h)}}=1
$$

(1) Show that if X is standard Gaussian and $x>0$, then

$$
\frac{1}{\sqrt{2 \pi}(x+1 / x)} e^{-x^{2} / 2} \leq \mathbb{P}(X \geq x) \leq \frac{1}{\sqrt{2 \pi} x} e^{-x^{2} / 2}
$$

(2) For $c<\sqrt{2}$, show that almost surely for all $\epsilon>0$ there exists $s, t \in[0,1]$ with $|t-s| \leq \epsilon$ and $|B(t)-B(s)| \geq c \sqrt{|t-s| \log (1 /|t-s|)}$. (Hint: divide [0, 1] in intervals of length 2^{-n}).
(3) Fix $m \geq 1$ and define the following families of intervals:

$$
\Lambda_{n}(m)=\left\{\left[(k / m-1) 2^{-n / m},(k / m) 2^{-n / m}\right], \quad m \leq k \leq m 2^{n / m}\right\}, \quad n \geq 1
$$

For $c>\sqrt{2}$, show that almost surely, for n large enough and any interval $[s, t]$ in the family $\Lambda_{n}(m),|B(t)-B(s)| \leq c \sqrt{|t-s| \log (1 /|t-s|)}$.
(4) Fix $\epsilon>0$, show that there exists $m \geq 1$ such that any interval $[s, t] \subset[0,1]$ can be approximated with an interval $\left[s^{\prime}, t^{\prime}\right] \in \Lambda(m)=\cup_{n \geq 1} \Lambda_{n}(m)$, with $\left|t-t^{\prime}\right|,\left|s-s^{\prime}\right| \leq$ $\epsilon|t-s|$, and $\left|t^{\prime}-s^{\prime}\right| \leq|t-s|$.
(5) Deduce that almost surely, for h small enough, $m_{B}(h,[0,1]) \leq C \sqrt{h \log (1 / h)}$, for a constant C that can be brought arbitrarily close to $\sqrt{2}$. Conclude.

Solution 2 - The precise constant (Lévy, 1937).
(1) The upper bound comes from the inequality $\int_{x}^{\infty} e^{-t^{2} / 2} d t \leq \int_{x}^{\infty} \frac{t}{x} e^{-t^{2} / 2} d t$. The lower bound can be obtained by differentiating the difference.
(2) First of all, $\mathbb{P}\left(E_{k, n}\right)=\mathbb{P}\left(B_{\left.(k+1) 2^{-n}-B_{k 2^{-n}} \geq c \sqrt{2^{-n} \log \left(2^{n}\right)}\right)=\mathbb{P}\left(B_{1} \geq c \sqrt{n \log 2}\right) \geq}\right.$ $\frac{1}{1000 c \sqrt{n}} 2^{-c^{2} n / 2}$. Then

$$
\begin{aligned}
& \mathbb{P}\left(\forall 0 \leq k \leq 2^{-} n, B_{(k+1) 2^{-n}}-B_{k 2^{-n}}<c \sqrt{2^{-n} \log \left(2^{n}\right)}\right)=\mathbb{P}\left(\bigcap_{k} E_{k, n}^{\complement}\right) \\
& =\prod_{k}\left(1-\mathbb{P}\left(E_{k, n}\right)\right) \leq\left(1-\frac{1}{1000 c \sqrt{n}} 2^{-c^{2} n / 2}\right)^{2^{n}} \leq \exp \left(-2^{n} \frac{1}{1000 c \sqrt{n}} 2^{-c^{2} n / 2}\right) \\
& \quad=\exp \left(-\frac{1}{1000 c \sqrt{n}} 2^{\left(1-c^{2} / 2\right) n}\right)=\text { summable in } n .
\end{aligned}
$$

So by Borel-Cantelli, we get that infinitely often in n, there is an increment of length 2^{-n} that exceeds $c \sqrt{2^{-n} \log \left(2^{n}\right)}$. This implies the claim.
$\mathbb{P}\left(\exists[s, t] \in \Lambda_{n}(m),|B(t)-B(s)|>c \sqrt{|t-s| \log (1 /|t-s|)}\right)$

$$
\begin{aligned}
& \leq m 2^{n / m} \mathbb{P}\left(\left|B_{1}\right| \geq c \sqrt{n / m \log 2}\right) \\
& \quad \leq m 2^{n / m} \frac{1}{\sqrt{2 \pi} c \sqrt{n / m \log 2}} 2^{-\left(c^{2} / 2\right) n / m}=\text { summable in } n
\end{aligned}
$$

So almost surely, for n large enough, any interval in $\Lambda_{n}(m)$ has the required growth bound.
(4) Take m to be determined later in terms of ϵ. Then given t and s, we can find n so that $1 \leq|t-s| / 2^{-n / m} \leq\left(2^{1 / m}\right) \leq 1+\epsilon / 3$. We can now find k so that $\left|s-\frac{k}{m} 2^{-n / m}\right| \leq \frac{1}{m} 2^{-n / m} \leq \frac{1}{m}|t-s|$. Set $s^{\prime}=\frac{k}{m} 2^{-n / m}, t^{\prime}=\left(\frac{k}{m}+1\right) 2^{-n / m}$. Then $\left|s^{\prime}-s\right| \leq \frac{1}{m}|t-s|$ and $\left|t^{\prime}-t\right| \leq\left|t^{\prime}-s^{\prime}\right|+\left|s^{\prime}-s\right| \leq\left(2^{1 / m}-1\right)|t-s|+\frac{1}{m}|t-s|$. Now choose retrospectively m so that $2^{1 / m}-1+\frac{1}{m}<\epsilon$ and $\frac{1}{m}<\epsilon$ makes everything work. Remark that we additionaly get $\left|t^{\prime}-s^{\prime}\right| \leq|t-s|$ which eases the solution of the next question.
(5) Fix ϵ and m accordingly. Now almost surely, there is n_{0} such that for $n \geq n_{0}$, all intervals in $\Lambda_{n}(m)$ have the growth bound with the constant c. Moreover, from the lecture, almost surely there is a h_{0} such that all intervals of length $<h_{0}$ have the growth bound with the constant C from the lecture. Now take s, t such that $|s-t| \leq \epsilon, \epsilon|s-t| \leq h_{0}$ and $|s-t| \leq 2^{-n_{0} / m}$. Then consider s^{\prime}, t^{\prime} as in the previous question. It comes that $\left|t^{\prime}-t\right|,\left|s^{\prime}-s\right| \leq h_{0}$ and that $\left|s^{\prime}-t^{\prime}\right| \in \Lambda_{n}(m)$ with $n \geq n_{0}$. Hence

$$
\begin{aligned}
& \left|B_{t}-B_{s}\right| \leq\left|B_{t}-B_{t}^{\prime}\right|+\left|B_{s}-B_{s}^{\prime}\right|+\left|B_{t}-B_{s}\right| \\
& \leq C \sqrt{\left|s^{\prime}-s\right| \log \left(1 /\left|s^{\prime}-s\right|\right)}+C \sqrt{\left|t^{\prime}-t\right| \log \left(1 /\left|t^{\prime}-t\right|\right)}+c \sqrt{\left|t^{\prime}-s^{\prime}\right| \log \left(1 /\left|t^{\prime}-s^{\prime}\right|\right)} \\
& \leq 2 C \sqrt{\epsilon|t-s| \log (1 /(\epsilon|t-s|)}+c \sqrt{|t-s|} \log (1 /|t-s|) \\
& \qquad(2 C \sqrt{\epsilon(1+1)}+c) \sqrt{|t-s| \log (1 /|t-s|)}
\end{aligned}
$$

Where at the second inequality we used the increasing character (close to 0) of $x \mapsto \sqrt{x \log (1 / x)}$ and at the last one we used $\log (1 / \epsilon) \leq \log (1 /|s-t|)$. The constant obtained can be brought arbitrarily close to $\sqrt{2}$ as c was arbitrary $>\sqrt{2}$, ϵ arbitrary >0 and C fixed.

Exercise 3 - A bit more on differentiability.
We know that almost surely, B is nowhere differentiable. Set $D^{*} B(t)=\lim \sup _{h \downarrow 0} \frac{1}{t}\left(B_{t+h}-\right.$ $\left.B_{t}\right)$ and $D_{*} B(t)=\liminf _{h \downarrow 0} \frac{1}{t}\left(B_{t+h}-B_{t}\right)$.
(1) Show that B almost surely not bounded above nor below. Deduce that $D^{*} B(0)=$ $+\infty$ a.s. and $D_{*} B(0)=-\infty$ a.s.
(2) Deduce that almost surely, the Lebesgue measure of times t such that $D^{*} B(t) \neq+\infty$ or $D_{*} B(t) \neq-\infty$ is 0 .
(3) Show that with probability one a fixed point t is not a one-sided local maximum of B. Deduce that with probability one there exists a density of exceptional random times where $D^{*} B(t) \leq 0$.
(4) Show that there almost surely exists an uncountable density of points t where $D^{*}(t)=0$. (Hint : consider $\tau(x)=\inf \left\{t \geq 0, B_{t}=x\right\}$. Show that this is almost surely a strictly increasing function whose discontinuity points are dense and deduce that $V_{n}=\{x \geq 0, \exists h \in(0,1 / n), \tau(x-h)<\tau(x)-n h\}$ is open and dense. What can be said about $\bigcap_{n \geq 1} V_{n} ?$)

Solution 3 - A bit more on differentiability.
We know that almost surely, B is nowhere differentiable. Set $D^{*} B(t)=\limsup _{h \downarrow 0} \frac{1}{t}\left(B_{t+h}-\right.$ $\left.B_{t}\right)$ and $D_{*} B(t)=\liminf _{h \downarrow 0} \frac{1}{t}\left(B_{t+h}-B_{t}\right)$.
(1) We showed earlier that almost surely, $\lim \sup B_{t}=+\infty$ and $\lim \inf B_{t}=-\infty$ almost surely (actually we showed that the rate stricly more than \sqrt{t}) Hence the claim by time inversion.
(2) $\mathbb{E}\left[\operatorname{Leb}\left\{t \geq 0, D^{*} B(t) \neq+\infty\right.\right.$ or $\left.\left.D_{*} B(t) \neq-\infty\right\}\right]=\int_{\mathbb{R}} d t \mathbb{P}\left(D^{*} B(t) \neq+\infty\right.$ or $D_{*} B(t) \neq$ $-\infty)=\int_{R} 0=0$, where we used Fubini and Markov.
(3) We know that 0 is almost surely not a local extremum at its right because there is an accumulation of instants where B is strictly positive and negative near 0 . For a fixed point t, we treat the right side by Markov and the left side by time reversal. Now for fixed $p, q \in \mathbb{Q}_{+}$almost surely p, q are not one-sided local extrema. Hence the maximum of B on $[p, q]$ is reached somewhere in the interior, and that is a point inside (p, q) where $D^{*} B \leq 0$. We get the claim by countable union.
(4) We consider $\tau(x)=\inf \left\{t \geq 0, B_{t}=x\right\}$. This is by definition strictly increasing function, and if it were continuous on some open interval, then B would be monotonous on some open interval, which it is almost surely not. Now if we consider $V_{n}=\{x \geq 0, \exists h \in(0,1 / n), \tau(x-h)<\tau(x)-n h\}$, it is open because τ is càglàd strictly increasing. It is dense because otherwise we found an open interval of x where $\forall h \in(0,1 / n), \tau(x)-n h \leq \tau(x-h) \leq \tau(x)$, implying continuity on some open interval. Then by the Baire category theorem, $\bigcap_{n \geq 1} V_{n}$ is uncountable and dense. Let x be in this set, and $t=\tau(x)$. Then there exists a sequence $t_{n} \uparrow t$, $B^{*}\left(t_{n}\right)>t-1 / n, t_{n}<t-n B^{*}\left(t_{n}\right)$. Hence the lower left derivative of B at t is 0 . The upper left derivative is 0 too by definition. We get the claim by time reversal.

[^0]: ${ }^{1}$ Since we know that σ_{n} is bounded, we could as well use the fact that X_{n} concentrates around its mean

