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Solutions for Exercise sheet 11: Miscellanea

Solution 1 — Capacity and Hausdorff dimension.
Let f be a positive function on Rd called potential. The energy of a measure µ is If (µ) =∫∫

f(x− y)µ(dx)µ(dy). The capacity of some set A is

Capf (A) = [inf{If (µ) : µ probability measure on A}]−1

At some point you will see that a closed set is polar in dimension d ≥ 2 if and only if it
has zero capacity for the radial potential f(ε) = | log(ε)| if d = 2 and f(ε) = ε2−d if d ≥ 3.
We wish to show a connexion between the notion of capacity and Hausdorff dimension.

(1) Let (Ui)i ∈ P(A)N be such that for all i, diam(Ui) ≤ δ and the (Ui)i forms a partition
of A.∫∫
|x−y|<δ

µ(dx)µ(dy)|x− y|−α ≥
∫∫
|x−y|<δ

µ(dx)µ(dy)(
∑
i

1x,y∈Ui)|x− y|−α

≥
∑
i

∫∫
U2
i

µ(dx)µ(dy)|x− y|−α

≥
∑
i

µ(Ui)
2 diam(Ui)

−α

Hence(∫∫
|x−y|<δ

µ(dx)µ(dy)|x− y|−α
)(∑

i∈N

diam(Ui)
α

)

≥

(∑
i

µ(Ui)
2 diam(Ui)

−α

)(∑
i∈N

diam(Ui)
α

)

≥

(∑
i

µ(Ui) diam(Ui)
α/2 diam(Ui)

−α/2

)2

=

(∑
i

µ(Ui)

)2

= µ(A)2

by Cauchy-Schwarz, yielding the desired inequality. Taking the infimum on all (Ui)i
then the limit δ → 0 yields

Hα(A) ≥ µ(A)2∫∫
A
µ(dx)µ(dy)|x− y|−α

Hence for a set of nonzero finite α-capacity, by definition there exists µ > 0 such
that

∫∫
A
µ(dx)µ(dy)|x − y|−α < ∞, so the right-hand-side is bounded below away

from 0. Hence Hα(A) > 0 and the Hausdorff dimension is larger than α.
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(2) Assume wlog that the segment is [0, 1]. Let C be the α-Hölder constant. For n ≥ 1
take Uk = f([k/n, (k + 1)/n]) for 0 ≤ k ≤ n− 1. Then it is a cover of f([0, 1]) and
diam(Uk) ≤ C(1/n)α. Hence

∑
k diam(Uk)

1/α ≤
∑

k C
1/α1/n ≤ C1/α. So we found

arbitrarily fine covers with bounded α-sum. Hence Hα(A) <∞ and dimH(A) ≤ ε.
(3) If d = 1 B([0, 1]) almost surely contains a ball so has Hausdorff dimension 1.

If d ≥ 2, we use question 2 and the fact that B is almost surely (1/2 − ε)-Hölder
on [0, 1] to show that dimH(B([0, 1])) ≤ 2. For the lower bound we consider the
(random) occupation measure µ = B? Leb[0,1]. If we take α < 2 and compute

E
[∫∫

B([0,1])2
µ(dx)µ(dy)(x− y)−α

]
= E

[∫∫
[0,1]2

dxdy(B(x)−B(y))−α
]

=

∫∫
[0,1]2

dxdy E[(B(x)−B(y))−α]

=

∫∫
[0,1]2

dxdy(x− y)−α/2 E[(B(1))−α]

This is a product of two integrals, the first one boils down to
∫ 1

0
r−α/2dr < ∞,

the second one to
∫∞
0
rd−1r−αe−r

2/2dr < ∞, since α < 2. Hence the random
variable

∫∫
B([0,1])2

µ(dx)µ(dy)(x − y)−α has finite expectation and is almost surely

finite. Hence almost surely dimH(B([0, 1])) > α. Hence dimH(B([0, 1])) = 2 almost
surely.

Solution 2 — Some more boundary value problems.
In this exercise we admit that for x, y ∈ Rd, t > 0, we have ∂tpt(x, y) = 1

2
∆ypt(x, y).

(Fokker-Planck equation)

(1) This process has clearly independent increments, so we need only show that it is
centered.

Ex[Xt] = Ex
[
f(Bt)−

1

2

∫ t

0

∆f(Bs)ds

]
=

∫
y

f(y)pt(x, y)dy − 1

2

∫ t

0

(∫
y

ps(x, y)∆f(y)dy

)
ds

∂

∂t
Ex[Xt] =

∫
y

f(y)
∂

∂t
pt(x, y)dy − 1

2

∫
y

pt(x, y)∆f(y)dy

=

∫
y

f(y)
∂

∂t
pt(x, y)dy − 1

2

∫
y

∆pt(x, y)f(y)dy

=

∫
y

(
∂

∂t
pt(x, y)− 1

2
∆pt(x, y)

)
f(y)dy = 0

Where we used Fubini, Lebesgue’s differentiation theorem, and integration by part
(the fact that f has compact support makes the boundary term vanish). Hence
Ex[Xt] = Ex[X0] and we are done.
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(2) Once again we need only show that the increments are centered. We want to reuse
question 1. Let ε > 0 and φε a C∞ approximation of unity with support contained
in B(0, ε). Let also Dε = Rd \ B(D{, ε). Set fε = (1Dε/2 ∗φε/4)f . Then fε verifies

the hypotheses of question 1. Hence, setting Tε to be the hitting time of D{
ε , and

using the optional stopping theorem for fε(Bt) −
∫ t
0

∆fε(Bs)ds at stopping time
t ∧ Tε, we get

f(x) = Ex
[
fε(Bt∧Tε)−

1

2

∫ t∧Tε

0

∆fε(Bs)ds

]
= Ex

[
f(Bt∧Tε)−

1

2

∫ t∧Tε

0

∆f(Bs)ds

]
ε→0−−→ Ex

[
f(Bt∧T )− 1

2

∫ t∧T

0

∆f(Bs)ds

]
where we used the fact that f and fε coincide on Dε at the second line, and the
continuity of paths with the dominated convergence theorem at the last line (this
uses the boundedness of f and its derivatives, along with integrability of the first
exit time of bounded domains). This finishes the question.

(3) Show that in the sense of distributions, we have ∆G(x, ·) = δx, where G is the
Green function of the Brownian motion in the whole of R3 or in a bounded domain
of R2.

Let D be the domain in which we are working, possibly Rd for d ≥ 3. We need
to show that for φ C∞ and compactly supported (in particular φ vanishes at the
boundary of D), we have∫

∆φ(y)G(x, y)dy = −2

∫
δx(y)φ(y)dy = −2φ(x).

But by definition of G, for all θ,
∫
θ(y)G(x, y)dy = Ex[

∫ T
0
θ(Bs)ds]. Hence if we go

back to the result of question 2, we have

φ(x) = Ex
[
φ(Bt∧T )− 1

2

∫ t∧T

0

∆φ(Bs)ds

]
t→∞−−−→ Ex

[
φ(BT )− 1

2

∫ T

0

∆φ(Bs)ds

]
= 0− 1

2
Ex
[∫ T

0

∆φ(Bs)ds

]
= −1

2

∫
y

∆φ(y)G(x, y)dy.

which is what we wanted. We used a dominated convergence theorem at line 2:
• when D is bounded the almost sure convergence is immediate, and when D

is unbounded, in dimension ≥ 3, it comes from the transience of Brownian
motion and compactness of supp(φ).

• the domination is by ‖φ‖∞ + ‖∆φ‖∞
∫ T
0
1Bs∈supp(φ) ds, whose expectation is

bounded by C
∫
supp(φ)

G(x, y)dy <∞.
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We also used the fact that φ vanishes at the boundary of D at line 3.
(4) This is only a matter of applying question 2 to u and once again the dominated

convergence theorem as t→∞.
(5) The fact that u is continuous at the boundary follows from the same proof as for

the Laplace problem, using the Poincaré cone condition.
To show that ∆u = f , it is a simple matter from the previous question that this
holds in the weak sense, using Fubini. For the strong sense, see the book mentioned
in the remark...

Solution 3 — Transition probabilities and Green’s function on the disc.
To be updated when I know how to do this exercise!


