
ENS de Lyon - M1 jeudi 3 mai 2018

examen de processus stochastiques et mouvement brownien (3 heures)

No document is allowed for this exam. The two exercices are independent. We admit
the following generalization of Borel-Cantelli lemma, also known as Kochen-Stone lemma.
(For your information, Kochen-Stone lemma is not hard to prove with the help of the
Paley-Zygmund inequality)

Lemma. If the events An satisfy
∑
P (An) = +∞ and

lim sup
n→∞

(
∑n

k=0 P(Ak))
2∑n

k=0

∑n
l=0 P(Ak ∩ Al)

= c > 0,

then P(lim supAn) ≥ c.

Exercise 1. Speed of escape to infinity

In this exercice, we study the speed of escape to infinity of a Brownian motion in
dimension 3 and more. We aim to prove the following theorem, which establishes that
it escapes quicker than a deterministic function f if and only if this function passes an
integrability test, called Dvoretzky-Erdös test.

Theorem. Suppose d ≥ 3 and B is a Brownian motion in Rd started from 0. Let f :
[1,∞) → (0,∞) increasing. We say f satisfies the integrability condition (IC) if the
integral

∫∞
1
f(r)d−2rd/2dr is finite. Then

(a) If f satisfies the integrability condition (IC), then lim inf |Bt|
f(t)

= +∞ a.s.

(b) Otherwise, lim inf |Bt|
f(t)

= 0 a.s.

In particular, Brownian motion a.s. satisfies lim inf |Bt|
t1/2

= 0, but lim inf |Bt|
tα

= +∞
for any α < 1/2. By a simple series-integral comparison, the function f satisfies the
integrability condition (IC) iff

∑
n≥0(f(2n)2−n/2)d−2 < +∞.

1. For t ≥ 0, let Gt be the σ-field generated by the variables Bu for u ≥ t, and let
G∞ = ∩t≥0Gt. Prove G∞ is trivial (ie contains only events of probability 0 or 1), and

deduce that the law of lim inf |Bt|
f(t)

is a Dirac mass at some x ∈ [0,+∞].

2. Show that is suffices to prove, instead of the theorem, the apparently weaker results

(a) If f satisfies (IC), then lim inf |Bt|
f(t)
≥ 1 a.s.

(b) Otherwise, P(lim inf |Bt|
f(t)
≤ 1) > 0.
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3. In this question, we suppose the existence of a sequence (tn)n≥0 going to +∞ such
that f(tn) ≥

√
tn. In particular, f does not satisfy (IC). Prove the result 2.(b) in

that case.

In the following, we exclude this case and thus suppose f(t) ≤
√
t for t large enough.

By modifying f on a compact interval, we suppose, without loss of generality 1, that
f satisfies f(t) ≤

√
t for all t ≥ 1.

4. Recall briefly why, if B is under Px a BM started from x ∈ Rd (in particular, the
notation P0 is somehow redundant with P), then

Px(inf |Bt| ≤ r) =

(
r

|x|

)d−2
∧ 1.

5. We define the function g0 : x 7→ |x|2−d, and, for r > 0, the function gr by

gr(x) =
1

|x|d−2
∧ 1

rd−2
.

Prove

Px(inf{|Bt|, t ≥ 1} ≤ r) ≤ P0(inf{|Bt|, t ≥ 1} ≤ r) = rd−2E[gr(B1)] ≤ ard−2,

with a = E [g0(B1)] ∈ (0,+∞). For the first inequality, you may want to use the
strong Markov property of the Brownian motion started from 0.

6. We introduce, for n ≥ 0, the event An = {∃t ∈ (2n, 2n+1], |Bt| ≤ f(t)}. If f satisfies
(IC), prove only finitely many of the events An occur, a.s., and deduce 2.(a).

7. We now suppose, until the end of the exercice, that f does not satisfy (IC) (but
still, f(t) ≤

√
t for all t ≥ 1). Prove

P(∃t ∈ [1, 2], |Bt| ≤ r) ≥ rd−2E
[
gr(B1)− gr

(√
2B1

)]
.

Writing b = E
[
g1(B1)− g1

(√
2B1

)]
∈ (0,+∞), deduce first :

∀r ≤ 1, P(∃t ∈ [1, 2], |Bt| ≤ r) ≥ brd−2,

and then
∑

P(An) = +∞.

8. Show we always have P(An|F2n−1) ≤ a(f(2n+1)2−
n−1
2 )d−2. Prove

lim sup
n→∞

∑n
k=0

∑n
l=0 P(Ak ∩ Al)

(
∑n

k=0 P(Ak))
2 ≤ 2d−1a

b
,

and deduce 2.(b).

1. Indeed, the modification does not change the integrability condition for f , nor does it change
lim inf |Bt|/f(t).
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Exercise 2. Planar Brownian motion conditioned on avoiding the unit disk.

In this exercise, B is under Px a planar Brownian motion started from x ∈ R2. We
further suppose |x| > 1 and for r > 0, we define Tr the hitting time of the circle of radius
r, namely Tr = inf{t ≥ 0, |Bt| = r}. In questions (1)-(4), we define the Brownian motion
“conditioned on never hitting the unit disk”. In questions (5)-(7), we prove it is transient
but does not escape too quickly to infinity. In questions (8)-(9), we prove a striking result
for the asymptotic probability that this process ever hits a far away disk of radius 1.

1. Recall briefly why, for r > |x|, we have ln |x| = Ex[ln |BT1∧Tr |], and deduce :

∀t ≥ 0, ln |Bt∧T1∧Tr | = Ex[ln |BT1∧Tr |
∣∣Ft].

Hence ln |Bt∧T1∧Tr | is a closed martingale.

2. For t ≥ 0, we let Mt = ln |Bt∧T1| = 1t<T1 ln |Bt|. Show M is a martingale.

3. In this question, we fix t ≥ 0 and define (Cs)0≤s≤t a process which, under Px, has
law absolutely continuous with that of (Bs)0≤s≤t, and with density the value of the
martingale M at time t, divided by M0 = ln |x|. Equivalently, for f an arbitrary
test function, we have

Ex[f((Cs)0≤s≤t)] = Ex
[
f((Bs)0≤s≤t)

Mt

M0

]
.

(a) Check that the law of (Cs)0≤s≤t is well-defined, and that, for any s ≤ t and
test function f ,

Ex[f((Cr)0≤r≤s)] = Ex
[
f((Br)0≤r≤s)

Ms

M0

]
.

(b) Prove that the event {∃s ≤ t, |Cs| ≤ 1} has probability 0, and that for any
r, s ≥ 0 such that r + s ≤ t and any test functions f and g,

Ex[f((Cq)0≤q≤r)g(Cr+s)] = Ex[f((Cq)0≤q≤r)gs(Cr)],

where we have written gs(y) = Ey[g(Cs)], for any y satisfying |y| > 1.

It follows that (Cs)0≤s≤t is a time-homogeneous Markov process, which we can now
extend 2 to R+. We admit the process (Cs)s≥0 satisfies the strong Markov property,
as well as verifies the equation

Ex[f((Cs)0≤s≤t)] = Ex
[
f((Bs)0≤s≤t)

Mt

M0

]
,

for any t ≥ 0 and test function f .

2. We can proceed to this extension by a gluing procedure. Alternatively, we may also invoke a Kol-
mogorov extension lemma.
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4. Prove that, for r ≥ |x|, the process (Ct∧Tr)t≥0 has the same law as the process
(Bt∧Tr)t≥0 conditionally on the event Tr < T1.

It is now natural (although slightly abusive) to call the process C “Brownian mo-
tion conditioned on never hitting the unit disk”, though this is not a well-defined
conditioning.

5. For 1 < r < |x|, prove

Px(∃t ≥ 0, |Ct| = r) =
ln r

ln |x|
,

and deduce that the process C is transient.

6. For 1 < |x| < r and t > 0, prove

Px
(

sup
0≤s≤t

|Cs| ≥ r

)
≤ 4

ln r

ln |x|
P
(
|N | ≥ r − |x|√

2t

)
,

where N is a centered reduced normal variable. Deduce that we almost surely have

∀α > 1/2, lim sup
|Ct|
tα

= 0.

7. Prove that we almost surely have

∀ε > 0, lim inf
|Ct|
tε

= 0.

Hint : For ε ∈ (0, 1), consider the family of events En, where En is the event that
the process C, after hitting the circle of radius 2n, hits the circle of radius 2εn before
hitting the circle of radius 2n+1.

For y ∈ R2, we call Ey := {∃t ≥ 0, |Ct − y| = 1} the event that the process C ever
hits the closed disk B(y, 1). We now seek an estimate of Px(Ey) when |y| → ∞.
For |y| > |x| + 1, writing r = |y| − 1 and using the strong Markov property at
time Tr, this probability equals the expectation of PCTr (Ey). We admit that CTr
is asymptotically uniform on the sphere, and that this expectation is equivalent to
Pνr(Ey), where νr is the uniform measure on ∂B(0, r).

8. Prove

Pνr(Ey) = Eνr
[

ln |BT∂B(y,1)
|

ln r
1T∂B(y,1)<T1

]
,

with T∂B(y,1) = inf{t ≥ 0, |Bt − y| = 1}.
9. Prove Pνr(T∂B(y,1) < T1) →

|y|→∞
1/2, and deduce Pνr(Ey)→ 1/2.

Hint : Argue that it suffices to show Pνr(THy < T∂B(y,1) ∧ T1) →
|y|→∞

1, where Hy =

{z ∈ R2, |z| = |z − y|} is the mediator of the segment between y and the origin, and
use the scale-invariance property of Brownian motion.
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