examen de processus stochastiques et mouvement brownien (3 heures)

No document is allowed for this exam. The two exercices are independent. We admit the following generalization of Borel-Cantelli lemma, also known as Kochen-Stone lemma. (For your information, Kochen-Stone lemma is not hard to prove with the help of the Paley-Zygmund inequality)

Lemma. If the events A_{n} satisfy $\sum P\left(A_{n}\right)=+\infty$ and

$$
\limsup _{n \rightarrow \infty} \frac{\left(\sum_{k=0}^{n} \mathbb{P}\left(A_{k}\right)\right)^{2}}{\sum_{k=0}^{n} \sum_{l=0}^{n} \mathbb{P}\left(A_{k} \cap A_{l}\right)}=c>0
$$

then $\mathbb{P}\left(\limsup A_{n}\right) \geq c$.

Exercise 1. Speed of escape to infinity

In this exercice, we study the speed of escape to infinity of a Brownian motion in dimension 3 and more. We aim to prove the following theorem, which establishes that it escapes quicker than a deterministic function f if and only if this function passes an integrability test, called Dvoretzky-Erdös test.

Theorem. Suppose $d \geq 3$ and B is a Brownian motion in \mathbb{R}^{d} started from 0 . Let f : $[1, \infty) \rightarrow(0, \infty)$ increasing. We say f satisfies the integrability condition (IC) if the integral $\int_{1}^{\infty} f(r)^{d-2} r^{d / 2} \mathrm{~d} r$ is finite. Then
(a) If f satisfies the integrability condition (IC), then $\lim \inf \frac{\left|B_{t}\right|}{f(t)}=+\infty$ a.s.
(b) Otherwise, $\lim \inf \frac{\left|B_{t}\right|}{f(t)}=0$ a.s.

In particular, Brownian motion a.s. satisfies $\lim \inf \frac{\left|B_{t}\right|}{t^{1 / 2}}=0$, but $\lim \inf \frac{\left|B_{t}\right|}{t^{\alpha}}=+\infty$ for any $\alpha<1 / 2$. By a simple series-integral comparison, the function f satisfies the integrability condition (IC) iff $\sum_{n \geq 0}\left(f\left(2^{n}\right) 2^{-n / 2}\right)^{d-2}<+\infty$.

1. For $t \geq 0$, let \mathcal{G}_{t} be the σ-field generated by the variables B_{u} for $u \geq t$, and let $\mathcal{G}_{\infty}=\cap_{t \geq 0} \mathcal{G}_{t}$. Prove \mathcal{G}_{∞} is trivial (ie contains only events of probability 0 or 1), and deduce that the law of $\lim \inf \frac{\left|B_{t}\right|}{f(t)}$ is a Dirac mass at some $x \in[0,+\infty]$.
2. Show that is suffices to prove, instead of the theorem, the apparently weaker results
(a) If f satisfies (IC), then $\lim \inf \frac{\left|B_{t}\right|}{f(t)} \geq 1$ a.s.
(b) Otherwise, $\mathbb{P}\left(\lim \inf \frac{\left|B_{t}\right|}{f(t)} \leq 1\right)>0$.
3. In this question, we suppose the existence of a sequence $\left(t_{n}\right)_{n \geq 0}$ going to $+\infty$ such that $f\left(t_{n}\right) \geq \sqrt{t_{n}}$. In particular, f does not satisfy (IC). Prove the result 2.(b) in that case.
In the following, we exclude this case and thus suppose $f(t) \leq \sqrt{t}$ for t large enough. By modifying f on a compact interval, we suppose, without loss of generality ${ }^{1}$, that f satisfies $f(t) \leq \sqrt{t}$ for all $t \geq 1$.
4. Recall briefly why, if B is under \mathbb{P}_{x} a BM started from $x \in \mathbb{R}^{d}$ (in particular, the notation \mathbb{P}_{0} is somehow redundant with \mathbb{P}), then

$$
\mathbb{P}_{x}\left(\inf \left|B_{t}\right| \leq r\right)=\left(\frac{r}{|x|}\right)^{d-2} \wedge 1
$$

5. We define the function $g_{0}: x \mapsto|x|^{2-d}$, and, for $r>0$, the function g_{r} by

$$
g_{r}(x)=\frac{1}{|x|^{d-2}} \wedge \frac{1}{r^{d-2}}
$$

Prove

$$
\mathbb{P}_{x}\left(\inf \left\{\left|B_{t}\right|, t \geq 1\right\} \leq r\right) \leq \mathbb{P}_{0}\left(\inf \left\{\left|B_{t}\right|, t \geq 1\right\} \leq r\right)=r^{d-2} \mathbb{E}\left[g_{r}\left(B_{1}\right)\right] \leq a r^{d-2}
$$

with $a=\mathbb{E}\left[g_{0}\left(B_{1}\right)\right] \in(0,+\infty)$. For the first inequality, you may want to use the strong Markov property of the Brownian motion started from 0 .
6. We introduce, for $n \geq 0$, the event $A_{n}=\left\{\exists t \in\left(2^{n}, 2^{n+1}\right],\left|B_{t}\right| \leq f(t)\right\}$. If f satisfies (IC), prove only finitely many of the events A_{n} occur, a.s., and deduce 2.(a).
7. We now suppose, until the end of the exercice, that f does not satisfy (IC) (but still, $f(t) \leq \sqrt{t}$ for all $t \geq 1$). Prove

$$
\mathbb{P}\left(\exists t \in[1,2],\left|B_{t}\right| \leq r\right) \geq r^{d-2} \mathbb{E}\left[g_{r}\left(B_{1}\right)-g_{r}\left(\sqrt{2} B_{1}\right)\right]
$$

Writing $b=\mathbb{E}\left[g_{1}\left(B_{1}\right)-g_{1}\left(\sqrt{2} B_{1}\right)\right] \in(0,+\infty)$, deduce first :

$$
\forall r \leq 1, \quad \mathbb{P}\left(\exists t \in[1,2],\left|B_{t}\right| \leq r\right) \geq b r^{d-2}
$$

and then $\sum \mathbb{P}\left(A_{n}\right)=+\infty$.
8. Show we always have $\mathbb{P}\left(A_{n} \mid \mathcal{F}_{2^{n-1}}\right) \leq a\left(f\left(2^{n+1}\right) 2^{-\frac{n-1}{2}}\right)^{d-2}$. Prove

$$
\limsup _{n \rightarrow \infty} \frac{\sum_{k=0}^{n} \sum_{l=0}^{n} \mathbb{P}\left(A_{k} \cap A_{l}\right)}{\left(\sum_{k=0}^{n} \mathbb{P}\left(A_{k}\right)\right)^{2}} \leq \frac{2^{d-1} a}{b},
$$

and deduce 2.(b).

[^0]
Exercise 2. Planar Brownian motion conditioned on avoiding the unit disk.

In this exercise, B is under \mathbb{P}_{x} a planar Brownian motion started from $x \in \mathbb{R}^{2}$. We further suppose $|x|>1$ and for $r>0$, we define T_{r} the hitting time of the circle of radius r, namely $T_{r}=\inf \left\{t \geq 0,\left|B_{t}\right|=r\right\}$. In questions (1)-(4), we define the Brownian motion "conditioned on never hitting the unit disk". In questions (5)-(7), we prove it is transient but does not escape too quickly to infinity. In questions (8)-(9), we prove a striking result for the asymptotic probability that this process ever hits a far away disk of radius 1 .

1. Recall briefly why, for $r>|x|$, we have $\ln |x|=\mathbb{E}_{x}\left[\ln \left|B_{T_{1} \wedge T_{r}}\right|\right]$, and deduce :

$$
\forall t \geq 0, \quad \ln \left|B_{t \wedge T_{1} \wedge T_{r}}\right|=\mathbb{E}_{x}\left[\ln \left|B_{T_{1} \wedge T_{r}}\right| \mid \mathcal{F}_{t}\right] .
$$

Hence $\ln \left|B_{t \wedge T_{1} \wedge T_{r}}\right|$ is a closed martingale.
2. For $t \geq 0$, we let $M_{t}=\ln \left|B_{t \wedge T_{1}}\right|=\mathbb{1}_{t<T_{1}} \ln \left|B_{t}\right|$. Show M is a martingale.
3. In this question, we fix $t \geq 0$ and define $\left(C_{s}\right)_{0 \leq s \leq t}$ a process which, under \mathbb{P}_{x}, has law absolutely continuous with that of $\left(B_{s}\right)_{0 \leq s \leq t}$, and with density the value of the martingale M at time t, divided by $M_{0}=\ln |x|$. Equivalently, for f an arbitrary test function, we have

$$
\mathbb{E}_{x}\left[f\left(\left(C_{s}\right)_{0 \leq s \leq t}\right)\right]=\mathbb{E}_{x}\left[f\left(\left(B_{s}\right)_{0 \leq s \leq t}\right) \frac{M_{t}}{M_{0}}\right] .
$$

(a) Check that the law of $\left(C_{s}\right)_{0 \leq s \leq t}$ is well-defined, and that, for any $s \leq t$ and test function f,

$$
\mathbb{E}_{x}\left[f\left(\left(C_{r}\right)_{0 \leq r \leq s}\right)\right]=\mathbb{E}_{x}\left[f\left(\left(B_{r}\right)_{0 \leq r \leq s}\right) \frac{M_{s}}{M_{0}}\right] .
$$

(b) Prove that the event $\left\{\exists s \leq t,\left|C_{s}\right| \leq 1\right\}$ has probability 0 , and that for any $r, s \geq 0$ such that $r+s \leq t$ and any test functions f and g,

$$
\mathbb{E}_{x}\left[f\left(\left(C_{q}\right)_{0 \leq q \leq r}\right) g\left(C_{r+s}\right)\right]=\mathbb{E}_{x}\left[f\left(\left(C_{q}\right)_{0 \leq q \leq r}\right) g_{s}\left(C_{r}\right)\right],
$$

where we have written $g_{s}(y)=\mathbb{E}_{y}\left[g\left(C_{s}\right)\right]$, for any y satisfying $|y|>1$.
It follows that $\left(C_{s}\right)_{0 \leq s \leq t}$ is a time-homogeneous Markov process, which we can now extend ${ }^{2}$ to \mathbb{R}_{+}. We admit the process $\left(C_{s}\right)_{s \geq 0}$ satisfies the strong Markov property, as well as verifies the equation

$$
\mathbb{E}_{x}\left[f\left(\left(C_{s}\right)_{0 \leq s \leq t}\right)\right]=\mathbb{E}_{x}\left[f\left(\left(B_{s}\right)_{0 \leq s \leq t}\right) \frac{M_{t}}{M_{0}}\right],
$$

for any $t \geq 0$ and test function f.

[^1]4. Prove that, for $r \geq|x|$, the process $\left(C_{t \wedge T_{r}}\right)_{t \geq 0}$ has the same law as the process $\left(B_{t \wedge T_{r}}\right)_{t \geq 0}$ conditionally on the event $T_{r}<T_{1}$.

It is now natural (although slightly abusive) to call the process C "Brownian motion conditioned on never hitting the unit disk", though this is not a well-defined conditioning.
5. For $1<r<|x|$, prove

$$
\mathbb{P}_{x}\left(\exists t \geq 0,\left|C_{t}\right|=r\right)=\frac{\ln r}{\ln |x|},
$$

and deduce that the process C is transient.
6. For $1<|x|<r$ and $t>0$, prove

$$
\mathbb{P}_{x}\left(\sup _{0 \leq s \leq t}\left|C_{s}\right| \geq r\right) \leq 4 \frac{\ln r}{\ln |x|} \mathbb{P}\left(|N| \geq \frac{r-|x|}{\sqrt{2 t}}\right)
$$

where N is a centered reduced normal variable. Deduce that we almost surely have

$$
\forall \alpha>1 / 2, \quad \lim \sup \frac{\left|C_{t}\right|}{t^{\alpha}}=0
$$

7. Prove that we almost surely have

$$
\forall \varepsilon>0, \quad \liminf \frac{\left|C_{t}\right|}{t^{\varepsilon}}=0
$$

Hint : For $\varepsilon \in(0,1)$, consider the family of events E_{n}, where E_{n} is the event that the process C, after hitting the circle of radius 2^{n}, hits the circle of radius $2^{\varepsilon n}$ before hitting the circle of radius 2^{n+1}.

For $y \in \mathbb{R}^{2}$, we call $E_{y}:=\left\{\exists t \geq 0,\left|C_{t}-y\right|=1\right\}$ the event that the process C ever hits the closed disk $\bar{B}(y, 1)$. We now seek an estimate of $\mathbb{P}_{x}\left(E_{y}\right)$ when $|y| \rightarrow \infty$. For $|y|>|x|+1$, writing $r=|y|-1$ and using the strong Markov property at time T_{r}, this probability equals the expectation of $\mathbb{P}_{C_{T_{r}}}\left(E_{y}\right)$. We admit that $C_{T_{r}}$ is asymptotically uniform on the sphere, and that this expectation is equivalent to $\mathbb{P}_{\nu_{r}}\left(E_{y}\right)$, where ν_{r} is the uniform measure on $\partial B(0, r)$.
8. Prove

$$
\mathbb{P}_{\nu_{r}}\left(E_{y}\right)=\mathbb{E}_{\nu_{r}}\left[\frac{\ln \left|B_{T_{\partial B(y, 1)}}\right|}{\ln r} \mathbb{1}_{T_{\partial B(y, 1)}<T_{1}}\right],
$$

with $T_{\partial B(y, 1)}=\inf \left\{t \geq 0,\left|B_{t}-y\right|=1\right\}$.
9. Prove $\mathbb{P}_{\nu_{r}}\left(T_{\partial B(y, 1)}<T_{1}\right) \underset{|y| \rightarrow \infty}{\rightarrow} 1 / 2$, and deduce $\mathbb{P}_{\nu_{r}}\left(E_{y}\right) \rightarrow 1 / 2$.

Hint : Argue that it suffices to show $\mathbb{P}_{\nu_{r}}\left(T_{H_{y}}<T_{\partial B(y, 1)} \wedge T_{1}\right) \underset{|y| \rightarrow \infty}{\rightarrow} 1$, where $H_{y}=$ $\left\{z \in \mathbb{R}^{2},|z|=|z-y|\right\}$ is the mediator of the segment between y and the origin, and use the scale-invariance property of Brownian motion.

[^0]: 1. Indeed, the modification does not change the integrability condition for f, nor does it change $\liminf \left|B_{t}\right| / f(t)$.
[^1]: 2. We can proceed to this extension by a gluing procedure. Alternatively, we may also invoke a Kolmogorov extension lemma.
