ENS de Lyon - M1 jeudi 3 mai 2018

examen de processus stochastiques et mouvement brownien (3 heures)

No document is allowed for this exam. The two exercices are independent. We admit
the following generalization of Borel-Cantelli lemma, also known as Kochen-Stone lemma.
(For your information, Kochen-Stone lemma is not hard to prove with the help of the
Paley-Zygmund inequality)

Lemma. If the events A, satisfy > P(A,) = +oo and

(Zho P(AL)°

lim sup =5 — =c>0,
n—00 Zk:o Zz:o P(Ak N Al)

then P(limsup A4,) > c.

Exercise 1. Speed of escape to infinity

In this exercice, we study the speed of escape to infinity of a Brownian motion in
dimension 3 and more. We aim to prove the following theorem, which establishes that
it escapes quicker than a deterministic function f if and only if this function passes an
integrability test, called Dvoretzky-Erdos test.

Theorem. Suppose d > 3 and B is a Brownian motion in R? started from 0. Let f :
[1,00) — (0,00) increasing. We say f satisfies the integrability condition (IC) if the
integral [ f(r)*2r4/2dr is finite. Then

(a) If f satisfies the integrability condition (IC), then lim inf % = +00 a.s.
(b) Otherwise, lim inf % =0 a.s.
In particular, Brownian motion a.s. satisfies lim inf f—/’;' = 0, but liminf ?—;‘ = +00

for any @ < 1/2. By a simple series-integral comparison, the function f satisfies the
integrability condition (IC) iff ano(f(Z")T”/Q)d_Q < +00.

1. For t > 0, let G; be the o-field generated by the variables B, for u > ¢, and let
Goo = Ni>0G:. Prove G is trivial (ie contains only events of probability 0 or 1), and
deduce that the law of lim inf % is a Dirac mass at some z € [0, +00].

2. Show that is suffices to prove, instead of the theorem, the apparently weaker results
(a) If f satisfies (IC), then lim inf% > 1 as.

(b) Otherwise, P(lim inf% <1)>0.



3. In this question, we suppose the existence of a sequence (t,),>0 going to +oo such
that f(t,) > +/t,. In particular, f does not satisfy (IC). Prove the result 2.(b) in
that case.

In the following, we exclude this case and thus suppose f(t) < v/t for ¢ large enough.
By modifying f on a compact interval, we suppose, without loss of generality !, that
f satisfies f(t) </t for all t > 1.

4. Recall briefly why, if B is under P, a BM started from x € R? (in particular, the
notation Py is somehow redundant with P), then

d—2
P, (inf |B,| < r) = (é) AL

5. We define the function gy : x — |2|?>~¢, and, for r > 0, the function g, by

1 1

Prove
P, (inf{|B;|,t > 1} < r) < Po(inf{|By|,t > 1} < 7) = r"*E[g,(B1)] < ar®?,

with a = E[go(By)] € (0,+00). For the first inequality, you may want to use the
strong Markov property of the Brownian motion started from 0.

6. We introduce, for n > 0, the event A, = {3t € (2", 2", |B;| < f(t)}. If f satisfies
(IC), prove only finitely many of the events A,, occur, a.s., and deduce 2.(a).

7. We now suppose, until the end of the exercice, that f does not satisfy (IC) (but
still, f(t) < V't for all t > 1). Prove

P(3t € [1,2],|By| < 7) > r°E[g,(B1) — ¢.(V2B))].
Writing b = E[g1(B1) — g1 (V2Bi)] € (0, +00), deduce first :
Vr <1, P3Etel[l,2],|B]<r)>br'2

and then Y P(A,) = +o0.
8. Show we always have P(A,|Fau1) < a(f(2711)27 "2 )42, Prove

n n d—1
lim sup 2= Ziz:o Pl 2 A4) < 2 a’
00 (k=0 P(Ar)) b

and deduce 2.(b).

1. Indeed, the modification does not change the integrability condition for f, nor does it change
liminf |B|/ f(¢).




Exercise 2. Planar Brownian motion conditioned on avoiding the unit disk.

In this exercise, B is under P, a planar Brownian motion started from =z € R%. We
further suppose || > 1 and for r > 0, we define T, the hitting time of the circle of radius
r, namely T, = inf{t > 0, |B;| = r}. In questions (1)-(4), we define the Brownian motion
“conditioned on never hitting the unit disk”. In questions (5)-(7), we prove it is transient
but does not escape too quickly to infinity. In questions (8)-(9), we prove a striking result
for the asymptotic probability that this process ever hits a far away disk of radius 1.

1. Recall briefly why, for r > |z|, we have In |x| = E,[In|Bra7.|], and deduce :
Vt Z 0, lIl |Bt/\T1/\TT| = Ez[ln |BT1/\Tr| {]:t]

Hence In |Biar a7, | is a closed martingale.
2. For t > 0, we let M; = In|Biar,| = Licr, In|B;|. Show M is a martingale.

3. In this question, we fix ¢ > 0 and define (Cy)o<s<: a process which, under P,, has
law absolutely continuous with that of (Bs)o<s<t, and with density the value of the
martingale M at time ¢, divided by My = In|z|. Equivalently, for f an arbitrary
test function, we have

M,
Ex[f<<08)0§8§t)] =E, {f((BS)OSSSt)Mt] :
0
(a) Check that the law of (Cs)o<s<: is well-defined, and that, for any s < ¢ and
test function f,

E.[/((Coocres)] = E {f((Bnoggs)MS} |

My

(b) Prove that the event {3s < ¢,|Cs| < 1} has probability 0, and that for any
r,s > 0 such that » + s <t and any test functions f and g,

E.[f((Cylo<g<r)9(Cris)] = Eu[f(Cylo<g<r)gs(Cr )],

where we have written g,(y) = E,[¢g(C5)], for any y satisfying |y| > 1.

It follows that (Cy)o<s<t is a time-homogeneous Markov process, which we can now
extend? to R,. We admit the process (C;)s>0 satisfies the strong Markov property,
as well as verifies the equation

Eo[f((Cs)ogsz)] = Ea {f((Bs)ogst)Mt} ,

My

for any ¢t > 0 and test function f.

2. We can proceed to this extension by a gluing procedure. Alternatively, we may also invoke a Kol-
mogorov extension lemma.



. Prove that, for r > |z|, the process (Ciar, )e>0 has the same law as the process
(Biat, )i>0 conditionally on the event 7, < Tj.

It is now natural (although slightly abusive) to call the process C' “Brownian mo-
tion conditioned on never hitting the unit disk”, though this is not a well-defined
conditioning.

. For 1 <r < |z|, prove

Inr

]P)x(ﬂt Z 0, |Ct| = T) =

In |z|’
and deduce that the process C' is transient.

. For 1 < |z| < r and ¢t > 0, prove

Inr r— |:v|)
P, | sup |Cs| >7r ) <4——P | |N| > ;
<0<58t ‘ ‘ ) In |x| <| ‘ \/ﬂ

where N is a centered reduced normal variable. Deduce that we almost surely have

C
Va > 1/2, limsup|t—at| =0.
. Prove that we almost surely have

Ve >0, liminf =

Hint : For € € (0,1), consider the family of events E,, where E, is the event that
the process C', after hitting the circle of radius 2", hits the circle of radius 2°" before
hitting the circle of radius 2"+,

For y € R?, we call E, := {3t > 0,|C; — y| = 1} the event that the process C' ever
hits the closed disk B(y,1). We now seek an estimate of P,(E,) when |y| — oco.
For |y| > |z| + 1, writing » = |y| — 1 and using the strong Markov property at
time T}, this probability equals the expectation of Pc, (£,). We admit that Cr,
is asymptotically uniform on the sphere, and that this expectation is equivalent to
P,, (E,), where v, is the uniform measure on 0B(0, 7).

. Prove

In ‘BT |
IP)VT(E?/) = Lo, #@‘1) TBB(y,1)<T1 9
with Thp(y1) = inf{t > 0,|B; —y| = 1}.

. Prove P, (Typ(y1) < Th) | — 1/2, and deduce P, (E,) — 1/2.

y|—o0
Hint : Argue that it suffices to show ]P’Z,T(THy < Topyy NTh) ‘ |—> 1, where H, =
y|—o0
{2 € R? |z| = |z —y|} is the mediator of the segment between y and the origin, and

use the scale-invariance property of Brownian motion.



