Correction du partiel de processus stochastiques et mouvement brownien

Exercice 1 : Volume of a brownian path
We consider $d \geq 2$ and $\left(B_{t}\right)_{t \geq 0}=\left(B_{t}^{(1)}, \ldots, B_{t}^{(d)}\right)_{t \geq 0}$ a brownian motion in \mathbb{R}^{d} started from $0=0_{\mathbb{R}^{d}}$, defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For $t \geq 0$, we let V_{t} be the volume of the beginning of the Brownian path $\left\{B_{s}, 0 \leq s \leq t\right\}$, namely

$$
V_{t}=\lambda_{d}\left(\left\{B_{s}, 0 \leq s \leq t\right\}\right)
$$

where λ_{d} is the Lebesgue measure on \mathbb{R}^{d}.

1. For $t \geq 0$, show that $A_{t}:=\left\{\left(B_{s}(\omega), \omega\right), 0 \leq s \leq t, \omega \in \Omega\right\}$ is a measurable subset of $\mathbb{R}^{d} \times \Omega$, endowed with the product σ-field $\mathcal{B}\left(\mathbb{R}^{d}\right) \otimes \mathcal{F}$, and deduce that V_{t} is a well-defined random variable with values in $[0,+\infty]$.
Answer : Writing $B(x, \varepsilon)$ the (open) ball of radius ε centered at $x \in \mathbb{R}^{d}$, we note that, for $t \geq 0$ and $\varepsilon>0$, the set $\left\{B\left(B_{t}(\omega), \varepsilon\right) \times\{\omega\}, \omega \in \Omega\right\}$ is measurable. Indeed, this set is equal to $\phi^{-1}([0, \varepsilon))$, where $\phi: \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}_{+}$, defined by $\phi(x, \omega)=\left|B_{t}(\omega)-x\right|$, is a measurable function. Now, using the continuity of the brownian path, we have

$$
A_{t}=\bigcap_{n \in \mathbb{N}} \bigcup_{q \in \mathbb{Q} \cap[0, t]} B\left(B_{q}(\omega), \frac{1}{n}\right) \times\{\omega\},
$$

thus A_{t} is measurable. Now, as

$$
V_{t}=\int 1_{A_{t}}(x, \omega) \lambda_{d}(\mathrm{~d} x)
$$

we immediately get that V_{t} is measurable and thus a well-defined random variable with values in $\mathbb{R}_{+} \cup\{+\infty\}$.
2. Show V_{t} has finite expectation, and follows the same distribution as $t^{d / 2} V_{1}$.

Answer : Using the crude bound $V_{t} \leq \prod_{i=1}^{d}\left(\max \left(B_{s}^{(i)}, 0 \leq s \leq t\right)-\min \left(B_{s}^{(i)}, 0 \leq s \leq t\right)\right.$, we get

$$
\begin{aligned}
\mathbb{E}\left[V_{t}\right] & \leq \prod \mathbb{E}\left[\left(\max \left(B_{s}^{(i)}, 0 \leq s \leq t\right)-\min \left(B_{s}^{(i)}, 0 \leq s \leq t\right)\right]\right. \\
& \leq\left(\mathbb{E}\left[\max \left(B_{s}^{(1)}, 0 \leq s \leq t\right)\right]-\mathbb{E}\left[\min \left(B_{s}^{(1)}, 0 \leq s \leq t\right]\right)^{d}\right. \\
& \leq 2^{d} \mathbb{E}\left[\left|B_{t}^{(1)}\right|\right]^{d}<+\infty .
\end{aligned}
$$

Moreover, using the scaling invariance property of brownian motion, we get

$$
V_{t} \stackrel{(d)}{=} \lambda_{d}\left(\left\{t^{1 / 2} B_{s t^{-1}}, 0 \leq s \leq t\right\}\right)=t^{d / 2} \lambda_{d}\left(\left\{B_{s}, 0 \leq s \leq 1\right\}\right)=t^{d / 2} V_{1} .
$$

3. Deduce that:
(a) If $d \geq 3$, the brownian path has a.s. volume 0 .
(b) If $d=2$, then $\lambda_{2}\left(\left\{B_{s}, 0 \leq s \leq 1\right\} \cap\left\{B_{s}, 1 \leq s \leq 2\right\}\right)=0$ a.s.

Answer : We introduce $\tilde{V}_{1}=\lambda_{d}\left(\left\{B_{s}, 1 \leq s \leq 2\right\}\right)=\lambda_{d}\left(\left\{B_{1+s}-B_{1}, 0 \leq\right.\right.$ $s \leq 1\}$), which has the same law as V_{1} (and is independent from V_{1}). We also introduce $\hat{V}_{1}=\lambda_{d}\left(\left\{B_{s}, 0 \leq s \leq 1\right\} \cap\left\{B_{s}, 1 \leq s \leq 2\right\}\right)$. Now,

$$
\begin{aligned}
V_{2} & =\lambda_{d}\left(\left\{B_{s}, 0 \leq s \leq 1\right\} \cup\left\{B_{s}, 1 \leq s \leq 2\right\}\right) \\
& =V_{1}+\tilde{V}_{1}-\hat{V}_{1} \\
& \leq V_{1}+\tilde{V}_{1}
\end{aligned}
$$

with equality iff $\hat{V}_{1}=0$. Taking expectations and using question 2, we get

$$
2^{d / 2} \mathbb{E}\left[V_{1}\right] \leq 2 \mathbb{E}\left[V_{1}\right],
$$

and thus $\mathbb{E}\left[V_{1}\right]=0$ if $d \geq 3$. In particular $V_{1}=0$ a.s. By scaling, we also have $V_{t}=0$ a.s., and even a.s., $\forall t \geq 0, V_{t}=0$. Thus the brownian path has volume 0 . In the case $d=2$, we deduce $V_{2}=V_{1}+\tilde{V}_{1}$ a.s., and thus $\hat{V}_{1}=0$ a.s.
4. Prove again the result of 3.(a) by using the Hölder continuity property of the brownian paths.
Answer : Fix $\alpha \in(1 / 3,1 / 2)$. As the brownian path is a.s. α-hölder, we have that C_{α} is a.s. finite, where

$$
C_{\alpha}:=\sup \left\{\frac{\left|B_{s}-B_{t}\right|}{|s-t|^{\alpha}}, 0 \leq s<t \leq 1\right\} .
$$

For any n integer, we get

$$
\begin{aligned}
V_{1} & \leq \sum_{i=1}^{n} \lambda_{d}\left(\left\{B_{t},(i-1) / n \leq t \leq i / n\right\}\right) \\
& \leq \sum_{i=1}^{n} \lambda_{d}\left(\bar{B}\left(B_{i / n}, C(i / n)^{\alpha}\right)\right) \\
& \leq n C^{d}\left(\frac{i}{n}\right)^{\alpha d} \lambda_{d}(\bar{B}(0,1))=c n^{1-\alpha d}
\end{aligned}
$$

where $\bar{B}(x, \varepsilon)$ is the closed ball of radius ε centered at x, and c is a.s. finite and independent from n. As $\alpha>1 / 3$ and $d \geq 3$, this converges to 0 as $n \rightarrow \infty$, and shows V_{1} is 0 a.s. (more precisely, it is 0 as soon as the brownian path is α-hölder for some $\alpha>1 / 3$).
We may also note that this approach does not say anything in the case $d=2$. Indeed, in the plane, the path of a α-hölder function must have area zero if $\alpha>1 / 2$, but may well have positive area if $\alpha=1 / 2$. And the brownian paths are even not $1 / 2$-hölder...
5. We now suppose $d=2$. For $z \in \mathbb{R}^{2}$, we write $T_{z}:=\inf \left\{t \geq 0, B_{t}=z\right\} \in[0,+\infty]$.
(a) Show $\mathbb{E}\left[V_{1}\right]=\int \mathbb{P}\left(T_{z} \leq 1\right) \lambda_{2}(\mathrm{~d} z)$.

Answer: We noticed in question 1. that $V_{1}=\int 1_{A_{1}}(x, \omega) \lambda_{2}(\mathrm{~d} x)$, so the expectation of V_{1} is also the $\lambda_{2} \otimes \mathbb{P}$-measure of the set A_{1}. By Fubini theorem, we can compute this measure by first integrating over ω, so that we get

$$
\mathbb{E}\left[V_{1}\right]=\int \mathbb{P}\left(z \in\left\{B_{s}, 0 \leq s \leq 1\right\}\right) \lambda_{2}(\mathrm{~d} z)=\int \mathbb{P}\left(T_{z} \leq 1\right) \lambda_{2}(\mathrm{~d} z)
$$

(b) Prove $T_{z} \stackrel{(d)}{=}|z|^{2} T_{z_{0}}$, where $z_{0}=(1,0)$, and deduce $\mathbb{E}\left[V_{1}\right]=\pi \mathbb{E}\left[T_{z_{0}}^{-1}\right]$.

Answer: Write $z=r z_{1}$, with $r=|z|$ and $\left|z_{1}\right|=1$. By the scaling invariance property of brownian motion, we get

$$
\begin{aligned}
T_{z}=\inf \left\{t \geq 0, B_{t}=z\right\} & \stackrel{(d)}{=} \inf \left\{t \geq 0, r B_{r^{-2}}=z\right\} \\
& =r^{2} \inf \left\{t \geq 0, r B_{t}=z_{1}\right\}=r^{2} T_{z_{1}} .
\end{aligned}
$$

By the invariance of the law of the brownian motion under an isometry of \mathbb{R}^{2}, we also get that $T_{z_{1}}$ has the same law as $T_{z_{0}}$. Further,

$$
\begin{aligned}
\mathbb{E}\left[V_{1}\right]=\int \mathbb{P}\left(T_{z_{0}} \leq|z|^{-2}\right) \lambda_{2}(\mathrm{~d} z) & =2 \pi \int_{\mathbb{R}_{+}} r \mathbb{P}\left(T_{z_{0}} \leq r^{-2}\right) \mathrm{d} r \\
& =\pi \int_{\mathbb{R}_{+}} \mathbb{P}\left(T_{z_{0}}^{-1} \geq s\right) \mathrm{d} s=\pi \mathbb{E}\left[T_{z_{0}}^{-1}\right]
\end{aligned}
$$

where in the first line we used the polar coordinates change of variable, and in the second line the change of variable $s=r^{2}$.
(c) Prove similarly $\mathbb{E}\left[\lambda_{2}\left(\left\{B_{s}, 0 \leq s \leq 1\right\} \cap\left\{B_{t}, 1 \leq t \leq 2\right\}\right)\right]=\pi \mathbb{E}\left[\max \left(T_{z_{0}}, \widetilde{T}_{z_{0}}\right)^{-1}\right]$, where $\widetilde{T}_{z_{0}}$ is an independent copy of $T_{z_{0}}$.

Hint: Observe that $\lambda_{2}\left(\left\{B_{s}, 0 \leq s \leq 1\right\} \cap\left\{B_{t}, 1 \leq t \leq 2\right\}\right)$ can be rewritten as

$$
\lambda_{2}\left(\left\{B_{1-s}-B_{1}, 0 \leq s \leq 1\right\} \cap\left\{B_{1+t}-B_{1}, 0 \leq t \leq 1\right\}\right) .
$$

Answer : We follow the hint, and observe that $\left(B_{1-s}-B_{1}\right)_{0 \leq s \leq 1}$ and $\left(B_{1+t}-\right.$ $\left.B_{1}\right)_{t \geq 0}$ are two independent brownian motions. Indeed, the first one is a brownian motion by time reversal, and is $\sigma\left(B_{s}, 0 \leq s \leq 1\right)$-measurable, while the second one is a brownian motion independent of $\sigma\left(B_{s}, 0 \leq s \leq 1\right)$, by the simple Markov property. Therefore the hitting times of z_{0} for these two processes are independent copies of $T_{z_{0}}$. Now, the same reasoning as in last question leads to

$$
\begin{aligned}
\mathbb{E}\left[\lambda_{2}\left(\left\{B_{s}, 0 \leq s \leq 1\right\} \cap\left\{B_{t}, 1 \leq t \leq 2\right\}\right)\right] & =\pi \int_{\mathbb{R}_{+}} \mathbb{P}\left(T_{z_{0}}^{-1} \geq s, \tilde{T}_{z_{0}}^{-1} \geq s\right) \mathrm{d} s \\
& =\pi \mathbb{E}\left[\max \left(T_{z_{0}}, \widetilde{T}_{z_{0}}\right)^{-1}\right]
\end{aligned}
$$

(d) Deduce the planar brownian motion path also has a.s. volume (or area) 0 . Answer : By question 3.(b), the expectation computed in 5.(c) is actually 0, and therefore $\max \left(T_{z_{0}}, \widetilde{T}_{z_{0}}\right)$ is almost surely equal to $+\infty$. This in turn implies that $T_{z_{0}}$ is itself infinite almost surely. Thus, by 5.(b), the expectation of V_{1} is zero, and we finish the proof just like the case $d \geq 3$.

Exercice 2: Langevin process and recurrence
Suppose $\left(B_{t}\right)_{t \geq 0}$ is a 1-dimensional Brownian motion started from 0, and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is its canonical filtration. We define the integrated Brownian motion or Langevin process $\left(A_{t}\right)_{t \geq 0}$ by $A_{t}=\int_{0}^{t} B_{s} \mathrm{~d} s$.

1. (a) Show the Langevin process is continuous and adapted. Show its one dimensional marginal, the distribution of A_{t}, is a centered gaussian with variance $t^{3} / 3$.
Hint : Approximate A_{t} by a linear combination of the coordinates of the brownian motion $\left(B_{s}\right)_{s \geq 0}$.
Answer : The Langevin process is clearly continuous (its paths are even differentiable). The approximation of the integral of a continuous function by a Riemann sum gives us that A_{t} is the (pointwise) limit when $n \rightarrow \infty$ of the sum $A_{t}^{n}:=\sum_{i=1}^{n} \frac{t}{n} B_{i t / n}$. The rv A_{t}^{n} is clearly $\mathcal{F}_{t}-$ measurable, thus so is A_{t}, and the process is thus adapted. Moreover, A_{t}^{n} is a centered gaussian variable, with variance

$$
\begin{aligned}
\operatorname{Var}\left(A_{t}^{n}\right)=\frac{t^{2}}{n^{2}} \sum_{i, j=1}^{n} \operatorname{Cov}\left(B_{i t / n}, B_{j t / n}\right) & =\frac{t^{2}}{n^{2}} \sum_{i, j=1}^{n} \min \left(\frac{i t}{n}, \frac{j t}{n}\right) \\
& \rightarrow \underset{n \rightarrow \infty}{\rightarrow} \int_{[0, t]^{2}} \min (r, s) \mathrm{d} r \mathrm{~d} s=t^{3} / 3 .
\end{aligned}
$$

Thus A_{t}^{n} converges in law to a centered gaussian with variance $t^{3} / 3$ (we recall the convergence in law for gaussian random variables is characterized by the convergence of the first two moments). In particular, A_{t} is a centered gaussian with variance $t^{3} / 3$.
(b) Prove that the processes $\left(-A_{t}\right)_{t \geq 0}$ and $\left(\lambda^{3 / 2} A_{\lambda^{-1} t}\right)_{t \geq 0}$, for any given $\lambda>0$, have the same law (as random variables taking values in the Wiener space) as the Langevin process $\left(A_{t}\right)_{t \geq 0}$.
Answer : It suffices to write $-A_{t}=\int_{0}^{t}\left(-B_{s}\right) \mathrm{d} s$ and

$$
\lambda^{3 / 2} A_{\lambda^{-1} t}=\int_{0}^{\lambda^{-1} t} \lambda^{3 / 2} B_{s} \mathrm{~d} s=\int_{0}^{t} \lambda^{1 / 2} B_{\lambda^{-1} u} \mathrm{~d} u,
$$

and to observe that the processes $\left(-B_{t}\right)_{t \geq 0}$ and $\left(\lambda^{1 / 2} B_{\lambda^{-1} t}\right)_{t \geq 0}$ are brownian motions.
(c) Show the Langevin process takes almost surely positive as well as negative values at arbitrary small times.
Answer : We just prove that the Langevin process takes almost surely positive values at arbitrary small times (then we deduce the result for example because $\left(-A_{t}\right)_{t \geq 0}$ is also a Langevin process). In other words, we prove $\mathbb{P}(\forall \varepsilon>$ $\left.0, \sup \left\{A_{s}, 0 \leq s \leq \varepsilon\right\}>0\right)=1$. Observe this event is in the $\sigma-$ field $\mathcal{F}_{0_{+}}$, thus by Blumenthal 0-1 law, it must have probability 0 or 1. But it also has probability at least $1 / 2$, because it is the decreasing limit, when ε decreases to 0 , of the event $\sup \left\{A_{s}, 0 \leq s \leq \varepsilon\right\}>0$, which contains the event $\left\{A_{\varepsilon}>0\right\}$, itself of probability $1 / 2$. Thus we get result.
(d) Show the Langevin process is recurrent, namely takes almost surely every real value at arbitrary large times.
Hint : It suffices to show that we almost surely have

$$
\limsup _{t \rightarrow+\infty} A_{t}=+\infty, \quad \liminf _{t \rightarrow+\infty} A_{t}=-\infty
$$

Anwser : It suffices to prove, for fixed $n>0$, that the event $\sup _{t \geq 0} A_{t} \geq n$ is almost sure. Indeed, we then a.s. have $\sup _{t \geq 0} A_{t}=+\infty$, as well as $\inf _{t \geq 0} A_{t}=$ $-\infty$ (again by a simple symmetry argument), which proves the Langevin process is a.s. recurrent.
Now, for fixed $n>0$, by the scaling invariance property of the Langevin process, we get that for any $\lambda>0$,

$$
\mathbb{P}\left(\sup _{t \geq 0} A_{t} \geq n\right)=\mathbb{P}\left(\sup _{t \geq 0} \lambda^{3 / 2} A_{\lambda^{-1} t} \geq n\right)=\mathbb{P}\left(\sup _{t \geq 0} A_{t} \geq \lambda^{-3 / 2} n\right) .
$$

In particular, taking λ to infinity, this is also equal to the probability of the event $\left\{\sup _{t \geq 0} A_{t}>0\right\}$, which is 1 by question 1.(c).
2. We aim to show that the bidimensional process $\left(A_{t}, B_{t}\right)_{t \geq 0}$ (also called Kolmogorov process) is transient, in the sense that we almost surely have

$$
\liminf _{t \rightarrow+\infty}\left(\left|A_{t}\right|+\left|B_{t}\right|\right)=+\infty
$$

(a) Show that, looking at integers n, we a.s. have

$$
\liminf _{n \rightarrow+\infty, n \in \mathbb{N}}\left|A_{n}\right|=+\infty
$$

Hint: Use question 1.(a)
Answer : By question 1.(a), A_{n} has the same law as $t^{3 / 2} N / 3^{1 / 2}$, where N is a centered standard gaussian. But the law of N has density bounded by $1 / \sqrt{2 \pi}$, thus, for any $\varepsilon>0$, we have $\mathbb{P}(|N| \leq \varepsilon) \leq \varepsilon \sqrt{2 / \pi}$.

Hence, for $c>0$ fixed, we have

$$
\sum_{n \in \mathbb{N}} \mathbb{P}\left(\left|A_{n}\right| \leq c\right) \leq c \sqrt{6 / \pi} \sum_{n} n^{-3 / 2}<\infty
$$

and by Borel-Cantelli lemma, the event $\liminf \left|A_{n}\right| \geq c$ is almost sure. We conclude by taking c to $+\infty$.
(b) Suppose $K \subset \mathbb{R}^{2}$ is compact, and T is a stopping time such that the event $\{T<$ $+\infty\}$ has positive probability, and we have $\left(A_{T}, B_{T}\right) \in K$ on this event. Show we can find a compact set \tilde{K}, depending only on K, such that conditionally on $\{T<+\infty\}$, the process $\left(A_{t}, B_{t}\right)$ stays in \tilde{K} on the whole time interval $[T, T+1]$ with probability at least $1 / 2$.
Answer : Fix a compact set K and a stopping time T as in the statement. We also let $M:=\max \{|y|,(x, y) \in K\}<+\infty$, and argue in this argument conditionally on $\{T<+\infty\}$. Using the strong Markov property of brownian motion, we get that the process $B^{(T)}$ is a brownian motion independent from \mathcal{F}_{T}. In particular, we can choose a finite constant $c>0$ (not depending on K or T) such that the probability of the event $\sup \left\{\left|B_{t}^{(T)}\right|, 0 \leq t \leq 1\right\} \leq c$ is at least $1 / 2$. Now, define the compact set \tilde{K} by

$$
\tilde{K}:=\left\{(x, y), \exists\left(x^{\prime}, y^{\prime}\right) \in K,\left|y-y^{\prime}\right| \leq c,\left|x-x^{\prime}\right| \leq M+c\right\} .
$$

The event "The process $\left(A_{t}, B_{t}\right)$ stays in \tilde{K} on the whole time interval $[T, T+1]$ " contains the event $\sup \left\{\left|B_{t}^{(T)}\right|, 0 \leq t \leq 1\right\} \leq c$, and thus has (conditional) probability at least $1 / 2$.
(c) Conclude.

Answer : We argue by the absurd and suppose that the probability of the event $\left\{\liminf \left(\left|A_{t}\right|+\left|B_{t}\right|\right)<+\infty\right\}$ is positive. Then there exists a finite constant $c>0$ and $\varepsilon>0$ such that

$$
\mathbb{P}\left(\bigcap_{s>0}\left\{\inf _{t \geq s}\left(\left|A_{t}\right|+\left|B_{t}\right|\right)<c\right\}\right) \geq \varepsilon
$$

Define $K=\{(x, y),|x|+|y| \leq c\}$ and \tilde{K} given by last question. For n integer, introduce the stopping time $T_{n}:=\inf \left\{t \geq n,\left(A_{t}, B_{t}\right) \in K\right\}$. The probability of the event $\left\{T_{n}<\infty\right\}$ is at least ε, and conditionally on this, the Kolmogorov process stays in \tilde{K} on the whole time interval $\left[T_{n}, T_{n}+1\right]$ with proability at least 1/2.
In particular, the probability that there exists an integer k larger than n such that $\left|A_{n}\right| \leq C$ is at least $\varepsilon / 2$, where C is the finite constant $\max \{|x|,(x, y) \in$ $\tilde{K}\}$. Taking the intersection over n integer, we deduce that the probability of the event $\lim \inf \left|A_{n}\right| \leq C$ is at least $\varepsilon / 2$, contradicting question 2.(a).
Finally, we deduce the transience of the Kolmogorov process.

