
ENS de Lyon - M1 jeudi 8 mars 2018

Correction du partiel de processus stochastiques et mouvement brownien

Exercice 1 : Volume of a brownian path

We consider d ≥ 2 and (Bt)t≥0 = (B
(1)
t , . . . , B

(d)
t )t≥0 a brownian motion in Rd started

from 0 = 0Rd , defined on some probability space (Ω,F ,P). For t ≥ 0, we let Vt be the
volume of the beginning of the Brownian path {Bs, 0 ≤ s ≤ t}, namely

Vt = λd({Bs, 0 ≤ s ≤ t}),

where λd is the Lebesgue measure on Rd.

1. For t ≥ 0, show that At := {(Bs(ω), ω), 0 ≤ s ≤ t, ω ∈ Ω} is a measurable subset
of Rd × Ω, endowed with the product σ−field B(Rd) ⊗ F , and deduce that Vt is a
well-defined random variable with values in [0,+∞].

Answer : Writing B(x, ε) the (open) ball of radius ε centered at x ∈ Rd, we note that,
for t ≥ 0 and ε > 0, the set {B(Bt(ω), ε)× {ω}, ω ∈ Ω} is measurable. Indeed, this
set is equal to φ−1

(
[0, ε)

)
, where φ : Rd×Ω→ R+, defined by φ(x, ω) = |Bt(ω)−x|,

is a measurable function. Now, using the continuity of the brownian path, we have

At =
⋂
n∈N

⋃
q∈Q∩[0,t]

B(Bq(ω),
1

n
)× {ω},

thus At is measurable. Now, as

Vt =

∫
1At(x, ω)λd(dx),

we immediately get that Vt is measurable and thus a well-defined random variable
with values in R+ ∪ {+∞}.

2. Show Vt has finite expectation, and follows the same distribution as td/2V1.

Answer : Using the crude bound Vt ≤
∏d

i=1

(
max(B

(i)
s , 0 ≤ s ≤ t)−min(B

(i)
s , 0 ≤ s ≤ t

)
,

we get

E[Vt] ≤
∏

E[
(
max(B(i)

s , 0 ≤ s ≤ t)−min(B(i)
s , 0 ≤ s ≤ t

)
]

≤
(
E[max(B(1)

s , 0 ≤ s ≤ t)]− E[min(B(1)
s , 0 ≤ s ≤ t]

)d
≤ 2dE[|B(1)

t |]d < +∞.

Moreover, using the scaling invariance property of brownian motion, we get

Vt
(d)
= λd({t1/2Bst−1 , 0 ≤ s ≤ t}) = td/2λd({Bs, 0 ≤ s ≤ 1}) = td/2V1.
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3. Deduce that :

(a) If d ≥ 3, the brownian path has a.s. volume 0.

(b) If d = 2, then λ2({Bs, 0 ≤ s ≤ 1} ∩ {Bs, 1 ≤ s ≤ 2}) = 0 a.s.

Answer : We introduce Ṽ1 = λd({Bs, 1 ≤ s ≤ 2}) = λd({B1+s − B1, 0 ≤
s ≤ 1}), which has the same law as V1 (and is independent from V1). We also
introduce V̂1 = λd({Bs, 0 ≤ s ≤ 1} ∩ {Bs, 1 ≤ s ≤ 2}). Now,

V2 = λd({Bs, 0 ≤ s ≤ 1} ∪ {Bs, 1 ≤ s ≤ 2})
= V1 + Ṽ1 − V̂1
≤ V1 + Ṽ1,

with equality iff V̂1 = 0. Taking expectations and using question 2, we get

2d/2E[V1] ≤ 2E[V1],

and thus E[V1] = 0 if d ≥ 3. In particular V1 = 0 a.s. By scaling, we also have
Vt = 0 a.s., and even a.s., ∀t ≥ 0, Vt = 0. Thus the brownian path has volume
0. In the case d = 2, we deduce V2 = V1 + Ṽ1 a.s., and thus V̂1 = 0 a.s.

4. Prove again the result of 3.(a) by using the Hölder continuity property of the brow-
nian paths.

Answer : Fix α ∈ (1/3, 1/2). As the brownian path is a.s. α−hölder, we have that
Cα is a.s. finite, where

Cα := sup

{
|Bs −Bt|
|s− t|α

, 0 ≤ s < t ≤ 1

}
.

For any n integer, we get

V1 ≤
n∑
i=1

λd({Bt, (i− 1)/n ≤ t ≤ i/n})

≤
n∑
i=1

λd
(
B(Bi/n, C(i/n)α)

)
≤ nCd

(
i

n

)αd
λd
(
B(0, 1)

)
= cn1−αd

where B(x, ε) is the closed ball of radius ε centered at x, and c is a.s. finite and
independent from n. As α > 1/3 and d ≥ 3, this converges to 0 as n → ∞, and
shows V1 is 0 a.s. (more precisely, it is 0 as soon as the brownian path is α−hölder
for some α > 1/3).

We may also note that this approach does not say anything in the case d = 2. Indeed,
in the plane, the path of a α-hölder function must have area zero if α > 1/2, but may
well have positive area if α = 1/2. And the brownian paths are even not 1/2-hölder...
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5. We now suppose d = 2. For z ∈ R2, we write Tz := inf{t ≥ 0, Bt = z} ∈ [0,+∞].

(a) Show E[V1] =
∫
P(Tz ≤ 1)λ2(dz).

Answer : We noticed in question 1. that V1 =
∫

1A1(x, ω)λ2(dx), so the expec-
tation of V1 is also the λ2 ⊗ P−measure of the set A1. By Fubini theorem, we
can compute this measure by first integrating over ω, so that we get

E[V1] =

∫
P
(
z ∈ {Bs, 0 ≤ s ≤ 1}

)
λ2(dz) =

∫
P(Tz ≤ 1)λ2(dz).

(b) Prove Tz
(d)
= |z|2Tz0 , where z0 = (1, 0), and deduce E[V1] = πE[T−1z0

].

Answer : Write z = rz1, with r = |z| and |z1| = 1. By the scaling invariance
property of brownian motion, we get

Tz = inf{t ≥ 0, Bt = z} (d)
= inf{t ≥ 0, rBr−2t = z}
= r2 inf{t ≥ 0, rBt = z1} = r2Tz1 .

By the invariance of the law of the brownian motion under an isometry of R2,
we also get that Tz1 has the same law as Tz0. Further,

E[V1] =

∫
P(Tz0 ≤ |z|−2)λ2(dz) = 2π

∫
R+

rP(Tz0 ≤ r−2)dr

= π

∫
R+

P(T−1z0
≥ s)ds = πE[T−1z0

],

where in the first line we used the polar coordinates change of variable, and in
the second line the change of variable s = r2.

(c) Prove similarly E [λ2({Bs, 0 ≤ s ≤ 1} ∩ {Bt, 1 ≤ t ≤ 2})] = πE
[
max

(
Tz0 , T̃z0

)−1]
,

where T̃z0 is an independent copy of Tz0 .

Hint : Observe that λ2({Bs, 0 ≤ s ≤ 1} ∩ {Bt, 1 ≤ t ≤ 2}) can be rewritten as

λ2({B1−s −B1, 0 ≤ s ≤ 1} ∩ {B1+t −B1, 0 ≤ t ≤ 1}).

Answer : We follow the hint, and observe that (B1−s − B1)0≤s≤1 and (B1+t −
B1)t≥0 are two independent brownian motions. Indeed, the first one is a brow-
nian motion by time reversal, and is σ(Bs, 0 ≤ s ≤ 1)−measurable, while the
second one is a brownian motion independent of σ(Bs, 0 ≤ s ≤ 1), by the simple
Markov property. Therefore the hitting times of z0 for these two processes are
independent copies of Tz0. Now, the same reasoning as in last question leads to

E [λ2({Bs, 0 ≤ s ≤ 1} ∩ {Bt, 1 ≤ t ≤ 2})] = π

∫
R+

P(T−1z0
≥ s, T̃−1z0

≥ s)ds

= πE
[
max

(
Tz0 , T̃z0

)−1]
.
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(d) Deduce the planar brownian motion path also has a.s. volume (or area) 0.

Answer : By question 3.(b), the expectation computed in 5.(c) is actually 0,

and therefore max(Tz0 , T̃z0) is almost surely equal to +∞. This in turn implies
that Tz0 is itself infinite almost surely. Thus, by 5.(b), the expectation of V1 is
zero, and we finish the proof just like the case d ≥ 3.

Exercice 2 : Langevin process and recurrence

Suppose (Bt)t≥0 is a 1-dimensional Brownian motion started from 0, and (Ft)t≥0 is
its canonical filtration. We define the integrated Brownian motion or Langevin process
(At)t≥0 by At =

∫ t
0
Bsds.

1. (a) Show the Langevin process is continuous and adapted. Show its one dimen-
sional marginal, the distribution of At, is a centered gaussian with variance
t3/3.

Hint : Approximate At by a linear combination of the coordinates of the brow-
nian motion (Bs)s≥0.

Answer : The Langevin process is clearly continuous (its paths are even dif-
ferentiable). The approximation of the integral of a continuous function by a
Riemann sum gives us that At is the (pointwise) limit when n→∞ of the sum
Ant :=

∑n
i=1

t
n
Bit/n. The rv Ant is clearly Ft−measurable, thus so is At, and the

process is thus adapted. Moreover, Ant is a centered gaussian variable, with
variance

Var(Ant ) =
t2

n2

n∑
i,j=1

Cov(Bit/n, Bjt/n) =
t2

n2

n∑
i,j=1

min(
it

n
,
jt

n
)

→
n→∞

∫
[0,t]2

min(r, s)drds = t3/3.

Thus Ant converges in law to a centered gaussian with variance t3/3 (we recall
the convergence in law for gaussian random variables is characterized by the
convergence of the first two moments). In particular, At is a centered gaussian
with variance t3/3.

(b) Prove that the processes (−At)t≥0 and (λ3/2Aλ−1t)t≥0, for any given λ > 0, have
the same law (as random variables taking values in the Wiener space) as the
Langevin process (At)t≥0.

Answer : It suffices to write −At =
∫ t
0
(−Bs)ds and

λ3/2Aλ−1t =

∫ λ−1t

0

λ3/2Bsds =

∫ t

0

λ1/2Bλ−1udu,

and to observe that the processes (−Bt)t≥0 and (λ1/2Bλ−1t)t≥0 are brownian
motions.
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(c) Show the Langevin process takes almost surely positive as well as negative
values at arbitrary small times.

Answer : We just prove that the Langevin process takes almost surely po-
sitive values at arbitrary small times (then we deduce the result for example
because (−At)t≥0 is also a Langevin process). In other words, we prove P(∀ε >
0, sup{As, 0 ≤ s ≤ ε} > 0) = 1. Observe this event is in the σ−field F0+,
thus by Blumenthal 0-1 law, it must have probability 0 or 1. But it also has
probability at least 1/2, because it is the decreasing limit, when ε decreases to
0, of the event sup{As, 0 ≤ s ≤ ε} > 0, which contains the event {Aε > 0},
itself of probability 1/2. Thus we get result.

(d) Show the Langevin process is recurrent, namely takes almost surely every real
value at arbitrary large times.

Hint : It suffices to show that we almost surely have

lim sup
t→+∞

At = +∞, lim inf
t→+∞

At = −∞.

Anwser : It suffices to prove, for fixed n > 0, that the event supt≥0At ≥ n is
almost sure. Indeed, we then a.s. have supt≥0At = +∞, as well as inft≥0At =
−∞ (again by a simple symmetry argument), which proves the Langevin process
is a.s. recurrent.

Now, for fixed n > 0, by the scaling invariance property of the Langevin process,
we get that for any λ > 0,

P(sup
t≥0

At ≥ n) = P(sup
t≥0

λ3/2Aλ−1t ≥ n) = P(sup
t≥0

At ≥ λ−3/2n).

In particular, taking λ to infinity, this is also equal to the probability of the
event {supt≥0At > 0}, which is 1 by question 1.(c).

2. We aim to show that the bidimensional process (At, Bt)t≥0 (also called Kolmogorov
process) is transient, in the sense that we almost surely have

lim inf
t→+∞

(|At|+ |Bt|) = +∞.

(a) Show that, looking at integers n, we a.s. have

lim inf
n→+∞,n∈N

|An| = +∞.

Hint : Use question 1.(a)

Answer : By question 1.(a), An has the same law as t3/2N/31/2, where N is a
centered standard gaussian. But the law of N has density bounded by 1/

√
2π,

thus, for any ε > 0, we have P(|N | ≤ ε) ≤ ε
√

2/π.
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Hence, for c > 0 fixed, we have∑
n∈N

P(|An| ≤ c) ≤ c
√

6/π
∑
n

n−3/2 <∞,

and by Borel-Cantelli lemma, the event lim inf |An| ≥ c is almost sure. We
conclude by taking c to +∞.

(b) Suppose K ⊂ R2 is compact, and T is a stopping time such that the event {T <
+∞} has positive probability, and we have (AT , BT ) ∈ K on this event. Show
we can find a compact set K̃, depending only on K, such that conditionally on
{T < +∞}, the process (At, Bt) stays in K̃ on the whole time interval [T, T+1]
with probability at least 1/2.

Answer : Fix a compact set K and a stopping time T as in the statement.
We also let M := max{|y|, (x, y) ∈ K} < +∞, and argue in this argument
conditionally on {T < +∞}. Using the strong Markov property of brownian
motion, we get that the process B(T ) is a brownian motion independent from
FT . In particular, we can choose a finite constant c > 0 (not depending on K

or T ) such that the probability of the event sup{|B(T )
t |, 0 ≤ t ≤ 1} ≤ c is at

least 1/2. Now, define the compact set K̃ by

K̃ := {(x, y),∃(x′, y′) ∈ K, |y − y′| ≤ c, |x− x′| ≤M + c}.

The event “The process (At, Bt) stays in K̃ on the whole time interval [T, T+1]”

contains the event sup{|B(T )
t |, 0 ≤ t ≤ 1} ≤ c, and thus has (conditional)

probability at least 1/2.

(c) Conclude.

Answer : We argue by the absurd and suppose that the probability of the event
{lim inf(|At|+|Bt|) < +∞} is positive. Then there exists a finite constant c > 0
and ε > 0 such that

P

(⋂
s>0

{inf
t≥s

(|At|+ |Bt|) < c}

)
≥ ε.

Define K = {(x, y), |x|+ |y| ≤ c} and K̃ given by last question. For n integer,
introduce the stopping time Tn := inf{t ≥ n, (At, Bt) ∈ K}. The probability of
the event {Tn < ∞} is at least ε, and conditionally on this, the Kolmogorov
process stays in K̃ on the whole time interval [Tn, Tn+1] with proability at least
1/2.

In particular, the probability that there exists an integer k larger than n such
that |An| ≤ C is at least ε/2, where C is the finite constant max{|x|, (x, y) ∈
K̃}. Taking the intersection over n integer, we deduce that the probability of
the event lim inf |An| ≤ C is at least ε/2, contradicting question 2.(a).

Finally, we deduce the transience of the Kolmogorov process.
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