Correction du partiel de processus stochastiques et mouvement brownien

Exercice 1 : Volume of a brownian path

We consider $d \ge 2$ and $(B_t)_{t\ge 0} = (B_t^{(1)}, \ldots, B_t^{(d)})_{t\ge 0}$ a brownian motion in \mathbb{R}^d started from $0 = 0_{\mathbb{R}^d}$, defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For $t \ge 0$, we let V_t be the volume of the beginning of the Brownian path $\{B_s, 0 \le s \le t\}$, namely

$$V_t = \lambda_d(\{B_s, 0 \le s \le t\}),$$

where λ_d is the Lebesgue measure on \mathbb{R}^d .

1. For $t \geq 0$, show that $A_t := \{(B_s(\omega), \omega), 0 \leq s \leq t, \omega \in \Omega\}$ is a measurable subset of $\mathbb{R}^d \times \Omega$, endowed with the product σ -field $\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{F}$, and deduce that V_t is a well-defined random variable with values in $[0, +\infty]$.

Answer : Writing $B(x,\varepsilon)$ the (open) ball of radius ε centered at $x \in \mathbb{R}^d$, we note that, for $t \ge 0$ and $\varepsilon > 0$, the set $\{B(B_t(\omega),\varepsilon) \times \{\omega\}, \omega \in \Omega\}$ is measurable. Indeed, this set is equal to $\phi^{-1}([0,\varepsilon))$, where $\phi : \mathbb{R}^d \times \Omega \to \mathbb{R}_+$, defined by $\phi(x,\omega) = |B_t(\omega) - x|$, is a measurable function. Now, using the continuity of the brownian path, we have

$$A_t = \bigcap_{n \in \mathbb{N}} \bigcup_{q \in \mathbb{Q} \cap [0,t]} B(B_q(\omega), \frac{1}{n}) \times \{\omega\},\$$

thus A_t is measurable. Now, as

$$V_t = \int \mathbf{1}_{A_t}(x,\omega) \lambda_d(\mathrm{d}x),$$

we immediately get that V_t is measurable and thus a well-defined random variable with values in $\mathbb{R}_+ \cup \{+\infty\}$.

2. Show V_t has finite expectation, and follows the same distribution as $t^{d/2}V_1$. Answer: Using the crude bound $V_t \leq \prod_{i=1}^d \left(\max(B_s^{(i)}, 0 \leq s \leq t) - \min(B_s^{(i)}, 0 \leq s \leq t) \right)$, we get

$$\mathbb{E}[V_t] \leq \prod \mathbb{E}[(\max(B_s^{(i)}, 0 \leq s \leq t) - \min(B_s^{(i)}, 0 \leq s \leq t)]$$

$$\leq (\mathbb{E}[\max(B_s^{(1)}, 0 \leq s \leq t)] - \mathbb{E}[\min(B_s^{(1)}, 0 \leq s \leq t])^d$$

$$\leq 2^d \mathbb{E}[|B_t^{(1)}|]^d < +\infty.$$

Moreover, using the scaling invariance property of brownian motion, we get

$$V_t \stackrel{(d)}{=} \lambda_d(\{t^{1/2}B_{st^{-1}}, 0 \le s \le t\}) = t^{d/2}\lambda_d(\{B_s, 0 \le s \le 1\}) = t^{d/2}V_1.$$

3. Deduce that :

- (a) If $d \ge 3$, the brownian path has a.s. volume 0.
- (b) If d = 2, then $\lambda_2(\{B_s, 0 \le s \le 1\} \cap \{B_s, 1 \le s \le 2\}) = 0$ a.s. Answer : We introduce $\tilde{V}_1 = \lambda_d(\{B_s, 1 \le s \le 2\}) = \lambda_d(\{B_{1+s} - B_1, 0 \le s \le 1\})$, which has the same law as V_1 (and is independent from V_1). We also introduce $\tilde{V}_1 = \lambda_d(\{B_s, 0 \le s \le 1\} \cap \{B_s, 1 \le s \le 2\})$. Now,

$$V_2 = \lambda_d(\{B_s, 0 \le s \le 1\} \cup \{B_s, 1 \le s \le 2\})$$

= $V_1 + \tilde{V}_1 - \hat{V}_1$
 $\le V_1 + \tilde{V}_1,$

with equality iff $\hat{V}_1 = 0$. Taking expectations and using question 2, we get

$$2^{d/2}\mathbb{E}[V_1] \le 2\mathbb{E}[V_1],$$

and thus $\mathbb{E}[V_1] = 0$ if $d \ge 3$. In particular $V_1 = 0$ a.s. By scaling, we also have $V_t = 0$ a.s., and even a.s., $\forall t \ge 0, V_t = 0$. Thus the brownian path has volume 0. In the case d = 2, we deduce $V_2 = V_1 + \tilde{V}_1$ a.s., and thus $\hat{V}_1 = 0$ a.s.

4. Prove again the result of 3.(a) by using the Hölder continuity property of the brownian paths.

Answer : Fix $\alpha \in (1/3, 1/2)$. As the brownian path is a.s. α -hölder, we have that C_{α} is a.s. finite, where

$$C_{\alpha} := \sup\left\{\frac{|B_s - B_t|}{|s - t|^{\alpha}}, 0 \le s < t \le 1\right\}.$$

For any n integer, we get

$$V_{1} \leq \sum_{i=1}^{n} \lambda_{d}(\{B_{t}, (i-1)/n \leq t \leq i/n\})$$

$$\leq \sum_{i=1}^{n} \lambda_{d}(\overline{B}(B_{i/n}, C(i/n)^{\alpha}))$$

$$\leq nC^{d}\left(\frac{i}{n}\right)^{\alpha d} \lambda_{d}(\overline{B}(0, 1)) = cn^{1-\alpha d}$$

where $\overline{B}(x,\varepsilon)$ is the closed ball of radius ε centered at x, and c is a.s. finite and independent from n. As $\alpha > 1/3$ and $d \ge 3$, this converges to 0 as $n \to \infty$, and shows V_1 is 0 a.s. (more precisely, it is 0 as soon as the brownian path is α -hölder for some $\alpha > 1/3$).

We may also note that this approach does not say anything in the case d = 2. Indeed, in the plane, the path of a α -hölder function must have area zero if $\alpha > 1/2$, but may well have positive area if $\alpha = 1/2$. And the brownian paths are even not 1/2-hölder...

- 5. We now suppose d = 2. For $z \in \mathbb{R}^2$, we write $T_z := \inf\{t \ge 0, B_t = z\} \in [0, +\infty]$.
 - (a) Show $\mathbb{E}[V_1] = \int \mathbb{P}(T_z \leq 1)\lambda_2(\mathrm{d}z)$. Answer: We noticed in question 1. that $V_1 = \int \mathbb{1}_{A_1}(x,\omega)\lambda_2(\mathrm{d}x)$, so the expectation of V_1 is also the $\lambda_2 \otimes \mathbb{P}$ -measure of the set A_1 . By Fubini theorem, we can compute this measure by first integrating over ω , so that we get

$$\mathbb{E}[V_1] = \int \mathbb{P}(z \in \{B_s, 0 \le s \le 1\}) \lambda_2(\mathrm{d}z) = \int \mathbb{P}(T_z \le 1) \lambda_2(\mathrm{d}z)$$

(b) Prove $T_z \stackrel{(d)}{=} |z|^2 T_{z_0}$, where $z_0 = (1,0)$, and deduce $\mathbb{E}[V_1] = \pi \mathbb{E}[T_{z_0}^{-1}]$. Answer: Write $z = rz_1$, with r = |z| and $|z_1| = 1$. By the scaling invariance property of brownian motion, we get

$$T_{z} = \inf\{t \ge 0, B_{t} = z\} \stackrel{(a)}{=} \inf\{t \ge 0, rB_{r^{-2}t} = z\}$$
$$= r^{2} \inf\{t \ge 0, rB_{t} = z_{1}\} = r^{2}T_{z_{1}}.$$

By the invariance of the law of the brownian motion under an isometry of \mathbb{R}^2 , we also get that T_{z_1} has the same law as T_{z_0} . Further,

$$\mathbb{E}[V_1] = \int \mathbb{P}(T_{z_0} \le |z|^{-2}) \lambda_2(\mathrm{d}z) = 2\pi \int_{\mathbb{R}_+} r \mathbb{P}(T_{z_0} \le r^{-2}) \mathrm{d}r$$
$$= \pi \int_{\mathbb{R}_+} \mathbb{P}(T_{z_0}^{-1} \ge s) \mathrm{d}s = \pi \mathbb{E}[T_{z_0}^{-1}],$$

where in the first line we used the polar coordinates change of variable, and in the second line the change of variable $s = r^2$.

- (c) Prove similarly $\mathbb{E}\left[\lambda_2(\{B_s, 0 \le s \le 1\} \cap \{B_t, 1 \le t \le 2\})\right] = \pi \mathbb{E}\left[\max\left(T_{z_0}, \widetilde{T}_{z_0}\right)^{-1}\right]$, where \widetilde{T}_{z_0} is an independent copy of T_{z_0} .
 - Hint: Observe that $\lambda_2(\{B_s, 0 \le s \le 1\} \cap \{B_t, 1 \le t \le 2\})$ can be rewritten as $\lambda_2(\{B_{1-s} - B_1, 0 \le s \le 1\} \cap \{B_{1+t} - B_1, 0 \le t \le 1\}).$

Answer : We follow the hint, and observe that $(B_{1-s} - B_1)_{0 \le s \le 1}$ and $(B_{1+t} - B_1)_{t \ge 0}$ are two independent brownian motions. Indeed, the first one is a brownian motion by time reversal, and is $\sigma(B_s, 0 \le s \le 1)$ -measurable, while the second one is a brownian motion independent of $\sigma(B_s, 0 \le s \le 1)$, by the simple Markov property. Therefore the hitting times of z_0 for these two processes are independent copies of T_{z_0} . Now, the same reasoning as in last question leads to

$$\mathbb{E}\left[\lambda_{2}(\{B_{s}, 0 \leq s \leq 1\} \cap \{B_{t}, 1 \leq t \leq 2\})\right] = \pi \int_{\mathbb{R}_{+}} \mathbb{P}(T_{z_{0}}^{-1} \geq s, \tilde{T}_{z_{0}}^{-1} \geq s) \mathrm{d}s$$
$$= \pi \mathbb{E}\left[\max\left(T_{z_{0}}, \tilde{T}_{z_{0}}\right)^{-1}\right].$$

(d) Deduce the planar brownian motion path also has a.s. volume (or area) 0. Answer : By question 3.(b), the expectation computed in 5.(c) is actually 0, and therefore $\max(T_{z_0}, \tilde{T}_{z_0})$ is almost surely equal to $+\infty$. This in turn implies that T_{z_0} is itself infinite almost surely. Thus, by 5.(b), the expectation of V_1 is zero, and we finish the proof just like the case $d \geq 3$.

Exercice 2 : Langevin process and recurrence

Suppose $(B_t)_{t\geq 0}$ is a 1-dimensional Brownian motion started from 0, and $(\mathcal{F}_t)_{t\geq 0}$ is its canonical filtration. We define the *integrated Brownian motion* or *Langevin process* $(A_t)_{t\geq 0}$ by $A_t = \int_0^t B_s ds$.

1. (a) Show the Langevin process is continuous and adapted. Show its one dimensional marginal, the distribution of A_t , is a centered gaussian with variance $t^3/3$.

Hint : Approximate A_t by a linear combination of the coordinates of the brownian motion $(B_s)_{s>0}$.

Answer : The Langevin process is clearly continuous (its paths are even differentiable). The approximation of the integral of a continuous function by a Riemann sum gives us that A_t is the (pointwise) limit when $n \to \infty$ of the sum $A_t^n := \sum_{i=1}^n \frac{t}{n} B_{it/n}$. The rv A_t^n is clearly \mathcal{F}_t -measurable, thus so is A_t , and the process is thus adapted. Moreover, A_t^n is a centered gaussian variable, with variance

$$Var(A_t^n) = \frac{t^2}{n^2} \sum_{i,j=1}^n \operatorname{Cov}(B_{it/n}, B_{jt/n}) = \frac{t^2}{n^2} \sum_{i,j=1}^n \min(\frac{it}{n}, \frac{jt}{n})$$
$$\xrightarrow[n \to \infty]{} \int_{[0,t]^2} \min(r, s) \mathrm{d}r \mathrm{d}s = t^3/3.$$

Thus A_t^n converges in law to a centered gaussian with variance $t^3/3$ (we recall the convergence in law for gaussian random variables is characterized by the convergence of the first two moments). In particular, A_t is a centered gaussian with variance $t^3/3$.

(b) Prove that the processes $(-A_t)_{t\geq 0}$ and $(\lambda^{3/2}A_{\lambda^{-1}t})_{t\geq 0}$, for any given $\lambda > 0$, have the same law (as random variables taking values in the Wiener space) as the Langevin process $(A_t)_{t\geq 0}$.

Answer : It suffices to write $-A_t = \int_0^t (-B_s) ds$ and

$$\lambda^{3/2} A_{\lambda^{-1}t} = \int_0^{\lambda^{-1}t} \lambda^{3/2} B_s \mathrm{d}s = \int_0^t \lambda^{1/2} B_{\lambda^{-1}u} \mathrm{d}u,$$

and to observe that the processes $(-B_t)_{t\geq 0}$ and $(\lambda^{1/2}B_{\lambda^{-1}t})_{t\geq 0}$ are brownian motions.

(c) Show the Langevin process takes almost surely positive as well as negative values at arbitrary small times.

Answer : We just prove that the Langevin process takes almost surely positive values at arbitrary small times (then we deduce the result for example because $(-A_t)_{t\geq 0}$ is also a Langevin process). In other words, we prove $\mathbb{P}(\forall \varepsilon > 0, \sup\{A_s, 0 \leq s \leq \varepsilon\} > 0) = 1$. Observe this event is in the σ -field \mathcal{F}_{0+} , thus by Blumenthal 0-1 law, it must have probability 0 or 1. But it also has probability at least 1/2, because it is the decreasing limit, when ε decreases to 0, of the event $\sup\{A_s, 0 \leq s \leq \varepsilon\} > 0$, which contains the event $\{A_{\varepsilon} > 0\}$, itself of probability 1/2. Thus we get result.

(d) Show the Langevin process is recurrent, namely takes almost surely every real value at arbitrary large times.

Hint : It suffices to show that we almost surely have

$$\limsup_{t \to +\infty} A_t = +\infty, \qquad \liminf_{t \to +\infty} A_t = -\infty.$$

Anwser : It suffices to prove, for fixed n > 0, that the event $\sup_{t\geq 0} A_t \ge n$ is almost sure. Indeed, we then a.s. have $\sup_{t\geq 0} A_t = +\infty$, as well as $\inf_{t\geq 0} A_t = -\infty$ (again by a simple symmetry argument), which proves the Langevin process is a.s. recurrent.

Now, for fixed n > 0, by the scaling invariance property of the Langevin process, we get that for any $\lambda > 0$,

$$\mathbb{P}(\sup_{t\geq 0} A_t \geq n) = \mathbb{P}(\sup_{t\geq 0} \lambda^{3/2} A_{\lambda^{-1}t} \geq n) = \mathbb{P}(\sup_{t\geq 0} A_t \geq \lambda^{-3/2}n).$$

In particular, taking λ to infinity, this is also equal to the probability of the event $\{\sup_{t>0} A_t > 0\}$, which is 1 by question 1.(c).

2. We aim to show that the bidimensional process $(A_t, B_t)_{t\geq 0}$ (also called *Kolmogorov* process) is transient, in the sense that we almost surely have

$$\liminf_{t \to +\infty} \left(|A_t| + |B_t| \right) = +\infty.$$

(a) Show that, looking at integers n, we a.s. have

$$\liminf_{n \to +\infty, n \in \mathbb{N}} |A_n| = +\infty.$$

Hint : Use question 1.(a)

Answer : By question 1.(a), A_n has the same law as $t^{3/2}N/3^{1/2}$, where N is a centered standard gaussian. But the law of N has density bounded by $1/\sqrt{2\pi}$, thus, for any $\varepsilon > 0$, we have $\mathbb{P}(|N| \le \varepsilon) \le \varepsilon \sqrt{2/\pi}$.

Hence, for c > 0 fixed, we have

$$\sum_{n \in \mathbb{N}} \mathbb{P}(|A_n| \le c) \le c\sqrt{6/\pi} \sum_n n^{-3/2} < \infty,$$

and by Borel-Cantelli lemma, the event $\liminf |A_n| \ge c$ is almost sure. We conclude by taking c to $+\infty$.

(b) Suppose $K \subset \mathbb{R}^2$ is compact, and T is a stopping time such that the event $\{T < +\infty\}$ has positive probability, and we have $(A_T, B_T) \in K$ on this event. Show we can find a compact set \tilde{K} , depending only on K, such that conditionally on $\{T < +\infty\}$, the process (A_t, B_t) stays in \tilde{K} on the whole time interval [T, T+1] with probability at least 1/2.

Answer : Fix a compact set K and a stopping time T as in the statement. We also let $M := \max\{|y|, (x, y) \in K\} < +\infty$, and argue in this argument conditionally on $\{T < +\infty\}$. Using the strong Markov property of brownian motion, we get that the process $B^{(T)}$ is a brownian motion independent from \mathcal{F}_T . In particular, we can choose a finite constant c > 0 (not depending on Kor T) such that the probability of the event $\sup\{|B_t^{(T)}|, 0 \le t \le 1\} \le c$ is at least 1/2. Now, define the compact set \tilde{K} by

$$\tilde{K} := \{ (x, y), \exists (x', y') \in K, |y - y'| \le c, |x - x'| \le M + c \}.$$

The event "The process (A_t, B_t) stays in \tilde{K} on the whole time interval [T, T+1]" contains the event $\sup\{|B_t^{(T)}|, 0 \leq t \leq 1\} \leq c$, and thus has (conditional) probability at least 1/2.

(c) Conclude.

Answer : We argue by the absurd and suppose that the probability of the event $\{\liminf(|A_t|+|B_t|) < +\infty\}$ is positive. Then there exists a finite constant c > 0 and $\varepsilon > 0$ such that

$$\mathbb{P}\left(\bigcap_{s>0} \{\inf_{t\geq s} (|A_t| + |B_t|) < c\}\right) \geq \varepsilon.$$

Define $K = \{(x, y), |x| + |y| \le c\}$ and \tilde{K} given by last question. For n integer, introduce the stopping time $T_n := \inf\{t \ge n, (A_t, B_t) \in K\}$. The probability of the event $\{T_n < \infty\}$ is at least ε , and conditionally on this, the Kolmogorov process stays in \tilde{K} on the whole time interval $[T_n, T_n + 1]$ with proability at least 1/2.

In particular, the probability that there exists an integer k larger than n such that $|A_n| \leq C$ is at least $\varepsilon/2$, where C is the finite constant $\max\{|x|, (x, y) \in \tilde{K}\}$. Taking the intersection over n integer, we deduce that the probability of the event $\liminf |A_n| \leq C$ is at least $\varepsilon/2$, contradicting question 2.(a). Finally, we deduce the transience of the Kolmogorov process.