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[Exercise sheet 6: Some more martingales & Donsker’s
invariance principle

Exercise 1 — A weaker condition for the first Wald’s lemma.
We wish to show that when T is a stopping time with E[T/?] < oo, Wald’s lemma still
applies and E[Br] =0

(1) Define 7 := min{k : 4* > T'}. Set M (t) := max)yy B and X}, := M (4*)—252. Show
that (Xj) is a supermartingale for the filtration (Fyx)g, and that 7 is a stopping
time.

(2) Show that E[M(47)] < oo and conclude.

(3) Show that when 7' is the hitting time of 1, then E[T?] < oo for all & < 1/2, yielding
that our result is in some sense optimal.

Exercise 2 — An application of Donsker’s invariance principle.
Let B be a standard Brownian motion on [0,1], and D = sup{t € [0,1], B, = 0} and B be
B reflected at D (i.e. B, = B, 1;<p —Bi14>p). Show that B is distributed like B. Same
question for the process reflected at £ = inf{t € [0, 1], By = B;}.

Exercise 3 — Furst arcsine law.
The goal of this exercise is to find the distribution of P = Leb{t € [0, 1], B; > 0}.

(1) Let n > 1 and (X7,... X)) be independent Rademacher steps. Set S§ = 0 and
Sp =S, + X}, inductively for 1 <k <n. Let Y™ = (Y{",...,Y,) be constructed
by taking the X' for which S; > 0 in decreasing order, then the Y;* for which

Sp < 0 in increasing order. Show that X" Lyn (Hint: draw a picture).
(2) Let R™ be the walk associated with Y. Show that

A, =#{ke[l,n]:S; >0} =inf{k € [0,n] : R} = max R} =: B,,.
j

€[o,n] J

(3) Show that B, /n converges in distribution to inf{t € [0,1], B, = maxy B}. You
can use the fact that almost surely the maximum of B on some closed interval is
reached at a unique point (Morters-Peres Thm. 2.11)

(4) Deduce that P is arcsine distributed.

Exercise 4 — Convergence in distribution of random continuous functions.
The criterion you were given in class for convergence in C(R,) is a consequence of the
following celebrated theorem that gives a compactness criterion for narrow convergence of

probability measures:
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Theorem (Prokhorov). Let (u,), be a sequence of probability measures on a Polish (com-
plete metric separable) space E. Suppose that it is tight, i.e. for every e > 0 there exists a
compact K. such that for every n, pu,(E\ K¢) < €. Then w, admits a narrowly convergent
subsequence.

Recall that we say that u, — p narrowly if p,f — pf for every f € Cy(E), and vaguely
if pnf — pf for every f € C.(E) (continuous with compact support). We will first prove
Prokhorov’s theorem then deduce the criterion.

(1) (a) B = R? show that every sequence of probability measures admits a vaguely
convergent subsequence (use standard functional analysis theorems).

(b) Deduce Prokhorov’s theorem in the case £ = R? (using the fact that yu, — u
narrowly <= (u, — u vaguely and p(E) = 1)).

(c) Use a diagonal argument to show that it is still the case when F = RN (you
need to use Kolmogorov’s extension theorem, which states that given a col-
lection of probability measures (77)rcn finite With the compatibility condition
(proj;)«my = my for every J C I, then there exists a probability measure 7 on
RN with (proj;).m = 77 for every I).

(d) Show it for a general E, by first showing that E is then homeomorphic to a
subset of [0, 1]M.

(2) Let X™ be a sequence of random variables in C(R_.) such that

(a) sup, B(X(0)] > M) —— 0

(b) for every n > 0, T > 0, we have sup, P(mj7(X™,§) > n) 7 0

Show that the sequence of the distributions of the X for n € N is tight.
(3) Show that if we have conditions (a) and (b) above, and furthermore the f.d.m.s of
X converge to the f.d.m.s of X, then X — X in distribution.

Remark 1: Prokhorov’s theorem, along with question (2) and (3), all admit a converse.
Remark 2: If you don’t like functional analysis, the vague sequential compactness property
can be proved in R (and even in RY) by showing that the cumulative distribution functions
admit a convergent subsequence in the sense of convergence at limit continuity points (this
is Helly’s selection theorem)



