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Exercise 1 — Recurrence and Donsker.
You know that almost surely the random walk on Z2 visits 0 infinitely often. Is it the case
for the bidimensional Brownian motion? What does Donsker’s invariance principle tell us
here?

Exercise 2 — Skorokhod’s embedding.
Let X be a centered random variable with variance 1.

(1) Argue for the existence of a sequence of random times Tk such that (Tk − Tk−1)k is
an i.i.d. sequence of mean 1 and (Sk)k = (BTk

)k is a random walk whose increments

are distributed like X. Define (S̃n
t )t = (Snt√

n
)t its (properly interpolated) rescaled

version.
(2) Let φn(t) = n−1Tbntc. Show that almost surely this random function converges

uniformly on every compact to the identity R+ → R+.

(3) Show that S̃n = (t 7→ n−1/2Bnt) ◦ φn at points that are multiples of 1/n. Deduce

that ‖S̃n − (t 7→ n−1/2Bnt)‖[0,A] goes to 0 in probability for every A.
(4) Deduce Donsker’s theorem.

Exercise 3 — Donsker’s theorem for bridges.
In this exercise, let b(n, p, k) denothe the probability that a binomial of parameters (n, p)
equals k, and f denote the standard Gaussian density. We will make use of the following
local limit theorem, which is a refinement of the central limit theorem.
Theorem. (De Moivre–Laplace) As n→∞,

sup
k∈Z

∣∣∣∣∣√p(1− p)nb(n, p, k)− f

(
k − np√
p(1− p)n

)∣∣∣∣∣ = o(n−1/2).

Recall (from the Homework assignment) that the Brownian bridge β (from 0 to 0) has the
following property: for every integrable function H and ε > 0,

E
[
H(β|[0,1−ε])

]
= E

[
H(B|[0,1−ε])

ε−1/2f(ε−1/2B1−ε)

f(0)

]
.

Define the simple random walk S and its interpolated and rescaled version S̃n. Our goal is

to show that the distribution of S̃2n given that it is a bridge (i.e. S̃2n = 0), converges
to that of β as n→∞.
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(1) Let H be a bounded continuous or positive measurable function. Fix n ≥ 1 and
kn ≤ n− 1. Show that

E[H(S̃2n
|[0,kn/n]) | S̃2n = 0] = E

[
H(S̃2n

|[0,kn/n])
b(1

2
, 2n− 2kn, n− kn +

√
2n
2
S̃kn/n)

b(1
2
, 2n, n)

]
(2) Suppose that kn/n → 1 − ε. Denote by An the fraction appearing in the right-

hand side. Show that An is bounded by b(1
2
, 2n − 2kn, n − kn)/b(1

2
, 2n, n), which

(deterministic) bound converges to a constant. Deduce that the tightness criterion

(the bound on E[|S̃2n
t − S̃2n

s |4]) that applies to S̃2n still applies to the conditioned
version.

(3) Show that there exists a deterministic o(n−1/2) such that almost surely we have∣∣∣∣An −
ε−1/2f(ε−1/2S̃2n

kn/n
)

f(0)

∣∣∣∣ = o(n−1/2). Deduce that all finite-dimensional marginals of

S̃2n given S̃2n = 0 converge to that of the Brownian bridge.
(4) Conclude.

Exercise 4 — The binary splitting martingale.
Let X be centered with finite variance and (Xn)n be the associated binary splitting mar-
tingale, defined as follows: Let G0 the trivial σ-field, and for n ≥ 0, set Xn = E[X | Gn],
ξn = sgn(X − Xn) and Gn+1 = σ(ξ0, . . . , ξn). You know that (Xn)n is a martingale for
the filtration (Gn)n, that it is bounded in L2 hence converges a.s. and L1 to some random
variable X∞. We still need to show that X∞ = X a.s.

(1) Express Xn+1 −Xn so that its positive and negative part are explicit. Use this to
compute |Xn+1 −Xn|.

(2) Deduce that |Xn −X| goes to 0 in L1 and conclude.


