ENS de Lyon - Math Department
Brownian Motion and Stochastic Processes

Master 1 - Spring 2020
H. Leman \& M. Maazoun

Solutions for $\mathbb{E x e r c i s e ~ s h e e t ~} 1$: Gaussian vectors, random walks.

Solution 1 - Gaussian vectors. (1) The parameters are the mean $\mu \in \mathbb{R}$ and the variance $\sigma^{2} \geq 0$. When $\sigma^{2}=0$, the distribution is just the Dirac in μ, and when $\sigma^{2}>0$, it has pdf $f(t)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-t^{2} /\left(2 \sigma^{2}\right)}$. In both cases the characteristic function is $\phi(t)=e^{i \mu t-\sigma^{2} / 2 t^{2}}$.
(2) This is immediate to check. By decomposing on the standard Euclidean basis it turns out that $m_{i}=\mathbb{E}\left[X_{i}\right]$ and $\Sigma_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$. We call those the mean vector and the covariance matrix of X.
(3) We have that $\langle t, X\rangle$ is a Gaussian of mean $\langle t, m\rangle$ and variance $\langle t, \Sigma t\rangle$. So by taking the characteristic function of $\langle t, X\rangle$ at point 1 we get $\mathbb{E}\left[e^{i\langle t, X\rangle}\right]=\exp (i\langle t, m\rangle-$ $\left.\frac{1}{2}\langle t, \Sigma t\rangle\right)$. So the distribution of X is completely characterized by the parameters m and Σ.
(4) Compute $\mathbb{E}\left[e^{i\langle t, A x\rangle}\right]=\mathbb{E}\left[e^{i\left\langle\top^{\top} A t, x\right\rangle}\right]=\exp \left(i\left\langle{ }^{\top} A t, m\right\rangle-\frac{1}{2}\left\langle{ }^{\top} A t, \Sigma^{\top} A t\right\rangle\right)=\exp (i\langle t, A m\rangle-$ $\left.\frac{1}{2}\left\langle t, A \Sigma^{\top} A t\right\rangle\right)$. Gaussianity and identification of the parameters follows.
(5) If we have the independence condition, then for $t \in V_{1}$ and $s \in V_{2}$, we have $\operatorname{Cov}[\langle t, X\rangle,\langle s, X\rangle]=0$ by Fubini's theorem (justified since everybody is in L^{2}). But the converse is also true: Suppose that for every $t \in V_{1}$ and $s \in V_{2}$, we have $\operatorname{Cov}[\langle t, X\rangle,\langle s, X\rangle]=0$. Let $f_{1}, \ldots f_{m}$ be a finite family in V_{1} followed by a finite family in V_{2}. Set $Y=\left(\left\langle f_{1}, X\right\rangle, \ldots,\left\langle f_{m}, X\right\rangle\right)=\left(Y_{1}, Y_{2}\right)$. Then, by computing covariances, we see that the covariance matrix of Y is block-diagonal. This means that we have a product decomposition $\mathbb{E}\left[e^{i\left(\left\langle t_{1}, Y 1\right\rangle+\left\langle t_{2}, Y_{2}\right\rangle\right.}\right]=\mathbb{E}\left[e^{i\left\langle t_{1}, Y_{1}\right\rangle}\right] \mathbb{E}\left[e^{i\left\langle t_{2}, Y_{2}\right\rangle}\right]$. By injectivity of the characteristic distribution, we have identified the distribution of $\left(Y_{1}, Y_{2}\right)$ as one of an independent couple of two Gaussian vectors. Now because by definition the σ-algebra spanned by a family of variables is generated by the finite subfamilies, we get the independence of the two σ-algebras.
(6) The classic example : set (X, A) to be an independent couple of a standard Gaussian and a Rademacher variable (uniform on $\{ \pm 1\}$). Set $Y=A X$. Then Y is not independent of $X(\mathbb{P}(X>0, Y>0)=0 \neq 1 / 4)$. Yet $\operatorname{Cov}(X, Y)=\mathbb{E}\left[A X^{2}\right]=$ $\mathbb{E}[A] \mathbb{E}\left[X^{2}\right]=0 \times 1=0$.
(7) If $X=\left(X_{1}, \ldots X_{n}\right)$ then we compute $\mathbb{E}\left[e^{i\langle t, X\rangle}\right]=e^{-\frac{1}{2}\langle t, t\rangle}$. So it's Gaussian. For m a vector and Σ a semi-definite positive matrix, use the spectral theorem to write $\Sigma={ }^{\top} O D O$, and consider $Y=m+{ }^{\top} O \sqrt{D} X$. It should have the prescribed parameters.

Solution 2 - Limit in distribution of Gaussian vectors.
Thanks to the student who found this neat proof of question 1
Let μ_{n} and σ_{n} be the parameters of X_{n}
(1) If we have convergence in distribution, then we have convergence of the characteristic functions to the one of the limit. So there exists a characteristic function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $t \in \mathbb{R}, f_{n}(t)=e^{i \mu_{n} t-\frac{\sigma_{n}^{2}}{2} t^{2}} \rightarrow f(t)$. Now taking the modulus then the \log yields $\sigma_{n}^{2} \rightarrow-\frac{2}{t^{2}} \log (|f(t)|)=\sigma^{2} \geq 0$. We deduce that $|f(t)|=e^{-\frac{\sigma^{2}}{2} t^{2}}$. Now

$$
e^{i \mu_{n} t}=e^{\frac{\sigma_{n}^{2}}{2} t^{2}} f_{n}(t) \rightarrow e^{\frac{\sigma^{2}}{2} t^{2}} f(t)=: u(t)
$$

where u is a continuous function in \mathbb{C} of modulus 1 (with $u(0)=$: 1). Taking ϵ small enough so that the $\operatorname{Re}(u(t))>1 / 2$ for $t \in(0, \varepsilon)$, we can integrate the previous convergence and get

$$
\frac{1}{i \mu_{n}}\left(e^{i \mu_{n} \varepsilon}-1\right) \rightarrow \int_{t=0}^{\varepsilon} u(t) d t \neq 0
$$

Upon inverting then multiplying by $\left(e^{i \mu_{n} \varepsilon}-1\right) \rightarrow u(\varepsilon)-1$, we obtain that μ_{n} converges to $\frac{u(\varepsilon)-1}{i \int_{t=0}^{\varepsilon} u(t) d t}$. We then have convergence of the parameters, and $X \sim$ $\mathcal{N}\left(\mu, \sigma^{2}\right)$ with $\mu=\lim \mu_{n}$ and $\sigma^{2}=\lim \sigma_{n}^{2}$.
(2) By the first question, if there is convergence in probability, there is convergence in distribution, hence μ_{n} and σ_{n} converge. Since moments of Gaussian variables are polynomials in $\left(\mu_{n}, \sigma_{n}\right)$, we have convergence of all moments. Hence $\left(X_{n}\right)_{n}$ is bounded in every $L^{p}, p>1$. Hence $\left(\left|X_{n}\right|^{p^{\prime}}\right)$ is uniformly integrable for every p^{\prime}. By Vitali's theorem, $X_{n} \rightarrow X$ in $L_{p^{\prime}}$.

Solution 3 - Some estimates.
Let $\left(X_{n}\right)_{n \geq 0}$ be the simple symmetric random walk.
(1) $\mathbb{P}\left(X_{2 n}=0\right)=\binom{2 n}{n} 2^{-2 n}$. Stirling's formula gives us

$$
\mathbb{P}\left(X_{2 n}=0\right) \sim \frac{1}{\sqrt{\pi n}}
$$

(2) Using the ballot theorem for the walk between times 0 and $n-1$,

$$
\begin{aligned}
& \mathbb{P}\left(X_{n}=0, X_{1} \cdots X_{n-1} \neq 0\right) \\
& =\frac{1}{2} \mathbb{P}\left(X_{n-1}=-1, X_{1} \cdots X_{n-2} \neq 0\right)+\frac{1}{2} \mathbb{P}\left(X_{n-1}=1, X_{1} \cdots X_{n-2} \neq 0\right) \\
& =\frac{1}{n-1}\left(\frac{1}{2} \mathbb{P}\left(X_{n-1}=1\right)+\frac{1}{2} \mathbb{P}\left(X_{n-1}=-1\right)\right) \\
& =\frac{1}{n-1} \mathbb{P}\left(X_{n}=0\right)
\end{aligned}
$$

Hence $\mathbb{P}\left(X_{n}=0, X_{1} \cdots X_{n-1} \neq 0\right) \sim \mathbb{1}_{n \text { even }} \sqrt{\frac{2}{\pi}} n^{-3 / 2}$.
(3) By summation of equivalents,

$$
\mathbb{P}\left(\tau_{0} \geq k\right)=\sum_{n=k}^{\infty} \mathbb{P}\left(X_{n}=0, X_{1} \cdots X_{n-1} \neq 0\right) \sim \sqrt{\frac{2}{\pi}} \sum_{2 n \geq k}(2 n)^{-3 / 2} \sim \sqrt{\frac{2}{\pi}} 2^{-3 / 2} \frac{(k / 2)^{-1 / 2}}{1 / 2}=\sqrt{\frac{2}{\pi k}}
$$

(4) In class, you showed that $\frac{\mathbb{E}\left[\left|X_{n}\right|\right]}{n}=\mathbb{P}\left(\tau_{0}>n\right)$, from which we deduce

$$
\mathbb{E}\left[\left|X_{n}\right|\right] \sim \sqrt{\frac{2 n}{\pi}}
$$

Solution 4 - Maximum and hitting times.
Will be completed later.

Solution 5 - Conditioning and independence.

- Set $u(x)=\mathbb{E}[f(x, Y)]=\int f(x, y) d \mathbb{P}_{Y}(y)$. According to Fubini's theorem, $u(x)$ is defined \mathbb{P}_{X}-a.e. Let us check that the almost-surely defined random variable $u(X)$ satisfies the universal property required from the conditional expectation $\mathbb{E}[f(X, Y) \mid \mathcal{G}]$.

Let Z be a \mathcal{G}-measurable bounded random variable. Then $Z f(X, Y) \in L^{1}$, and since Y is independent of (X, Z), which means $\mathbb{P}_{(X, Z, Y)}=\mathbb{P}_{(X, Z)} \otimes \mathbb{P}_{Y}$.

We deduce

$$
\begin{aligned}
\mathbb{E}[Z f(X, Y)] & =\int z f(x, y) d \mathbb{P}_{(X, Z, Y)}(x, z, y)=\int z f(x, y) d\left(\mathbb{P}_{(X, Z)} \otimes \mathbb{P}_{Y}\right)(x, z, y) \\
& =\int z\left(\int f(x, y) d \mathbb{P}_{Y}(y)\right) d \mathbb{P}_{(X, Z)}(x, z) \text { (Fubini) } \\
& =\mathbb{E}[Z u(X)]
\end{aligned}
$$

This proves the claim. I often write this very basic claim about conditional expectations as follows :

$$
\mathbb{E}[f(X, Y) \mid \mathcal{G}]=\mathbb{E}[f(x, Y)]_{x=X}
$$

- We may now interpret this as a conditional distribution. Let $\mu(x, \cdot)$ denote the distribution of $f(x, Y)$. Then for every bounded measurable ϕ,

$$
\mathbb{E}[\phi(f(X, Y)) \mid \mathcal{G}]=\mathbb{E}[\phi(f(x, Y))]_{x=X}=\left(\int \phi(u) \mu(x, d u)\right)_{x=X}=\int \phi(u) \mu(X, d u)
$$

This implies that the distribution of $f(X, Y)$ given \mathcal{G} is $\mu(X, \cdot)$. In other words, μ is a conditional probability kernel for $f(X, Y)$ given X.

Solution 6 - Gaussian conditional distribution and Bayesian statistics 101.
(1) To do this, we project X on $\sigma(Y)$ to write

$$
X=\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)} Y+\left(X-\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(Y)} Y\right)
$$

the two terms of this sum being uncorrelated hence independent, as they themselves form a Gaussian vector. Writing Z the second term, we end up with

$$
X=\frac{\rho}{\sigma_{Y}^{2}} Y+Z
$$

, where Z is independent of Y. We deduce $\operatorname{Var}(X)=\frac{\rho^{2}}{\sigma_{Y}^{4}} \operatorname{Var}(Y)+\operatorname{Var}(Z)$ (Pythagora's $!)$, and hence $\operatorname{Var}(Z)=\sigma_{X}^{2}-\frac{\rho^{2}}{\sigma_{Y}^{2}}$. Using the previous exercise, we deduce that the conditional probability kernel of X given Y is

$$
(y, \cdot) \mapsto \mathbb{P}\left(\frac{\rho}{\sigma_{Y}^{2}} y+Z \in \cdot\right)=\mathcal{N}\left(\frac{\rho}{\sigma_{Y}^{2}} y, \sigma_{X}^{2}-\frac{\rho^{2}}{\sigma_{Y}^{2}}\right)(\cdot)
$$

(3) Applying the previous question, we get that

$$
\mathbb{P}_{\theta \mid \bar{X}=\bar{x}}=\mathcal{N}\left(\frac{\bar{x}}{1+\frac{\sigma^{2}}{n \tau^{2}}}, \frac{1}{\frac{n}{\sigma^{2}}+\frac{1}{\tau^{2}}}\right)
$$

(4) (a) The limit as $\sigma \rightarrow \infty$ is $\mathcal{N}\left(0, \tau^{2}\right)$. When the observations are very random, they give no information about θ.
(b) The limit as $\sigma \rightarrow 0$ is $\mathcal{N}(\bar{x}, 0)=\delta_{\bar{x}}$. When the observations are not random, they equal θ almost surely, hence the distribution of θ given the observations is not random.
(c) The limit as $\tau \rightarrow \infty$ is $\mathcal{N}\left(\bar{x}, \sigma^{2} / n\right)$. The prior distribution of θ is very random hence contains no information. That is why the conditional distribution given \bar{X} is not biased towards 0 anymore. Note that we recover the point of view of inferential statistics: when θ is unknown but deterministic, we indeed have $\theta-\bar{x} \sim \mathcal{N}\left(0, \sigma^{2} / n\right)$.
(d) The limit as $\tau \rightarrow 0$ is $\mathcal{N}(0,0)=\delta_{0}$. Indeed since the prior distribution of θ becomes deterministically equal to 0 , then the posterior does too.
(5) We may interpret this as follows: a real-world parameter θ must be measured. Prior (theoretical or based on the past) knowledge gives us its a priori distribution $\mathcal{N}\left(0, \tau^{2}\right)$. We are also given noisy measurements X_{1}, \ldots, X_{n} of this parameter, and wonder what the distribution of θ becomes after adding this supplementary information.
(6) It turns out that the conditional distribution of θ given $\left(X_{1}, \ldots X_{n}\right)$ is the same as the one given \bar{X}. Indeed if we replay the proof of question 1 and project θ on \bar{X}, we get

$$
\theta=\frac{n \tau^{2}}{n \tau^{2}+\sigma^{2}} \bar{X}+Z
$$

and it turns out that not only $\operatorname{Cov}(\bar{X}, Z)=0$ but also $\operatorname{Cov}\left(X_{i}, Z\right)=0,1 \leq i \leq n$. Hence we may continue as in question 1.

