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Solutions for Exercise sheet 1 : Gaussian vectors, random walks.

Solution 1 — Gaussian vectors. (1) The parameters are the mean µ ∈ R and the vari-
ance σ2 ≥ 0. When σ2 = 0, the distribution is just the Dirac in µ, and when
σ2 > 0, it has pdf f(t) = 1√

2πσ2
e−t

2/(2σ2). In both cases the characteristic function

is φ(t) = eiµt−σ
2/2t2 .

(2) This is immediate to check. By decomposing on the standard Euclidean basis it
turns out that mi = E[Xi] and Σi,j = Cov(Xi, Xj). We call those the mean vector
and the covariance matrix of X.

(3) We have that 〈t,X〉 is a Gaussian of mean 〈t,m〉 and variance 〈t,Σt〉. So by taking
the characteristic function of 〈t,X〉 at point 1 we get E[ei〈t,X〉] = exp(i〈t,m〉 −
1
2
〈t,Σt〉). So the distribution of X is completely characterized by the parameters
m and Σ.

(4) Compute E[ei〈t,Ax〉] = E[ei〈
ᵀAt,x〉] = exp(i〈ᵀAt,m〉− 1

2
〈ᵀAt,ΣᵀAt〉) = exp(i〈t, Am〉−

1
2
〈t, AΣᵀAt〉). Gaussianity and identification of the parameters follows.

(5) If we have the independence condition, then for t ∈ V1 and s ∈ V2, we have
Cov[〈t,X〉, 〈s,X〉] = 0 by Fubini’s theorem (justified since everybody is in L2).
But the converse is also true: Suppose that for every t ∈ V1 and s ∈ V2, we have
Cov[〈t,X〉, 〈s,X〉] = 0. Let f1, . . . fm be a finite family in V1 followed by a finite
family in V2. Set Y = (〈f1, X〉, . . . , 〈fm, X〉) = (Y1, Y2). Then, by computing
covariances, we see that the covariance matrix of Y is block-diagonal. This means
that we have a product decomposition E[ei(〈t1,Y 1〉+〈t2,Y2〉] = E[ei〈t1,Y1〉]E[ei〈t2,Y2〉]. By
injectivity of the characteristic distribution, we have identified the distribution of
(Y1, Y2) as one of an independent couple of two Gaussian vectors. Now because by
definition the σ-algebra spanned by a family of variables is generated by the finite
subfamilies, we get the independence of the two σ-algebras.

(6) The classic example : set (X,A) to be an independent couple of a standard Gaussian
and a Rademacher variable (uniform on {±1}). Set Y = AX. Then Y is not
independent of X (P(X > 0, Y > 0) = 0 6= 1/4). Yet Cov(X, Y ) = E[AX2] =
E[A]E[X2] = 0× 1 = 0.

(7) If X = (X1, . . . Xn) then we compute E[ei〈t,X〉] = e−
1
2
〈t,t〉. So it’s Gaussian. For

m a vector and Σ a semi-definite positive matrix, use the spectral theorem to
write Σ = ᵀODO, and consider Y = m + ᵀO

√
DX. It should have the prescribed

parameters.
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Solution 2 — Limit in distribution of Gaussian vectors.
Thanks to the student who found this neat proof of question 1
Let µn and σn be the parameters of Xn

(1) If we have convergence in distribution, then we have convergence of the charac-
teristic functions to the one of the limit. So there exists a characteristic function

f : R → R such that for all t ∈ R, fn(t) = eiµnt−
σ2n
2
t2 → f(t). Now taking the

modulus then the log yields σ2
n → − 2

t2
log(|f(t)|) = σ2 ≥ 0. We deduce that

|f(t)| = e−
σ2

2
t2 . Now

eiµnt = e
σ2n
2
t2fn(t)→ e

σ2

2
t2f(t) =: u(t),

where u is a continuous function in C of modulus 1 (with u(0) =: 1). Taking
ε small enough so that the Re(u(t)) > 1/2 for t ∈ (0, ε), we can integrate the
previous convergence and get

1

iµn
(eiµnε − 1)→

∫ ε

t=0

u(t)dt 6= 0

Upon inverting then multiplying by (eiµnε − 1) → u(ε) − 1, we obtain that µn
converges to u(ε)−1

i
∫ ε
t=0 u(t)dt

. We then have convergence of the parameters, and X ∼
N (µ, σ2) with µ = limµn and σ2 = limσ2

n.
(2) By the first question, if there is convergence in probability, there is convergence

in distribution, hence µn and σn converge. Since moments of Gaussian variables
are polynomials in (µn, σn), we have convergence of all moments. Hence (Xn)n is
bounded in every Lp, p > 1. Hence (|Xn|p

′
) is uniformly integrable for every p′. By

Vitali’s theorem, Xn → X in Lp′ .

Solution 3 — Some estimates.
Let (Xn)n≥0 be the simple symmetric random walk.

(1) P(X2n = 0) =
(
2n
n

)
2−2n. Stirling’s formula gives us

P(X2n = 0) ∼ 1√
πn

.

(2) Using the ballot theorem for the walk between times 0 and n− 1,

P(Xn = 0, X1 · · ·Xn−1 6= 0)

= 1
2
P(Xn−1 = −1, X1 · · ·Xn−2 6= 0) + 1

2
P(Xn−1 = 1, X1 · · ·Xn−2 6= 0)

=
1

n− 1
(1
2
P(Xn−1 = 1) + 1

2
P(Xn−1 = −1))

=
1

n− 1
P(Xn = 0)

Hence P(Xn = 0, X1 · · ·Xn−1 6= 0) ∼ 1n even

√
2
π
n−3/2.

https://en.wikipedia.org/wiki/Vitali_convergence_theorem


3

(3) By summation of equivalents,

P(τ0 ≥ k) =
∞∑
n=k

P(Xn = 0, X1 · · ·Xn−1 6= 0) ∼
√

2

π

∑
2n≥k

(2n)−3/2 ∼
√

2

π
2−3/2

(k/2)−1/2

1/2
=

√
2

πk

(4) In class, you showed that E[|Xn|]
n

= P(τ0 > n), from which we deduce

E[|Xn|] ∼
√

2n

π
.

Solution 4 — Maximum and hitting times.
Will be completed later.

Solution 5 — Conditioning and independence.

• Set u(x) = E[f(x, Y )] =
∫
f(x, y)dPY (y). According to Fubini’s theorem, u(x)

is defined PX-a.e. Let us check that the almost-surely defined random variable
u(X) satisfies the universal property required from the conditional expectation
E[f(X, Y ) | G].

Let Z be a G-measurable bounded random variable. Then Zf(X, Y ) ∈ L1, and
since Y is independent of (X,Z), which means P(X,Z,Y ) = P(X,Z)⊗PY .

We deduce

E[Zf(X, Y )] =

∫
zf(x, y)dP(X,Z,Y )(x, z, y) =

∫
zf(x, y)d(P(X,Z)⊗PY )(x, z, y)

=

∫
z

(∫
f(x, y)dPY (y)

)
dP(X,Z)(x, z) (Fubini)

= E[Zu(X)].

This proves the claim. I often write this very basic claim about conditional expec-
tations as follows :

E[f(X, Y ) | G] = E[f(x, Y )]x=X .

• We may now interpret this as a conditional distribution. Let µ(x, ·) denote the
distribution of f(x, Y ). Then for every bounded measurable φ,

E[φ(f(X, Y ))|G] = E[φ(f(x, Y ))]x=X =

(∫
φ(u)µ(x, du)

)
x=X

=

∫
φ(u)µ(X, du).

This implies that the distribution of f(X, Y ) given G is µ(X, ·). In other words, µ
is a conditional probability kernel for f(X, Y ) given X.

Solution 6 — Gaussian conditional distribution and Bayesian statistics 101. (1) To do
this, we project X on σ(Y ) to write

X =
Cov(X, Y )

Var(Y )
Y +

(
X − Cov(X, Y )

Var(Y )
Y

)
,
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the two terms of this sum being uncorrelated hence independent, as they themselves
form a Gaussian vector. Writing Z the second term, we end up with

X =
ρ

σ2
Y

Y + Z

, where Z is independent of Y . We deduce Var(X) = ρ2

σ4
Y

Var(Y )+Var(Z) (Pythagora’s

!), and hence Var(Z) = σ2
X −

ρ2

σ2
Y

. Using the previous exercise, we deduce that the

conditional probability kernel of X given Y is

(y, ·) 7→ P(
ρ

σ2
Y

y + Z ∈ ·) = N (
ρ

σ2
Y

y, σ2
X −

ρ2

σ2
Y

)(·).

(3) Applying the previous question, we get that

Pθ|X=x = N

(
x

1 + σ2

nτ2

,
1

n
σ2 + 1

τ2

)
(4) (a) The limit as σ → ∞ is N (0, τ 2). When the observations are very random,

they give no information about θ.
(b) The limit as σ → 0 is N (x, 0) = δx. When the observations are not random,

they equal θ almost surely, hence the distribution of θ given the observations
is not random.

(c) The limit as τ →∞ is N (x, σ2/n). The prior distribution of θ is very random
hence contains no information. That is why the conditional distribution given
X is not biased towards 0 anymore. Note that we recover the point of view
of inferential statistics : when θ is unknown but deterministic, we indeed have
θ − x ∼ N (0, σ2/n).

(d) The limit as τ → 0 is N (0, 0) = δ0. Indeed since the prior distribution of θ
becomes deterministically equal to 0, then the posterior does too.

(5) We may interpret this as follows: a real-world parameter θ must be measured.
Prior (theoretical or based on the past) knowledge gives us its a priori distribution
N (0, τ 2). We are also given noisy measurements X1, . . . , Xn of this parameter,
and wonder what the distribution of θ becomes after adding this supplementary
information.

(6) It turns out that the conditional distribution of θ given (X1, . . . Xn) is the same as
the one given X. Indeed if we replay the proof of question 1 and project θ on X,
we get

θ =
nτ 2

nτ 2 + σ2
X + Z,

and it turns out that not only Cov(X,Z) = 0 but also Cov(Xi, Z) = 0, 1 ≤ i ≤ n.
Hence we may continue as in question 1.


