ENS de Lyon — Math Department Master 1 — Spring 2020
Brownian Motion and Stochastic Processes H. Leman & M. Maazoun

Solutions for Exercise sheet 3 : Lévy’s construction, regularity

Solution 1 — Simple Markov property. (1) We know that B belongs to the measurable

space (R®+ B(R)®®+). But because of continuity of paths, B also belongs to C(R, ).
This is a topological space (for uniform convergence over every compact), which
provides the Borel o-algebra B(C(R.)). The question is now: is B measurable with
regard to this apparently stronger o-algebra? This is the case, since actually

(B(R)**) e,y = B(C(R+)).

We proceed to the proof of this statement. First of all, (B(R)®®)c®,) D
B(C(R,)) because evaluations are continuous w.r.t. the topology of C([0, 1]).

Conversely, to show (B(R)®*+)cr,) C B(C(R;) it suffices to show that every
semi-norm |||k is measurable w.r.t. (B(R)¥®+)¢r,) because then an open ball

can be rewritten as || f — -||71([0,1)), hence is measurable. But we have
Ifllc = sup |f(t) = f(t)].
te K teQ

which immediately gives measurability of ||-||x.

This shows that B is measurable with regard to B(C(R,)), and that B(C(R,))
is generated by cylinder sets, just like B(R)®®+. In particular, the distribution of
an element of C(R, ) is characterized by its finite-dimensional marginals.

This will be helpful in the future, because it will provide for free measurability
of lots of functional of B: maximum over an interval, hitting times, ...

The fact that B = (Biys — Bi)s>o is a Brownian motion is immediate by the
definition. Let’s show the independence property. We will show the even stronger
statement:

B 1L (By)o<s<t.

By the lecture, we only have to show that finite-dimensional marginals are inde-
pendent. Let us consider 0 <s3 < ... < s, <tand 0<s),... <s).

(Byys- - BBy, ..., By) = (B, ... By, Biss, — Biy..., Biry, — By)

is a Gaussian vector because

e B is a Gaussian process

e affine transforms preserve Gaussianity.
So (first exercise session) it suffices to find that crossed covariances are zero to prove
independence. We take 0 < s <t, s” > 0 and compute

Cov(By, By) = Cov(By 4y — By, By) = Cov(By 4y, By) — Cov(By, B,) = s — s = 0.
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Solution 2 — Local regularity and long-term behavior. (1) Immediate since almost surely
Xi=o0(l)ast—0
(2) We know from the lecture that almost surely,
e X is not locally 1/2 + e-Holder at 0, more precisely

: h
limsup —— = o
hes0 hl/2+e

e X is 1/2 — e-Holder on [0, 1], in particular there exists C' random such that

hmsup T2 6/2 < C,
which implies that
lim || =
ho | h1/2= 0
Translating on By, this means that
B, By d
h?ligpw 00, hrgg)lftl/—2 = —o0o (because B = —B)
and
. B, |
Exercise 4 below will allow us to improve the upper bound to
B,
lim su <C
t%oop \/thgt B

Remark: It turns out that this is not sharp. The law of iterated logarithm tells us

that actually lim sup,_, ‘ﬁ = 1.
(3) We will now proceed to improve the lower bound by showing that Brownian motion
is not 1/2-Hoélder at 0.
(a) By Fatou’s lemma,

P((lim sup By- n/\/_) <c) < ]P’(hmmf{Bg n < C\/_})

n—oo

<liminf P(By-» < ¢vV2™) = liminf P(B; < ¢) < 1.

n—o0 n—o0

(b) Lévy’s construction tells us that By—n = 27" Ny + Zz;é 27 +k/2 N, . Hence

n—1

B27n
= 272Ny + Y 22N,
Each fixed term of the sum goes to 0 separately. So the lim inf does not change
when the first few terms are removed. We deduce that liminf, ., By-n/v27"
is measurable w.r.t. the o-algebra o(Nyy, k > K) for all fixed K, thus to the

tail o-algebra.
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(¢) {limsup,, .., Byn/V2" < ¢} is a tail event for a sequence of independent ran-
dom variables, hence by Kolmogorov’s 0-1 law it has probability 0 or 1, and it
is not 1 because of question 3a. Hence with probability one lim sup,_,, B;/ Vit >
limsup,,_,.. By-n/v/2™ = 00. So B is not locally Hélder at 0 and by time-

reversal, limsup,_,._ B;/v/t = +o0. Since B 2 _B, it comes that lim inf B/t =
—00 too.

Solution 3 — A bit more on differentiability.
Set D*B(t) = limsupy, 1(Biwn — By) and D, B(t) = liminfy,o 1(Bin — By).

(1) We showed earlier that almost surely, lim sup B; = +00 and lim inf B; = —oo almost
surely. Hence the claim by time inversion and simple Markov property.

(2) E[Leb{t >0, D*B(t) # 400 or D, B(t) # —oc}| = [, dtP(D*B(t) # +o00 or D.B(t) #
—o0) = [0 =0, where we used Fubini and Markov.

(3) Let us show that for p < ¢ € Q, there is a local minium for B in (p,q) almost
surely. By simple Markov property, there exist almost surely arbitrarily small ¢
such that B,,; — B, is strictly negative. Taking ¢t < ¢ — p, it means that we cant
find a € (p, ¢) such that B, > B,. By time reversal, we can also show that there is
b € (p,q) such that B, > B,.

Hence the minimum of B on (p,q) is reached inside (p,q) and this provides a
local minimum for B.

By countable union this is the case for every (p,q), proving that local minima
are dense. And clearly at a local minimum, we have D*B < 0.

(4) We consider 7(z) = inf{t > 0,B; = x}. This is by definition strictly increasing
function, and if it were continuous on some open interval, then B would be mo-
notonous on some open interval, which it is almost surely not. Now if we consider
Vo ={2>0,3h € (0,1/n),7(x — h) < 7(x) — nh}, it is open because 7 is caglad
strictly increasing. It is dense because otherwise we found an open interval of x
where Vh € (0,1/n), 7(z) —nh < 7(z — h) < 7(z), implying continuity on some
open interval. Then by the Baire category theorem, (1, -, V; is uncountable and
dense. Let z be in this set, and t = 7(x). Then there exists a sequence t, 1 t,
B*(t,) >t —1/n, t, <t—nB*(t,). Hence the lower left derivative of B at t is 0.
The upper left derivative is 0 too by definition. We get the claim by time reversal.
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Solution 4 — The precise constant (Lévy, 1937). (1) The upper bound comes from the
inequality [ e t/2dt < [ %e‘t2/ 2dt. The lower bound can be obtained by differ-
entiating the difference.

(2) Let ¢ < v/2 and Compute P(Eyn) = P(Bgi1)2—n — Bran > cy/27log(2")) =

P(By > ¢y/nlog2) > ga-7=2"<"/%. Then

P(Y0 < k < 27", Bynja—n — Bra-n < cy/271og(2n)) = ﬂEkn

1 2 n
=TI - P(Bu) < (1 — 222" < g1
k( (Bin)) < ( 1000c/n )7 < e 1000cy/n
: 1
=exp(——~
P 1000eyn

So by Borel-Cantelli, we get that infinitely often in n, there is an increment of
length 27" that exceeds c/27"log(2"). This implies the claim.

(3) We have || F,||pg2-n,(k+1)2-7] £ 9=(n+1)/2 7| where Z is standard Gaussian. Then
P(||Fog2—n (k+1)2-n) = 1003/n272) <P(|Z] > 10y/n) < e 102,

By union bound, P(||F,|lp1 > 100y/n27"/2) < 27"e~10/2 which is summable.

So there is N random, such that for n > N, ||F,[[p1 < 100y/n27"/2. From the
shape of F,,, the statement of F follows deterministically.

(4) Finally, we have

276271/2)

20=¢*/2n) — summable inn.

log,(1/h)
|Bisn — By < hZHF’H +h Z 500y/n2"?% + Z 100y/n2~"/?

n=log,(1/h)

< v/hlog(1/h) + 2000h+/log(1/h)\/1/h + 2000~/ log(1/h) i 11

n=log(1/h)

as soon as h is small enough.

Solution 5 — Brownian bridges.
(to be completed)

(1) B* is a Gaussian process as a linear transform of a Gaussian process. We compute
the covariance.

Cov(By,B2) =t ANs—ts/a—st]a+ st/a=tNs—st/a

For independence, since everybody is jointly Gaussian, we compute the crossed

covariance

Cov(Bf,B,) =t —Lta=0.
(2) Bt —Lipt =B, —tB, — X(B,—aBy) = B, — 1B, = 3}



(3) We divide the densities and obtain
P(B, €dx) 1 o—7*(1/(1—a)=1)/2a _ 1 o—*/20-a)

P(B,€dr) +1—a CVi—a
(4) We have 8} = £31+;. We also remark that these two components are independent:
Cov(Lp,,B¢) = Cov(tB, —aBy, B, — tB,) = t*/a —at — t*/a +ta = 0. So

At the same time,

1 1
Bij0,q] < aBaId + B
S0
Elh(Brloa)] = / P(6* € do) / P(B € da)h(21d + ¢)
C([0.a]) R
1 2
= / P(3" € dg) / P(B, € dz)h(:1d + ¢) ¢—%/2(1-a)
1 z 2
= P(B* € do) / P(B, € dz)h(21d + ¢)——=e Lo T /201 -a)
/cao,a]) R Ji—a
1 2
= EIA(By ) s /207

Hence absolute continuity.



