ENS de Lyon - Math Department
Brownian Motion and Stochastic Processes

Master 1 - Spring 2020
H. Leman \& M. Maazoun

Solutions for Exercise sheet 3 : Lévy's construction, regularity

Solution 1 - Simple Markov property. (1) We know that B belongs to the measurable space $\left(\mathbb{R}^{\mathbb{R}_{+}}, \mathcal{B}(R)^{\otimes \mathbb{R}_{+}}\right)$. But because of continuity of paths, B also belongs to $\mathcal{C}\left(\mathbb{R}_{+}\right)$. This is a topological space (for uniform convergence over every compact), which provides the Borel σ-algebra $\mathcal{B}\left(\mathcal{C}\left(\mathbb{R}_{+}\right)\right)$. The question is now: is B measurable with regard to this apparently stronger σ-algebra? This is the case, since actually

$$
\left(\mathcal{B}(\mathbb{R})^{\otimes \mathbb{R}_{+}}\right)_{\mid \mathcal{C}\left(\mathbb{R}_{+}\right)}=\mathcal{B}\left(\mathcal{C}\left(\mathbb{R}_{+}\right)\right)
$$

We proceed to the proof of this statement. First of all, $\left(\mathcal{B}(\mathbb{R})^{\otimes \mathbb{R}}\right)_{\mid \mathcal{C}\left(\mathbb{R}_{+}\right)} \supset$ $\mathcal{B}\left(\mathcal{C}\left(\mathbb{R}_{+}\right)\right)$because evaluations are continuous w.r.t. the topology of $\mathcal{C}([0,1])$.

Conversely, to show $\left(\mathcal{B}(\mathbb{R})^{\otimes \mathbb{R}_{+}}\right)_{\mid \mathcal{C}\left(\mathbb{R}_{+}\right)} \subset \mathcal{B}\left(\mathcal{C}\left(\mathbb{R}_{+}\right)\right.$it suffices to show that every semi-norm $\|\cdot\|_{K}$ is measurable w.r.t. $\left(\mathcal{B}(\mathbb{R})^{\otimes \mathbb{R}_{+}}\right)_{\mid \mathcal{C}\left(\mathbb{R}_{+}\right)}$because then an open ball can be rewritten as $\|f-\cdot\|^{-1}([0, l))$, hence is measurable. But we have

$$
\|f\|_{K}=\sup _{t \in K, t \in \mathbb{Q}}|f(t)-f(t)| .
$$

which immediately gives measurability of $\|\cdot\|_{K}$.
This shows that B is measurable with regard to $B\left(\mathcal{C}\left(\mathbb{R}_{+}\right)\right)$, and that $B\left(\mathcal{C}\left(\mathbb{R}_{+}\right)\right)$ is generated by cylinder sets, just like $B(R)^{\otimes \mathbb{R}_{+}}$. In particular, the distribution of an element of $\mathcal{C}\left(\mathbb{R}_{+}\right)$is characterized by its finite-dimensional marginals.

This will be helpful in the future, because it will provide for free measurability of lots of functional of B : maximum over an interval, hitting times, ...
(2) The fact that $\widetilde{B}=\left(B_{t+s}-B_{t}\right)_{s \geq 0}$ is a Brownian motion is immediate by the definition. Let's show the independence property. We will show the even stronger statement:

$$
\widetilde{B} \Perp\left(B_{s}\right)_{0 \leq s \leq t} .
$$

By the lecture, we only have to show that finite-dimensional marginals are independent. Let us consider $0 \leq s_{1} \leq \ldots \leq s_{k} \leq t$ and $0 \leq s_{1}^{\prime}, \ldots \leq s_{l}^{\prime}$.

$$
\left(B_{s_{1}}, \ldots B_{s_{k}} \widetilde{B}_{s_{1}^{\prime}}, \ldots, \widetilde{B}_{s_{1}^{\prime}}\right)=\left(B_{s_{1}}, \ldots B_{s_{k}}, B_{t+s_{1}^{\prime}}-B_{t}, \ldots, B_{t+s_{1}^{\prime}}-B_{t}\right)
$$

is a Gaussian vector because

- B is a Gaussian process
- affine transforms preserve Gaussianity.

So (first exercise session) it suffices to find that crossed covariances are zero to prove independence. We take $0 \leq s \leq t, s " \geq 0$ and compute

$$
\operatorname{Cov}\left(\widetilde{B}_{s^{\prime}}, B_{s}\right)=\operatorname{Cov}\left(B_{s^{\prime}+t}-B_{t}, B_{s}\right)=\underset{1}{\operatorname{Cov}}\left(B_{s^{\prime}+t}, B_{s}\right)-\operatorname{Cov}\left(B_{t}, B_{s}\right)=s-s=0 .
$$

Solution 2 - Local regularity and long-term behavior. (1) Immediate since almost surely $X_{t}=o(1)$ as $t \rightarrow 0$
(2) We know from the lecture that almost surely,

- X is not locally $1 / 2+\epsilon$-Hölder at 0 , more precisely

$$
\limsup _{h \rightarrow 0} \frac{X_{h}}{h^{1 / 2+\epsilon}}=\infty
$$

- X is $1 / 2-\epsilon$-Hölder on $[0,1]$, in particular there exists C random such that

$$
\limsup _{h \rightarrow 0}\left|\frac{X_{h}}{h^{1 / 2-\epsilon / 2}}\right|<C
$$

which implies that

$$
\lim _{h \rightarrow 0}\left|\frac{X_{h}}{h^{1 / 2-\epsilon}}\right|=0
$$

Translating on B_{t}, this means that

$$
\limsup _{t \rightarrow \infty} \frac{B_{t}}{t^{1 / 2-\epsilon}}=\infty, \quad \liminf _{t \rightarrow \infty} \frac{B_{t}}{t^{1 / 2-\epsilon}}=-\infty(\text { because } B \stackrel{d}{=}-B)
$$

and

$$
\limsup _{t \rightarrow \infty}\left|\frac{B_{t}}{t^{1 / 2+\epsilon}}\right|=0 .
$$

Exercise 4 below will allow us to improve the upper bound to

$$
\limsup _{t \rightarrow \infty}\left|\frac{B_{t}}{\sqrt{t \log t}}\right| \leq C
$$

Remark: It turns out that this is not sharp. The law of iterated logarithm tells us that actually $\lim \sup _{t \rightarrow \infty}\left|\frac{B_{t}}{\sqrt{2 t \log \log t}}\right|=1$.
(3) We will now proceed to improve the lower bound by showing that Brownian motion is not $1 / 2$-Hölder at 0 .
(a) By Fatou's lemma,

$$
\begin{aligned}
\mathbb{P}\left(\left(\limsup _{n \rightarrow \infty} B_{2^{-n}} / \sqrt{2^{-n}}\right)<c\right) & \leq \mathbb{P}\left(\liminf _{n \rightarrow \infty}\left\{B_{2^{-n}}<c \sqrt{2^{-n}}\right\}\right) \\
& \leq \liminf _{n \rightarrow \infty} \mathbb{P}\left(B_{2^{-n}}<c \sqrt{2^{-n}}\right)=\liminf _{n \rightarrow \infty} \mathbb{P}\left(B_{1} \leq c\right)<1
\end{aligned}
$$

(b) Lévy's construction tells us that $B_{2^{-n}}=2^{-n} N_{0}+\sum_{k=0}^{n-1} 2^{-n+k / 2} N_{0, k}$. Hence

$$
\frac{B_{2^{-n}}}{\sqrt{2^{-n}}}=2^{-n / 2} N_{0}+\sum_{k=0}^{n-1} 2^{(k-n) / 2} N_{0, k}
$$

Each fixed term of the sum goes to 0 separately. So the lim inf does not change when the first few terms are removed. We deduce that $\liminf _{n \rightarrow \infty} B_{2^{-n}} / \sqrt{2^{-n}}$ is measurable w.r.t. the σ-algebra $\sigma\left(N_{0, k}, k \geq K\right)$ for all fixed K, thus to the tail σ-algebra.
(c) $\left\{\lim \sup _{n \rightarrow \infty} B_{2^{-n}} / \sqrt{2^{-n}}<c\right\}$ is a tail event for a sequence of independent random variables, hence by Kolmogorov's 0-1 law it has probability 0 or 1, and it is not 1 because of question 3a. Hence with probability one $\limsup _{t \rightarrow 0} B_{t} / \sqrt{t} \geq$ $\lim \sup _{n \rightarrow \infty} B_{2^{-n}} / \sqrt{2^{-n}}=\infty$. So B is not locally Hölder at 0 and by timereversal, $\lim \sup _{t \rightarrow \infty} B_{t} / \sqrt{t}=+\infty$. Since $B \stackrel{d}{=}-B$, it comes that $\lim \inf B_{t} / \sqrt{t}=$ $-\infty$ too.

Solution 3 - A bit more on differentiability.
Set $D^{*} B(t)=\lim \sup _{h \downarrow 0} \frac{1}{t}\left(B_{t+h}-B_{t}\right)$ and $D_{*} B(t)=\liminf _{h \downarrow 0} \frac{1}{t}\left(B_{t+h}-B_{t}\right)$.
(1) We showed earlier that almost surely, $\lim \sup B_{t}=+\infty$ and $\lim \inf B_{t}=-\infty$ almost surely. Hence the claim by time inversion and simple Markov property.
(2) $\mathbb{E}\left[\operatorname{Leb}\left\{t \geq 0, D^{*} B(t) \neq+\infty\right.\right.$ or $\left.\left.D_{*} B(t) \neq-\infty\right\}\right]=\int_{\mathbb{R}} d t \mathbb{P}\left(D^{*} B(t) \neq+\infty\right.$ or $D_{*} B(t) \neq$ $-\infty)=\int_{R} 0=0$, where we used Fubini and Markov.
(3) Let us show that for $p<q \in \mathbb{Q}_{+}$there is a local minium for B in (p, q) almost surely. By simple Markov property, there exist almost surely arbitrarily small t such that $B_{p+t}-B_{p}$ is strictly negative. Taking $t<q-p$, it means that we cant find $a \in(p, q)$ such that $B_{a}>B_{p}$. By time reversal, we can also show that there is $b \in(p, q)$ such that $B_{b}>B_{q}$.

Hence the minimum of B on (p, q) is reached inside (p, q) and this provides a local minimum for B.

By countable union this is the case for every (p, q), proving that local minima are dense. And clearly at a local minimum, we have $D^{*} B \leq 0$.
(4) We consider $\tau(x)=\inf \left\{t \geq 0, B_{t}=x\right\}$. This is by definition strictly increasing function, and if it were continuous on some open interval, then B would be monotonous on some open interval, which it is almost surely not. Now if we consider $V_{n}=\{x \geq 0, \exists h \in(0,1 / n), \tau(x-h)<\tau(x)-n h\}$, it is open because τ is càglàd strictly increasing. It is dense because otherwise we found an open interval of x where $\forall h \in(0,1 / n), \tau(x)-n h \leq \tau(x-h) \leq \tau(x)$, implying continuity on some open interval. Then by the Baire category theorem, $\bigcap_{n \geq 1} V_{n}$ is uncountable and dense. Let x be in this set, and $t=\tau(x)$. Then there exists a sequence $t_{n} \uparrow t$, $B^{*}\left(t_{n}\right)>t-1 / n, t_{n}<t-n B^{*}\left(t_{n}\right)$. Hence the lower left derivative of B at t is 0 . The upper left derivative is 0 too by definition. We get the claim by time reversal.

Solution 4 - The precise constant (Lévy, 1937). (1) The upper bound comes from the inequality $\int_{x}^{\infty} e^{-t^{2} / 2} d t \leq \int_{x}^{\infty} \frac{t}{x} e^{-t^{2} / 2} d t$. The lower bound can be obtained by differentiating the difference.
(2) Let $c<\sqrt{2}$ and compute $\mathbb{P}\left(E_{k, n}\right):=\mathbb{P}\left(B_{(k+1) 2^{-n}}-B_{k 2^{-n}} \geq c \sqrt{2^{-n} \log \left(2^{n}\right)}\right)=$ $\mathbb{P}\left(B_{1} \geq c \sqrt{n \log 2}\right) \geq \frac{1}{1000 c \sqrt{n}} 2^{-c^{2} n / 2}$. Then

$$
\begin{aligned}
& \mathbb{P}\left(\forall 0 \leq k \leq 2^{-n}, B_{(k+1) 2^{-n}}-B_{k 2^{-n}}<c \sqrt{2^{-n} \log \left(2^{n}\right)}\right)=\mathbb{P}\left(\bigcap_{k} E_{k, n}^{\complement}\right) \\
& =\prod_{k}\left(1-\mathbb{P}\left(E_{k, n}\right)\right) \leq\left(1-\frac{1}{1000 c \sqrt{n}} 2^{-c^{2} n / 2}\right)^{2^{n}} \leq \exp \left(-2^{n} \frac{1}{1000 c \sqrt{n}} 2^{-c^{2} n / 2}\right) \\
& =\exp \left(-\frac{1}{1000 c \sqrt{n}} 2^{\left(1-c^{2} / 2\right) n}\right)=\text { summable in } n .
\end{aligned}
$$

So by Borel-Cantelli, we get that infinitely often in n, there is an increment of length 2^{-n} that exceeds $c \sqrt{2^{-n}} \log \left(2^{n}\right)$. This implies the claim.
(3) We have $\left\|F_{n}\right\|_{\left[k 2^{-n},(k+1) 2^{-n}\right]} \stackrel{d}{=} 2^{-(n+1) / 2}|Z|$ where Z is standard Gaussian. Then $\mathbb{P}\left(\left\|F_{n}\right\|_{\left[k 2^{-n},(k+1) 2^{-n}\right]} \geq 100 \sqrt{n} 2^{-n / 2}\right) \leq \mathbb{P}(|Z|>10 \sqrt{n}) \leq e^{-10 n / 2}$.

By union bound, $\mathbb{P}\left(\left\|F_{n}\right\|_{[0,1]} \geq 100 \sqrt{n} 2^{-n / 2}\right) \leq 2^{-n} e^{-10 n / 2}$ which is summable. So there is N random, such that for $n \geq N,\left\|F_{n}\right\|_{[0,1]} \leq 100 \sqrt{n} 2^{-n / 2}$. From the shape of F_{n}, the statement of F_{n}^{\prime} follows deterministically.
(4) Finally, we have

$$
\begin{aligned}
\left|B_{t+h}-B_{t}\right| & \leq h \sum_{n=0}^{N}\left\|F_{n}^{\prime}\right\|+h \sum_{n=N}^{\log _{2}(1 / h)} 500 \sqrt{n} 2^{n / 2}+\sum_{n=\log _{2}(1 / h)}^{\infty} 100 \sqrt{n} 2^{-n / 2} \\
& \leq \sqrt{h \log (1 / h)}+2000 h \sqrt{\log (1 / h)} \sqrt{1 / h}+2000 \sqrt{h \log (1 / h)} \sum_{n=\log (1 / h)}^{\infty} 1.1^{-n}
\end{aligned}
$$

as soon as h is small enough.
Solution 5 - Brownian bridges.
(to be completed)
(1) β^{a} is a Gaussian process as a linear transform of a Gaussian process. We compute the covariance.

$$
\operatorname{Cov}\left(\beta_{t}^{a}, \beta_{s}^{a}\right)=t \wedge s-t s / a-s t / a+s t / a=t \wedge s-s t / a
$$

For independence, since everybody is jointly Gaussian, we compute the crossed covariance

$$
\operatorname{Cov}\left(\beta_{t}^{a}, B_{a}\right)=t-\frac{t}{a} a=0 .
$$

(2) $\beta_{t}^{1}-\frac{t}{a} \beta_{a}^{1}=B_{t}-t B_{1}-\frac{t}{a}\left(B_{a}-a B_{1}\right)=B_{t}-\frac{t}{a} B_{a}=\beta_{t}^{a}$
(3) We divide the densities and obtain

$$
\frac{\mathbb{P}\left(\beta_{a}^{1} \in d x\right)}{\mathbb{P}\left(B_{a} \in d x\right)}=\frac{1}{\sqrt{1-a}} e^{-x^{2}(1 /(1-a)-1) / 2 a}=\frac{1}{\sqrt{1-a}} e^{-x^{2} / 2(1-a)}
$$

(4) We have $\beta_{t}^{1}=\frac{t}{a} \beta_{a}^{1}+\beta_{t}^{a}$. We also remark that these two components are independent: $\operatorname{Cov}\left(\frac{t}{a} \beta_{a}^{1}, \beta_{t}^{a}\right)=\operatorname{Cov}\left(\frac{t}{a} B_{a}-a B_{1}, B_{t}-\frac{t}{a} B_{a}\right)=t^{2} / a-a t-t^{2} / a+t a=0$. So

$$
\left.\beta_{1}\right|_{[0, a]} \stackrel{d}{=} \frac{1}{a} \beta_{a}^{1} \operatorname{Id} \stackrel{\Perp}{+} \beta^{a} .
$$

At the same time,

$$
\left.B_{1}\right|_{[0, a]} \stackrel{d}{=} \frac{1}{a} B_{a} \operatorname{Id} \stackrel{\Perp}{+} \beta^{a} .
$$

So

$$
\begin{aligned}
\mathbb{E}\left[h\left(\left.\beta_{1}\right|_{[0, a]}\right)\right] & =\int_{C([0, a])} \mathbb{P}\left(\beta^{a} \in d \phi\right) \int_{\mathbb{R}} \mathbb{P}\left(\beta_{a}^{1} \in d x\right) h\left(\frac{x}{a} \operatorname{Id}+\phi\right) \\
& =\int_{C([0, a])} \mathbb{P}\left(\beta^{a} \in d \phi\right) \int_{\mathbb{R}} \mathbb{P}\left(B_{a} \in d x\right) h\left(\frac{x}{a} \operatorname{Id}+\phi\right) \frac{1}{\sqrt{1-a}} e^{-x^{2} / 2(1-a)} \\
& =\int_{C([0, a])} \mathbb{P}\left(\beta^{a} \in d \phi\right) \int_{\mathbb{R}} \mathbb{P}\left(B_{a} \in d x\right) h\left(\frac{x}{a} \operatorname{Id}+\phi\right) \frac{1}{\sqrt{1-a}} e^{-\left(\frac{x}{a} \operatorname{Id}+\phi\right)(a)^{2} / 2(1-a)} \\
& =\mathbb{E}\left[h\left(B_{1} \mid[0, a]\right) \frac{1}{\sqrt{1-a}} e^{-B_{a}^{2} / 2(1-a)}\right]
\end{aligned}
$$

Hence absolute continuity.

