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Solutions for Exercise sheet 3 : Lévy’s construction, regularity

Solution 1 — Simple Markov property. (1) We know that B belongs to the measurable
space (RR+ ,B(R)⊗R+). But because of continuity of paths, B also belongs to C(R+).
This is a topological space (for uniform convergence over every compact), which
provides the Borel σ-algebra B(C(R+)). The question is now: is B measurable with
regard to this apparently stronger σ-algebra? This is the case, since actually

(B(R)⊗R+)|C(R+) = B(C(R+)).

We proceed to the proof of this statement. First of all, (B(R)⊗R+)|C(R+) ⊃
B(C(R+)) because evaluations are continuous w.r.t. the topology of C([0, 1]).

Conversely, to show (B(R)⊗R+)|C(R+) ⊂ B(C(R+) it suffices to show that every
semi-norm ‖·‖K is measurable w.r.t. (B(R)⊗R+)|C(R+) because then an open ball
can be rewritten as ‖f − ·‖−1([0, l)), hence is measurable. But we have

‖f‖K = sup
t∈K,t∈Q

|f(t)− f(t)|.

which immediately gives measurability of ‖·‖K .
This shows that B is measurable with regard to B(C(R+)), and that B(C(R+))

is generated by cylinder sets, just like B(R)⊗R+ . In particular, the distribution of
an element of C(R+) is characterized by its finite-dimensional marginals.

This will be helpful in the future, because it will provide for free measurability
of lots of functional of B: maximum over an interval, hitting times, ...

(2) The fact that B̃ = (Bt+s − Bt)s≥0 is a Brownian motion is immediate by the
definition. Let’s show the independence property. We will show the even stronger
statement:

B̃ ⊥⊥ (Bs)0≤s≤t.

By the lecture, we only have to show that finite-dimensional marginals are inde-
pendent. Let us consider 0 ≤ s1 ≤ . . . ≤ sk ≤ t and 0 ≤ s′1, . . . ≤ s′l.

(Bs1 , . . . BskB̃s′1
, . . . , B̃s′1

) = (Bs1 , . . . Bsk , Bt+s′1
−Bt, . . . , Bt+s′1

−Bt)

is a Gaussian vector because
• B is a Gaussian process
• affine transforms preserve Gaussianity.

So (first exercise session) it suffices to find that crossed covariances are zero to prove
independence. We take 0 ≤ s ≤ t, s” ≥ 0 and compute

Cov(B̃s′ , Bs) = Cov(Bs′+t −Bt, Bs) = Cov(Bs′+t, Bs)− Cov(Bt, Bs) = s− s = 0.
1
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Solution 2 — Local regularity and long-term behavior. (1) Immediate since almost surely
Xt = o(1) as t→ 0

(2) We know from the lecture that almost surely,
• X is not locally 1/2 + ε-Hölder at 0, more precisely

lim sup
h→0

Xh

h1/2+ε
=∞

,
• X is 1/2− ε-Hölder on [0, 1], in particular there exists C random such that

lim sup
h→0

∣∣∣∣ Xh

h1/2−ε/2

∣∣∣∣ < C,

which implies that

lim
h→0

∣∣∣∣ Xh

h1/2−ε

∣∣∣∣ = 0

Translating on Bt, this means that

lim sup
t→∞

Bt

t1/2−ε
=∞, lim inf

t→∞

Bt

t1/2−ε
= −∞ (because B

d
= −B)

and

lim sup
t→∞

∣∣∣∣ Bt

t1/2+ε

∣∣∣∣ = 0.

Exercise 4 below will allow us to improve the upper bound to

lim sup
t→∞

∣∣∣∣ Bt√
t log t

∣∣∣∣ ≤ C.

Remark: It turns out that this is not sharp. The law of iterated logarithm tells us

that actually lim supt→∞

∣∣∣ Bt√
2t log log t

∣∣∣ = 1.

(3) We will now proceed to improve the lower bound by showing that Brownian motion
is not 1/2-Hölder at 0.
(a) By Fatou’s lemma,

P((lim sup
n→∞

B2−n/
√

2−n) < c) ≤ P(lim inf
n→∞

{B2−n < c
√

2−n})

≤ lim inf
n→∞

P(B2−n < c
√

2−n) = lim inf
n→∞

P(B1 ≤ c) < 1.

(b) Lévy’s construction tells us that B2−n = 2−nN0 +
∑n−1

k=0 2−n+k/2N0,k. Hence

B2−n√
2−n

= 2−n/2N0 +
n−1∑
k=0

2(k−n)/2N0,k

Each fixed term of the sum goes to 0 separately. So the lim inf does not change
when the first few terms are removed. We deduce that lim infn→∞B2−n/

√
2−n

is measurable w.r.t. the σ-algebra σ(N0,k, k ≥ K) for all fixed K, thus to the
tail σ-algebra.

https://en.wikipedia.org/wiki/Law_of_the_iterated_logarithm
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(c) {lim supn→∞B2−n/
√

2−n < c} is a tail event for a sequence of independent ran-
dom variables, hence by Kolmogorov’s 0-1 law it has probability 0 or 1, and it
is not 1 because of question 3a. Hence with probability one lim supt→0Bt/

√
t ≥

lim supn→∞B2−n/
√

2−n = ∞. So B is not locally Hölder at 0 and by time-

reversal, lim supt→∞Bt/
√
t = +∞. SinceB

d
= −B, it comes that lim inf Bt/

√
t =

−∞ too.

Solution 3 — A bit more on differentiability.
Set D∗B(t) = lim suph↓0

1
t
(Bt+h −Bt) and D∗B(t) = lim infh↓0

1
t
(Bt+h −Bt).

(1) We showed earlier that almost surely, lim supBt = +∞ and lim inf Bt = −∞ almost
surely. Hence the claim by time inversion and simple Markov property.

(2) E[Leb{t ≥ 0, D∗B(t) 6= +∞ or D∗B(t) 6= −∞}] =
∫
R dtP(D∗B(t) 6= +∞ or D∗B(t) 6=

−∞) =
∫
R

0 = 0, where we used Fubini and Markov.
(3) Let us show that for p < q ∈ Q+ there is a local minium for B in (p, q) almost

surely. By simple Markov property, there exist almost surely arbitrarily small t
such that Bp+t − Bp is strictly negative. Taking t < q − p, it means that we cant
find a ∈ (p, q) such that Ba > Bp. By time reversal, we can also show that there is
b ∈ (p, q) such that Bb > Bq.

Hence the minimum of B on (p, q) is reached inside (p, q) and this provides a
local minimum for B.

By countable union this is the case for every (p, q), proving that local minima
are dense. And clearly at a local minimum, we have D∗B ≤ 0.

(4) We consider τ(x) = inf{t ≥ 0, Bt = x}. This is by definition strictly increasing
function, and if it were continuous on some open interval, then B would be mo-
notonous on some open interval, which it is almost surely not. Now if we consider
Vn = {x ≥ 0,∃h ∈ (0, 1/n), τ(x − h) < τ(x) − nh}, it is open because τ is càglàd
strictly increasing. It is dense because otherwise we found an open interval of x
where ∀h ∈ (0, 1/n), τ(x) − nh ≤ τ(x − h) ≤ τ(x), implying continuity on some
open interval. Then by the Baire category theorem,

⋂
n≥1 Vn is uncountable and

dense. Let x be in this set, and t = τ(x). Then there exists a sequence tn ↑ t,
B∗(tn) > t − 1/n, tn < t − nB∗(tn). Hence the lower left derivative of B at t is 0.
The upper left derivative is 0 too by definition. We get the claim by time reversal.
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Solution 4 — The precise constant (Lévy, 1937). (1) The upper bound comes from the

inequality
∫∞
x
e−t

2/2dt ≤
∫∞
x

t
x
e−t

2/2dt. The lower bound can be obtained by differ-
entiating the difference.

(2) Let c <
√

2 and compute P(Ek,n) := P(B(k+1)2−n − Bk2−n ≥ c
√

2−n log(2n)) =

P(B1 ≥ c
√
n log 2) ≥ 1

1000c
√
n
2−c

2n/2. Then

P(∀0 ≤ k ≤ 2−n, B(k+1)2−n −Bk2−n < c
√

2−n log(2n)) = P(
⋂
k

E{
k,n)

=
∏
k

(1− P(Ek,n)) ≤ (1− 1

1000c
√
n

2−c
2n/2)2

n ≤ exp(−2n
1

1000c
√
n

2−c
2n/2)

= exp(− 1

1000c
√
n

2(1−c2/2)n) = summable inn.

So by Borel-Cantelli, we get that infinitely often in n, there is an increment of
length 2−n that exceeds c

√
2−n log(2n). This implies the claim.

(3) We have ‖Fn‖[k2−n,(k+1)2−n]
d
= 2−(n+1)/2|Z| where Z is standard Gaussian. Then

P(‖Fn‖[k2−n,(k+1)2−n] ≥ 100
√
n2−n/2) ≤ P(|Z| > 10

√
n) ≤ e−10n/2.

By union bound, P(‖Fn‖[0,1] ≥ 100
√
n2−n/2) ≤ 2−ne−10n/2 which is summable.

So there is N random, such that for n ≥ N , ‖Fn‖[0,1] ≤ 100
√
n2−n/2. From the

shape of Fn, the statement of F ′n follows deterministically.
(4) Finally, we have

|Bt+h −Bt| ≤ h
N∑
n=0

‖F ′n‖+ h

log2(1/h)∑
n=N

500
√
n2n/2 +

∞∑
n=log2(1/h)

100
√
n2−n/2

≤
√
h log(1/h) + 2000h

√
log(1/h)

√
1/h+ 2000

√
h log(1/h)

∞∑
n=log(1/h)

1.1−n

as soon as h is small enough.

Solution 5 — Brownian bridges.
(to be completed)

(1) βa is a Gaussian process as a linear transform of a Gaussian process. We compute
the covariance.

Cov(βat , β
a
s ) = t ∧ s− ts/a− st/a+ st/a = t ∧ s− st/a

For independence, since everybody is jointly Gaussian, we compute the crossed
covariance

Cov(βat , Ba) = t− t
a
a = 0.

(2) β1
t − t

a
β1
a = Bt − tB1 − t

a
(Ba − aB1) = Bt − t

a
Ba = βat
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(3) We divide the densities and obtain

P(β1
a ∈ dx)

P(Ba ∈ dx)
=

1√
1− a

e−x
2(1/(1−a)−1)/2a =

1√
1− a

e−x
2/2(1−a)

(4) We have β1
t = t

a
β1
a+β

a
t . We also remark that these two components are independent:

Cov( t
a
β1
a, β

a
t ) = Cov( t

a
Ba − aB1, Bt − t

a
Ba) = t2/a− at− t2/a+ ta = 0. So

β1|[0,a]
d
=

1

a
β1
aId

⊥⊥
+ βa.

At the same time,

B1|[0,a]
d
=

1

a
BaId

⊥⊥
+ βa.

So

E[h(β1|[0,a])] =

∫
C([0,a])

P(βa ∈ dφ)

∫
R
P(β1

a ∈ dx)h(x
a
Id + φ)

=

∫
C([0,a])

P(βa ∈ dφ)

∫
R
P(Ba ∈ dx)h(x

a
Id + φ)

1√
1− a

e−x
2/2(1−a)

=

∫
C([0,a])

P(βa ∈ dφ)

∫
R
P(Ba ∈ dx)h(x

a
Id + φ)

1√
1− a

e−(
x
a
Id+φ)(a)2/2(1−a)

= E[h(B1|[0,a])
1√

1− a
e−B

2
a/2(1−a)]

Hence absolute continuity.


