Solutions for $\mathbb{E x e r c i s e}$ sheet 3: stopping times and Markov property

Solution 1 - Brownian motion on the circle.

Solution 2 - The set of zeros of B is perfect.
Almost surely 0 is an accumulation point of Z (lecture). By countable union, and strong Markov, every first 0 after a rational is an accumulation point of Z. If Z had an isolated point, it would be a first 0 after a rational. Hence it couldn't be isolated in Z.

Solution 3 -. (1) Denote by $I=\min _{0 \leq s \leq 1-t}\left(B_{t+s}-B_{t}\right)$ and $S=\max _{0 \leq s \leq 1-t}\left(B_{t+s}-\right.$ B_{t}). Both I and S are independent of \mathcal{F}_{t}.

$$
\begin{aligned}
\mathbb{P}(L<t) & =\mathbb{P}\left(B_{t}>0 \cap I<-B_{t} \cup B_{t}<0 \cap S>-B_{t}\right) \\
& =2 \mathbb{P}\left(B_{t}<0 \cap S>\left|B_{t}\right|\right) \\
& =\mathbb{P}\left(B_{t} \neq 0, S>\left|B_{t}\right|\right)=\mathbb{P}\left(S>\left|B_{t}\right|\right)=\mathbb{P}\left(\left|\widetilde{B}_{1-t}\right|>\left|B_{t}\right|\right) \\
& =\mathbb{P}\left(\left|\frac{Z}{\widetilde{Z}}\right|<\sqrt{(1-t) / t}\right)
\end{aligned}
$$

where Z, \widetilde{Z} are two independent standard Gaussians. Then

$$
\ldots=\mathbb{P}(|\arg (\widetilde{Z}+i Z)|<\arcsin (\sqrt{t}))=2 \arcsin (\sqrt{t}) .
$$

(2) For now let $\widetilde{A}=\inf \left\{t \in[0,1], B_{t}=\min _{[0,1]} B\right\}$. Then $\mathbb{P}(\widetilde{A}>t)=\mathbb{P}(S>$ $\left.\max _{[0, t]} B-B_{t}\right)$. Once again S is independent of $\max _{[0, t]} B-B_{t} \in \underset{\sim}{\mathcal{A}} \mathcal{F}_{t}$, whose distribution is known to be equal to that of $\left|B_{t}\right|$. We end up with $\mathbb{P}(\widetilde{A}>t)=\mathbb{P}(L<t)$. By symmetry of the arcsine distribution, we have shown that $\widetilde{A} \stackrel{d}{=} L$.

To show that A is well-defined, consider $\widetilde{\widetilde{A}}=\sup \left\{t \in\left[\underset{\widetilde{A}}{[0,1]}, B_{t}=\min _{[0,1]} B\right\}\right.$. By time reversal and symmetry of the arcsine distribution, $\widetilde{\widetilde{A}} \stackrel{d}{=} \widetilde{A}$. At the same time, $\widetilde{A} \leq \widetilde{\widetilde{A}}$ almost surely. This implies that $\widetilde{A}=\widetilde{\widetilde{A}}$ almost surely.

Solution 4 - Markov processes derived from Brownian motion. (1) Let $B=\left(B^{(1)}, B^{(2)}\right)$. We have that $\left(C_{a+}-C_{a}\right)$ is constructed from $B_{T_{a+}^{(1)}+.}-B_{T_{a+}^{(1)}}$ the same way C is constructed from B. Hence by the strong Markov property of $B,\left(C_{a+.}-C_{a}\right) \stackrel{d}{=} C$, and $\left(C_{a+\cdot}-C_{a}\right) \Perp \mathcal{F}_{T_{a+}^{(1)}} \supset \sigma\left(C_{u}, u \leq a\right)$.
(2) C is càdlàg because T_{+}. is. By independence of $B^{(1)}$ and $B^{(2)}$ it jumps almost surely when T_{+}jumps.
(3) Firstly, $\operatorname{Cov}\left(X_{t}, X_{s}\right)=e^{-|t-s|}$. So at each time t, X_{t} is a standard Gaussian.

Solution 5 - All hypotheses matter.
Take $S=3$ and T to be the first zero after 3 . Of course the problem is that $\mathbb{E}[T]=\infty$.
Solution 6 - Brownian gambler's ruin.
Let $a<0<b$ and T be the hitting time of $\{a, b\}$.
(1) We may show that T is integrable to apply Wald's second lemma. Here's a way to do it by comparison with a geometric variable. Let $x \leq|a| \wedge|b|$.

$$
\begin{aligned}
\mathbb{P}(T \geq n) & \leq \mathbb{P}\left(\forall k \leq n-1, \quad\left|B_{k+1}-B_{k}\right|<2 x\right) \\
& =\prod_{k=0}^{n-1} \mathbb{P}\left(\left|B_{1}^{(k)}\right|<2 x\right)=\rho^{n}
\end{aligned}
$$

Where $\rho<1$. Hence T is integrable, and we can apply Wald's second lemma. We get

$$
E[T]=\mathbb{E}\left[B_{T}^{2}\right]=\frac{-a}{b-a} b^{2}+a^{2} \frac{b}{b-a}=-a b
$$

(2) Let $M=\sup _{0 \leq t \leq T_{a, b}} B_{t}$. Let $c \in[0, b]$. We denote $\widetilde{B}_{t}=B_{t+T_{c}}-B_{T_{c}}$.

$$
\begin{aligned}
\mathbb{P}\left(M \geq c \mid T_{a} \leq T_{b}\right) & =\frac{\mathbb{P}\left(T_{c} \leq T_{a} \leq T_{b}\right)}{\mathbb{P}\left(T_{a} \leq T_{b}\right)} \\
& =\frac{\mathbb{P}\left(T_{c} \leq T_{a}, \widetilde{T}_{a-c} \leq \widetilde{T}_{b-c}\right)}{\mathbb{P}\left(T_{a} \leq T_{b}\right)} \\
& =\frac{\mathbb{P}\left(T_{c} \leq T_{a}\right) \mathbb{P}\left(\widetilde{T}_{a-c} \leq \widetilde{T}_{b-c}\right)}{\mathbb{P}\left(T_{a} \leq T_{b}\right)} \\
& =\frac{\frac{-a}{c-a} \frac{b-c}{b-a}}{\frac{b}{b-a}}=\frac{-a(b-c)}{b(c-a)} .
\end{aligned}
$$

Solution 7 - Girsanov theorem and hitting times with drift.
Let B be a brownian motion, and for $\lambda \in \mathbb{R}$, denote $M_{t}^{\theta}=e^{\theta B_{t}-\theta^{2} t / 2}$. You have shown that M^{λ} is a $\left(\mathcal{F}_{t}\right)_{t}$-martingale, and used it to show that $\mathbb{E}\left[e^{-\lambda T_{b}}\right]=\mathbb{E}\left[e^{-|| | \sqrt{2 \lambda} \lambda}\right]$.
(1) We check that

$$
\mathbb{P}_{\theta, T}(\Omega):=\mathbb{E}\left[M_{T}^{\theta}\right]=\mathbb{E}\left[e^{\theta B_{T}}\right] e^{-\theta^{2} T / 2}=1
$$

We use characteristic functions of fdms to characterize distribution of a process. Let $0 \leq t_{1} \leq \ldots \leq t_{k} \leq T$ and $u_{1}, \ldots u_{k} \in R$

$$
\begin{aligned}
\mathbb{E}_{\theta, T}\left[e^{i\left(u_{1} B_{t_{1}}+\ldots+u_{k} B_{t_{k}}\right)}\right] & =\mathbb{E}\left[e^{i\left(u_{1} B_{t_{1}}+\ldots+u_{k} B_{t_{k}}\right)} e^{\theta B_{T}-\theta^{2} T / 2}\right] \\
& =\mathbb{E}\left[e^{i\left(u_{1} B_{t_{1}}+\ldots+u_{k} B_{t_{k}}-i \theta B_{T}\right)}\right] e^{\theta^{2} T / 2} \\
& =\mathbb{E}\left[e^{-\operatorname{Var}\left(u_{1} B_{t_{1}}+\ldots+u_{k} B_{t_{k}}-i \theta B_{T}\right) / 2}\right] e^{\theta^{2} T / 2} \\
& =\mathbb{E}\left[e^{-\operatorname{Var}\left(u_{1} B_{t_{1}}+\ldots+u_{k} B_{t_{k}}\right) / 2+\theta^{2} T / 2+i \theta\left(u_{1} t_{1}+\ldots+u_{k} t_{k}\right)}\right] e^{\theta^{2} T / 2} \\
& =\mathbb{E}\left[e^{i\left(u_{1} B_{t_{1}}+\ldots+u_{k} B_{t_{k}}\right)}\right] e^{i \theta\left(u_{1} t_{1}+\ldots+u_{k} t_{k}\right)} \\
& =\mathbb{E}\left[e^{i\left(u_{1}\left(B_{t_{1}}+\theta t_{1}\right)+\ldots+u_{k}\left(B_{t_{k}}+\theta t_{k}\right)\right)}\right]
\end{aligned}
$$

(2) No, Brownian motion with and without drift are not absolutely continuous to each other over \mathbb{R}_{+}.
(3) Let T_{b}^{θ} be the hitting time of b by $\left(B_{t}+\theta t\right)_{t}$. Then using question 1 and optional stopping,

$$
\begin{aligned}
\mathbb{E}\left[e^{-\lambda T_{b}^{\theta}} \mathbb{1}_{T_{b}^{\theta}<U}\right] & =\mathbb{E}\left[e^{-\lambda T_{b}} \mathbb{1}_{T_{b}<U} M_{U}^{\theta}\right] \\
& =\mathbb{E}\left[e^{-\lambda T_{b}} \mathbb{1}_{T_{b}<U} M_{T_{b}}^{\theta}\right] \\
& =\mathbb{E}\left[e^{-\lambda T_{b}} \mathbb{1}_{T_{b}<U} e^{\theta b-\theta^{2} T_{b} / 2}\right] \\
& =e^{\theta b} \mathbb{E}\left[e^{-\left(\lambda-\theta^{2} / 2\right) T_{b}} \mathbb{1}_{T_{b}<U}\right]
\end{aligned}
$$

Using dominated convergence, we get

$$
\mathbb{E}\left[e^{-\lambda T_{b}^{\theta}} \mathbb{1}_{T_{b}^{\theta}<\infty}\right]=e^{\theta b} \mathbb{E}\left[e^{-\left(\lambda-\theta^{2} / 2\right) T_{b}}\right]=e^{-|b| \sqrt{\theta^{2}+2 \lambda}+b \theta}
$$

(4) Then taking $\lambda=0, \mathbb{P}\left(T_{b}^{\lambda}<\infty\right)=e^{-|b \theta|+b \theta}=e^{2 b \theta \wedge 0}$. We observe, that

$$
\mathbb{E}\left[e^{-\lambda T_{b}^{\theta}} \mid T_{b}^{\theta}<\infty\right]=e^{-|b| \sqrt{\theta^{2}+2 \lambda}-|b \theta|} .
$$

It is independent on the sign of b. So a Brownian motion with negative drift, conditioned on hitting a positive level, will behave as a Brownian motion with the reverse (positive) drift.

Solution 8 - The binary splitting martingale. (1) We write

$$
\begin{aligned}
X_{n+1}-X_{n} & =\mathbb{E}\left[X-X_{n} \mid \mathcal{G}_{n}\right] \\
& =\mathbb{E}\left[\left(X-X_{n}\right) \mathbb{1}_{X>X_{n}} \mid \mathcal{G}_{n}\right] \mathbb{1}_{X>X_{n}}+\mathbb{E}\left[\left(X-X_{n}\right) \mathbb{1}_{X<X_{n}} \mid \mathcal{G}_{n}\right] \mathbb{1}_{X<X_{n}} .
\end{aligned}
$$

where we used the fact that the sign of $\left(X-X_{n}\right)$ is \mathcal{G}_{n}-measurable. The first term is almost surely positive, the second one is almost surely negative, and almost surely only one of them is nonzero. Hence they almost surely they form a decomposition of $X_{n+1}-X_{n}$ into a positive and negative part. Then

$$
\begin{aligned}
\left|X_{n+1}-X_{n}\right| & =\mathbb{E}\left[\left(X-X_{n}\right) \mathbb{1}_{X>X_{n}} \mid \mathcal{G}_{n}\right] \mathbb{1}_{X>X_{n}}-\mathbb{E}\left[\left(X-X_{n}\right) \mathbb{1}_{X<X_{n}} \mid \mathcal{G}_{n}\right] \mathbb{1}_{X<X_{n}} \\
& =\mathbb{E}\left[\left|X-X_{n}\right| \mid \mathcal{G}_{n}\right]
\end{aligned}
$$

(2) We deduce $\mathbb{E}\left[\left|X_{n}-X\right|\right]=\mathbb{E}\left[\left|X_{n+1}-X_{n}\right|\right]$, and this last expression goes to 0 as $\left(X_{n}\right)_{n}$ is L^{1}-convergent. Thus $\left|X_{n}-X\right|$ goes to 0 in L^{1} and by uniqueness (up to a.s. equality) of the L^{1} limit we get that $X_{\infty}=X$ a.s. Hence X_{n} converges a.s. and L^{1} to X.

Solution 9 - Martingales derived from B.
Those martingales are the derivative w.r.t λ of the exponential martingale.

