ENS de Lyon - Math Department
Master 1 - Spring 2020
Brownian Motion and Stochastic Processes
H. Leman \& M. Maazoun

Exercise sheet 6: Harmonic functions and Brownian motion v2

version 2: typos corrected.
Exercise 1 - Recurrence and transience.
Show that when $d=2, \mathbb{P}_{x}\left(T_{\{0\}}<\infty\right)=0$ for every $x \neq 0$ while $\mathbb{P}_{x}\left(T_{B(0, \varepsilon)}<\infty\right)=1$ for every x. Deduce that B visits every open set at arbitrarily large times.
Show that when $d \geq 3, \mathbb{P}_{x}\left(T_{B(0, \varepsilon)}<\infty\right)=(\varepsilon /|x|)^{d-2}$ for every $x:|x|>\varepsilon$. Deduce that $\left|B_{t}\right| \rightarrow \infty$ almost surely.

Exercise 2 - Singularity removal.

Let $d \geq 2$ and $x \in U \subset \mathbb{R}^{d}$ open. Suppose $h: U \backslash\{x\} \rightarrow \mathbb{R}$ is harmonic and bounded around x. Show that u can be extended to a harmonic function on the whole of U.
Better yet, show the same outcome with the relaxed condition that $u(x+\cdot)$ is negligible near x compared to the fundamental solution $\left(\log (\|\cdot\|)\right.$ if $d=2$ and $\|\cdot\|^{2-d}$ otherwise).

Exercise 3 - Liouville's theorem.
Let $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ bounded and harmonic, and $x, y \in \mathbb{R}^{d}$. Show that for any hyperplane H with hitting time $T, h(x)=\mathbb{E}_{x}\left[h\left(B_{T}\right)\right]$. Deduce Liouville's theorem.

Exercise 4 - Harmonic functions and martingales.
Let $D \subset \mathbb{R}^{d}$ be a domain and T its exit time. Assume $T<\infty$ a.s. Let $h: \bar{D} \rightarrow \mathbb{R}$ be continuous, bounded and harmonic inside D. Fix $x \in D$.
(1) Assume that D is bounded and verifies the Poincaré cone condition. Show that under \mathbb{P}_{x}, the process $\left(h\left(B_{t \wedge T}\right)\right)_{t}$ is a closed martingale.
(2) In the general case, show that under \mathbb{P}_{x}, the process $\left(h\left(B_{t \wedge T}\right)\right)_{t}$ is a martingale. (Hint: approximate D by domains that verify the cone condition.)
(3) Deduce that for an arbitrary domain, when a bounded solution to the Dirichlet problem exists, the Brownian expectation finds it.
(4) Look at $\log \left(\left\|B_{t}\right\|\right)$ if $d=2$ and $\left\|B_{t}\right\|^{2-d}$ if $d \geq 3$. Are those martingales ?

Exercise 5 - Counterexample.
Let $D=B(0,1) \backslash\{0\} \subset \mathbb{R}^{2}$ and consider the Laplace equation $\Delta u=0$ with Dirichlet boundary conditions $u(0)=0$ and $u(x)=1$ for $x \in \partial B(0,1)$. Show that the Brownian expectation does not define a solution. Show that there can't exist a solution (you may use exercise 1 or the fact that if $u(x)=g(|x|)$, then $\Delta u(x)=g^{\prime \prime}(|x|)+\frac{1}{x} g^{\prime}(|x|)$.)

