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Solutions for Exercise sheet 6: Harmonic functions and
Brownian motion

Solution 1 — Recurrence and transience.
Let us denote Tr = T∂B(0,r). We will use the fact that for 0 < r ≤ x ≤ R,

Px {Tr < TR} =


R−|x|
R−r if d = 1
logR−log |x|
logR−log r if d = 2
R2−d−|x|2−d
R2−d−r2−d if d > 3

(1) When d = 2. Assume x 6= 0. By continuity of Brownian trajectories and dominated
convergence,

Px(T0 < TR) = lim
r→0

Px(Tr < TR) = 0

We have that if T0 < ∞, then TR > T0 for large enough R by continuity of
trajectories and the fact that Brownian motion is unbounded. So by dominated
convergence,

Px(T0 < TR) = lim
R→∞

Px(T0 < TR) = lim 0 = 0

On the other hand, for every x ≥ 0, ε > 0, we have

Px(Tε < TR) =

{
logR−log |x|
logR−log r if ε < x by formula above

1 otherwise, obviously

so that

Px(Tε <∞) = lim
R→∞

Px(Tε < TR) = 1.

We finally prove that Brownian motion is recurrent, that is that it visits every
open set at arbitratily large times almost surely. If we show this property for every
fixed small closed ball, then it will be enough by countable union. By translation
invariance we can assume the small ball is centered at 0. Let ε > 0. We define the
sequence of stopping times T0 = 0, and

Tk+1 = inf{t ≥ dTke+ 1, Bt ∈ ∂B(0, ε)}

Let us show that Px(Tk <∞) = 1 for every k. As Tk+1−Tk ≥ 1 almost surely, this
will be enough to provide an unbounded sequence of times t where Bt ∈ B(0, ε).
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Let us work by induction. Of cours P(T0 < ∞) = 0. Now assume P(Tk) = 1.
Then

Px(Tk+1 <∞) ≥ Ex[1Tk<∞ 1Tk+1<∞]

= Ex[1Tk<∞ 1T1<∞ ◦θdTke+1]

= Ex[1Tk<∞ Ex[1T1<∞ ◦θdTke+1 | FdTke+1]]

= Ex[1Tk<∞ EBdTke+1
[1T1<∞]]

= Ex[1Tk<∞ 1]

= 1

Here we have used the strong Markov property written in a similar form as the one
you are used to from last semester in the discrete setting. Let us state it:

Theorem : Let T be a stopping time, and θT be map Ω → Ω that shifts of the
Brownian trajectory by time T . Then for every random variable F : Ω → R such
that F ◦ θT ∈ L1,

Ex[F ◦ θT | FT ] = EBT [F ] a.s.

If you don’t like the θT notation, you can also use
Theorem : Let T be a stopping time, and F : C(R+,Rd) → R measurable such
that F ((BT+s)s≥0) ∈ L1. Then

Ex[F ((BT+s)s≥0) | FT ] = EBT [F ((Bs)s≥0)] a.s.

You can admit each of these theorems and use them whenever needed. To prove
that it is equivalent to the version of strong Markov given in class, one can use
exercise 5, TD 1.

(2) When d ≥ 3, we similarly get Px(TB(0,ε) < ∞) = (ε/|x|)d−2 for every x : |x| > ε.
We deduce

Px(Tn ◦ θT2n <∞) = (n/2n)d−2 → 0 exponentially fast

By Borel-Cantelli, there exists almost surely n0 such that for n ≥ n0, the Brownian
motion does not return to distance n after T2n . This implies that Bt →∞.

Solution 2 — Singularity removal.

Assume without loss of generality that U is a ball centered at x. Let h̃(y) = Ey[h(BT )],

where T = TU{ . This is well defined because almost surely BT ∈ ∂U , and of course h̃ is

harmonic on the whole of U . To show that h(y) = h̃(y) forall y 6= x, proceed as follows.
Define Tε = TU{∪B(x,ε). Then by harmonicity of h, h(y) = Ey[h(BTε)]. Furthermore, since
almost surely x is not hit by B, we have BTε → BT as ε → 0. Applying the dominated

convergence theorem yields h(y) = Ey[h(BTε)] −→
ε↓0

Ey[h(BT )] = h̃(y) and we are done.
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Whith the relaxed condition that u(x+ ε) = o(f(ε)) where f is a fundamental solution, we

define the same T, h̃, Tε. Now

h(y) = Ey[h(BTε)] = Ey[1Tε<T h(BTε)] + E[1Tε=T h(BT )]

The first term is bounded by C
f(ε)

o(f(ε))→ 0 and the second term goes to Ey[h(BT )] = h̃(y).

Hence we still have h(y) = h̃(y).

Solution 3 — Liouville’s theorem.

Solution 4 — Harmonic functions and martingales. (1) Let us show that for every x,
under Px, t 7→ h(Bt∧T ) is a martingale that is closed by h(BT ). Thus we shall show
that for every x, Ex[h(BT ) | Ft] = h(Bt∧T ). Indeed we can compute

Ex[h(BT ) | Ft] = Ex[h(Bt∧T )1T<t +h(BT )1t≤T | Ft]
= h(Bt∧T )1T<t +Ex[h(BT )1t≤T | Ft]
= h(Bt∧T )1T<t +Ex[h(Bt

T t)1t≤T | Ft]
= h(Bt∧T )1T<t +Ex[h(Bt

T t)1t≤T | Ft]
= h(Bt∧T )1T<t +EBt [h(BT )]1t≤T

= h(BT∧t)1T<t +h(Bt)1T≥t = h(Bt∧T )

Where Bt denoted the Brownian motion restricted from time t onward, and T t the
hitting time of ∂D for this process.

(2) Consider Dε = B(0, ε−1) ∩ {x, d(x,D{) > ε}, which is open and bounded. Then
D{
ε = B(0, ε−1){ ∪

⋃
x∈D{ B(0, ε). We can show that Dε verifies the Poincaré cone

condition.
Let Tε be the hitting time of D{. We can now apply question 1 and get that

E[h(Bt∧Tε) | Fs] = h(Bs∧Tε)

We can now use continuity of paths, continuity of h, and the (conditional) domi-
nated convergence theorem to conclude.

Solution 5 — Counterexample.
Set T = T∂D and h(x) = Ex[u(BT )]. This does not define a solution to the Laplace
equation, because since the Brownian motion started outside of 0 almost surely does not
hit 0, we have h(0) = 0 and h(x) = 1 for all x ∈ D \ {0}. Hence h is not continuous.
Suppose a solution h exists. Then a rotation of h is still a solution, and hence equals
h thanks to the maximum principle. Thus h is rotation invariant hence radial (h(x) =
g(|x|), x ∈ D, for some g : R+ → R that must be twice differentiable.) We deduce
that 0 = g′′(x) + 1

x
g′(x) for all 0 < x < 1, an ODE whose solutions are of the form

x 7→ A+B log(x), none of which fits our purpose. Hence a solution cannot exist.


