TD 4. Espaces préhilbertiens et de Hilbert v2

EXERCICE 1.

Soit H un espace de Hilbert. Soit $\{\nu_n \mid n \in \mathbb{N}\}$ un ensemble de vecteurs indépendants de l'espace H.

- 1. Construire un ensemble orthonormé $\{u_n\}$ où u_n est une combinaison linéaire de ν_1,\ldots,ν_n .
- 2. En déduire que tout espace de Hilbert séparable possède une base hilbertienne (sans utiliser l'axiome du choix).
- 3. Montrer que H est séparable si et seulement si il possède une base hilbertienne finie ou dénombrable.

EXERCICE 2.

- 1. Rappeler pourquoi un sous-espace vectoriel d'un espace de Hilbert est dense si et seulement si son orthogonal est réduit à {0}.
- 2. Soit c_{00} l'espace préhilbertien des suites nulles à partir d'un certain rang, muni du produit scalaire

$$< u|v> = \sum_{n} u_n v_n$$

Soit f la forme linéaire sur c_{00} donnée par $f(u) = \sum_{n} \frac{u_n}{n+1}$

Montrer que Ker(f) est un hyperplan fermé, et que $(Ker(f))^{\perp} = \{0\}.$

3. (Bonus **) Plus généralement, montrer que dans tout espace pré-hilbertien non complet, il existe un hyperplan fermé dont l'orthogonal est réduit à $\{0\}$.

EXERCICE 3.

Soit E un espace de Hilbert complexe, et soient E_1 et E_2 deux sous-espaces vectoriels fermés de E. On note P_1 et P_2 les projections sur E_1 et E_2 .

Montrer que pour que P_1 et P_2 commutent, il faut et il suffit que E soit somme hilbertienne des quatre sous-espaces suivants : $E_1 \cap E_2$, $E_1^{\perp} \cap E_2^{\perp}$, $E_1^{\perp} \cap E_2$, $E_1 \cap E_2^{\perp}$.

EXERCICE 4.

Soient E un espace vectoriel normé et $(x_i)_{i\in I}$ une famille d'éléments de E. On dit que la famille $(x_i)_{i\in I}$ est sommable de somme S si et seulement si $\forall \varepsilon > 0$, $\exists J$ finie, $J \subset I$, telle que pour toute partie K finie satisfaisant $J \subset K \subset I$, on a :

$$\left\| S - \sum_{k \in K} x_k \right\| < \varepsilon.$$

1. Montrer que si E est complet, cela équivaut à : $\forall \varepsilon > 0, \ \exists J \text{ finie}, \ J \subset I, \ \text{telle que pour toute partie } L \text{ finie satisfaisant } L \subset I \text{ et } J \cap L = \emptyset$ on a : $\left\| \sum_{k \in L} x_k \right\| < \varepsilon$.

- 2. Montrer qu'une famille sommable est à support dénombrable.
- 3. Cas $I = \mathbb{N}$, et E complet. Montrer que la famille $(x_i)_{i \in \mathbb{N}}$ est sommable si et seulement si elle est commutativement convergente, c'est-à-dire : pour toute bijection $\varphi : \mathbb{N} \to \mathbb{N}$, la série $\sum x_{\varphi(i)}$ est convergente.
- 4. Soient H un espace de Hilbert, et $\{u_{\alpha} \mid \alpha \in A\}$ une famille orthonormale. Montrer que, pour tout x, la famille $\{\langle x, u_{\alpha} \rangle u_{\alpha} \mid \alpha \in A\}$ est sommable, et que sa somme est la projection hilbertienne de x sur $\overline{\text{Vect}\{u_{\alpha} \mid \alpha \in A\}}$.