TD 6 : Compacité relative, espace \mathcal{C}^0 (version 2)

Exercice 1. Généralités sur les compacts

- 1. Soit X un espace métrique compact et soit $(x_n)_{n\in\mathbb{N}}$ une suite de X n'ayant qu'une seule valeur d'adhérence. Montrer que $(x_n)_{n\in\mathbb{N}}$ est convergente.
- 2. Soient X et Y deux espaces métriques compacts, et $f: X \times Y \to \mathbb{R}$ une fonction continue. On pose $g(x) = \inf_{y \in Y} f(x, y)$. Montrer que la fonction $g: X \to \mathbb{R}$ est continue.
- 3. On sait que tout espace métrique compact est précompact. Déduire qu'il est alors séparable.

EXERCICE 2. Graphe fermé dans un compact

- 1. Montrer que la projection $pr_1: E \times F \to E$ est fermée quand F est compact (indication : soit A fermé dans $E \times F$ et $x \notin pr_1(A)$. Pour $y \in F$, il existe des ouverts $U_y \subset E$ et $V_y \subset F$ tels que $(x,y) \in U_y \times V_y \subset A^{\complement}$...).
- 2. Déduire que si F est compact et que le graphe de $f:E\to F$ est fermé dans $E\times F$, alors f est continue.

Exercice 3. Généralités sur la relative compacité

- 1. Montrer que dans l'espace normé de dimension finie le fait d'être relativement compact est équivalent au fait d'être borné.
- 2. Montrer que dans un espace métrique E une partie A est relativement compacte si et seulement si toute suite de A admet une sous-suite convergente dans E.

EXERCICE 4. Lesquels de ces ensembles sont relativement compacts dans $C^0[0,1]$?

- 1. $M_1 = \{t \mapsto t^n\}_{n \in \mathbb{N}},$
- 2. $M_2 = \{t \mapsto \sin(t+n)\}_{n \in \mathbb{N}}$
- 3. $M_3 = \left\{ x : x(t) = \int_0^t y(s)ds, y \in C[0,1], ||y||_{C[0,1] \le 1} \right\},$
- 4. Pour une fonction $f \in L^1[0,1]$ considérons ses moments $p_n := \int_0^1 f(t)t^n dt, n = 0, 1, \dots$ On pose

$$M_4 := \left\{ f \in C[0,1] : |p_n(f)| \le \frac{1}{n}, n = 0, 1, \dots \right\}$$

EXERCICE 5. On munit $E = \mathcal{C}^0([0,1],\mathbb{R})$ de la norme sup. On considère une fonction continue $k:[0,1]\times[0,1]\to\mathbb{R}$. On définit l'opérateur $T:E\to E$ par $Tf(x)=\int_0^1 k(t,x)f(t)dt$.

- 1. Montrer que T est bien défini et continu
- 2. Montrer que $\overline{T(B_{\|.\|_{\infty}}(0,1))}$ est une partie compacte de $(E,\|.\|_{\infty})$ (indication : on pensera à utiliser l'uniforme continuité de k).

3. Soit $\lambda \neq 0$. Montrer que l'espace propre $E_{\lambda} = \ker(T - \lambda I d_E)$ est de dimension finie.

EXERCICE 6. (Relative compacité dans $C^n[0,1]$)

Un critère pour être un ensemble d'adhérence compacte dans $\mathcal{C}^n[0,1]$ muni de $||f|| = ||f||_{\infty} + ||f^{(n)}||_{\infty}$, peut être obtenu du critère d'Arzela-Ascoli en utilisant l'application $\varphi = \frac{d^n}{dx^n} : \mathcal{C}^n[0,1] \to \mathcal{C}^0[0,1]$.

- 1. Montrer que φ est continue surjective, n'est pas un isomorphisme, et trouver son noyau $\text{Ker}\varphi$.
- 2. Prouver qu'une partie bornée de $\text{Ker}\varphi$ est d'adhérence compacte.
- 3. Prouver que M est d'adhérence compacte dans $\mathcal{C}^n[0,1], n \in \mathbb{N}$ si et seulement si M est borné et l'ensemble $M_n = \{x^{(n)} : x \in M\}$ est équicontinu.
- 4. Est-il vrai que M est d'adhérence compacte dans $C^n[0,1]$ si et seulement si M_n est d'adhérence compacte dans C[0,1]?
- 5. Donner un exemple d'un ensemble M dans $\mathcal{C}^1[0,1]$ qui est d'adhérence compacte dans $\mathcal{C}^0[0,1]$ mais pas dans $\mathcal{C}^1[0,1]$.

EXERCICE 7. (Théorème de Cauchy-Peano)

Soit $F: [-r,r] \to \mathbb{R}$ une fonction continue, avec $M = \sup |f|$ et T = r/M. On veut montrer qu'il existe une fonction dérivable $y: [0,T] \to [-r,r]$ qui vérifie l'équation différentielle y' = F(y) avec condition initiale y(0) = 0.

1. On fixe $n \ge 0$. Soit $(a_i^{(n)})_{0 \le i \le n}$ la solution du schéma d'Euler explicite associé à l'équation, pour le pas $h_n = T/n$:

$$a_0^{(n)} = 0$$
 ; $a_{i+1}^{(n)} = a_i^{(n)} + h_n F(a_i^{(n)}), 0 \le i \le n-1.$

Vérifier par récurrence sur i qu'il est bien défini (montrer l'inégalité $|a_i^{(n)}| \leq ri/n$).

- 2. Vérifier que la fonction affine par morceaux $y^{(n)}:[0,T]\to[-r,r]$ qui interpole $a^{(n)}$ telle que $y^{(n)}(h_ni)=a_i^{(n)}$ pour tout $1\leq i\leq n$, est M-Lipschitzienne.
- 3. Montrer que la suite $(y^{(n)})_{n\geq 0}$ est relativement compacte dans $\mathcal{C}^0([0,T])$.
- 4. Soit ω le module d'uniforme continuité de F, c'est à dire que pour tout $\varepsilon > 0$, $\omega(\varepsilon) = \inf_{d(x,y)<\varepsilon} d(F(x),F(y))$. L'uniforme continuité de F équivaut à $\lim_{\varepsilon\to 0} \omega(\varepsilon) = 0$. Montrer que pour $0 \le i \le n$, on a $|y^{(n)}(h_n(i+1)) y^{(n)}(h_ni) \int_{h_ni}^{h_n(i+1)} F(y^{(n)}(s))ds| \le h_n\omega(h_nM)$. En déduire qu'uniformément en i tel que $0 \le i \le n$, on a $|y^{(n)}(h_ni) \int_0^{h_ni} F(y^{(n)}(s))ds| \le T\omega(h_nM)$.
- 5. Conclure.