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Abstract. The Brownian separable permuton is a random probability measure on the
unit square, which was introduced by Bassino, Bouvel, Féray, Gerin, Pierrot (2016) as
the scaling limit of the diagram of the uniform separable permutation as size grows to
infinity. We show that, almost surely, the permuton is the pushforward of the Lebesgue
measure on the graph of a random measure-preserving function associated to a Brownian
excursion whose strict local minima are decorated with i.i.d. signs. As a consequence, its
support is almost surely totally disconnected, has Hausdorff dimension one, and enjoys
self-similarity properties inherited from those of the Brownian excursion. The density
function of the averaged permuton is computed and a connection with the shuffling of the
Brownian continuum random tree is explored.

1. Introduction

For n ≥ 1, let Sn be the set of permutations of J1, nK, and S = tn≥1Sn. We use the
one line notation σ = (σ(1)σ(2) · · · σ(n)) for σ ∈ Sn. A pattern in a permutation σ ∈ Sn

induced by the indices 1 ≤ i1 < . . . ik ≤ n is the permutation π ∈ Sk that is order-
isomorphic to the word (σ(i1), . . . , σ(ik)). The density of the pattern π ∈ Sk in σ ∈ Sn is
the proportion of increasing k-uples in J1, nK that induce π in σ. A class of permutations
is a subset of S that is stable by pattern extraction, and is characterized by the pattern
avoidance of some minimal family of permutations called its basis [9, 5.1.2]. There is a
large literature on the asymptotics of the pattern densities and diagram shape of a large
typical permutation in several classes. This type of results can, to some extent, be encoded
as convergence to a permuton. In [7] (to which we refer the reader for an extensive review
of literature), Bassino, Bouvel, Féray, Gerin and Pierrot studied the class of separable
permutations and showed the convergence of a uniform large separable permutation to a
Brownian separable permuton, of which the present paper is a detailed study. Let us start
with a few definitions.

1.1. Limits of permutations. A probability measure on the unit square [0, 1]2 is called
a permuton if both its marginals on [0, 1] are uniform. With every permutation σ ∈ Sn

we associate a permuton µσ by setting µσ(dxdy) = n1 [σ(bxnc) = bync] dxdy. The set of
permutons is equipped with the weak convergence of probability measures, which makes
it compact. A sequence of permutations (σn)n is said to converge to a permuton µ if and
only if µσn converges weakly to µ. This theory was introduced by Hoppen, Kohayakawa,
Moreira, Ráth, Sampaio in [15], where it is shown that convergence of a sequence of
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permutations to a permuton is equivalent to convergence of all pattern densities. As
a result, permutons can be alternatively constructed as the completion of the space of
permutations w.r.t. convergence of all pattern densities. This theory is similar to graphons
as limits of dense graphs, and unifies the study of the limit shape of the permutation
diagram with that of the limit of pattern densities.

1.2. The case of separable permutations. A permutation is separable if it does not
have (2413) and (3142) as an induced pattern. Separable permutations were introduced in
[11], but appeared earlier in the literature [4, 21]. They are counted by the large Schrder
numbers: 1, 2, 6, 22, 90, 394, . . . and enjoy many simple characterizations [11, 4, 21, 14]

The one most relevant to this paper is in terms of trees. A signed tree t is an rooted
plane tree whose internal nodes are decorated with signs in {⊕,	}. We label its leaves
1, . . . , k according to the natural ordering of t. The signs can be interpreted as coding a
different ordering of the rooted tree t: we call t̃ the tree obtained from t by reversing the
order of the children of each node with a minus sign. The order of the leaves is changed
by this procedure, and we set σ(i) to be the position in t̃ of the leaf i. We call perm(t)
this permutation σ ∈ Sk. It turns out [11, Lemma 3.1] that separable permutations are
exactly the ones that can be obtained this way.
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Figure 1. The permutation associated to a signed tree.

The article [7] shows that separable permutations have a permuton limit in distribution,
yielding the first example of a nondeterministic permuton limit of a permutation class.
The representation by signed trees is fundamental in their proof.

Theorem 1.1 (theorem 1.6 of [7]). If σn is a uniform separable permutation of size n,
then µσn converges in distribution, in the weak topology, to a non-deterministic permuton
µ1/2 called the Brownian separable permuton of parameter 1/2.

This result comes with a characterization of µ1/2 (which we recall in section 2) which
suggests that it can be realized as a measurable functional of a signed Brownian excursion
(see remark 2.8). The authors of [7] left this, along with the study of the support of µ1/2,
as open questions that the present paper aims at addressing.

Let us mention that theorem 1.1 was generalized in [6, 5] by the same authors along with
the present author to various families of permutation classes. These results yield, among
others, a one-parameter family (µp)p∈(0,1) of possible limits, called the biased Brownian
separable permutons. We set our paper in this generality and fix once and for all p ∈ (0, 1).
We postpone a precise definition of µp to section 2.
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1.3. The signed Brownian excursion. We call continuous excursion a nonnegative
function g : [0, 1] → R+ that is positive on (0, 1). The inner local minima of g are the
points of (0, 1) in which g is locally minimal, and we say that x ∈ (0, 1) is not a one-sided
minimum of g if

∀ε > 0,∃x1 ∈ (x− ε, x), x2 ∈ (x, x+ ε) s.t. g(x1) < g(x) and g(x2) < g(x).

A CRT excursion is a continuous function g : [0, 1]→ R+ such that:

(CRT1) the inner local minima of g are dense in [0, 1],
(CRT2) the values at the inner local minima are all different,
(CRT3) the set of times that are not one-sided minima has Lebesgue measure 1.

In a CRT excursion, all inner local minima are necessarily strict local minima, and hence
countable. It will be useful for our purposes to enumerate them in a well-defined manner.

Definition 1.2. A measurable enumeration is a sequence (bi)i∈N of functions from the set
ECRT of CRT excursions to [0, 1] such that

(ME1) for every g ∈ ECRT, i 7→ bi(g) is a bijection between N and the inner local minima
of g,

(ME2) for every i ∈ N, g 7→ bi(g) is measurable,
(ME3) the function which maps (g, u, v) ∈ ECRT× [0, 1]2 to i ∈ N if bi ∈ (u, v) is the unique

point in [u, v] in which the minimum of g on [u, v] is reached, and ∞ otherwise, is
measurable.

We fix once and for all a measurable enumeration (see section 2 for an explicit construc-
tion of one, which comes from [7]). We call signed excursion a pair (g, s), where g is a
CRT excursion and s is a sequence in {⊕,	}N. The sign si is to be considered as attached
to the inner local minimum bi.

Let (g, s) be a signed excursion. If x < y ∈ [0, 1], we say that x and y are g-comparable
if and only if the minimum of g on [x, y] is reached at a unique point which is a strict local
minimum bi ∈ (x, y). In this case, if si = ⊕, we say x�s

g y, otherwise y �s
g x.

The relation �s
g is a strict order, but it is not total. However, two distinct points which

are not one-sided minima are always g-comparable, hence �s
g is total on a set of measure

1. See lemma 2.5 for the proof of these claims. Moreover we will see later (section 1.6) a
natural extension to a total preorder on [0, 1].

In what follows, we consider the signed excursion (e, S), where e is a the normalized
Brownian excursion, and S is an independent sequence of independent signs with bias p,
that is probability p of being ⊕ and 1− p of being 	. It is the main ingredient in building
µp.

1.4. Construction of the permuton. If (g, s) is a signed excursion, we define

(1) ϕg,s(t) = Leb{u ∈ [0, 1], u�s
g t}, t ∈ [0, 1]

and

µg,s = (Id, ϕg,s)∗ Leb .
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Here H∗ν denotes the pushforward measure ν(H−1(·)), whenever H and ν are respectively
a measurable function and a measure defined on the same space. The reader may report
to fig. 4, disregarding for now the vertical excursion ẽ, to see a simulation of e, S and ϕe,S.
Our main theorem is the following:

Theorem 1.3. The maps (t, g, s) 7→ ϕg,s(t) and (g, s) 7→ µg,s are measurable, and the
random measure µe,S is distributed like µp, the biased Brownian separable permuton of
parameter p.

This theorem is proved in section 3, along with a corollary which shows that the con-
vergence of theorem 1.1 can be rewritten without permutons, only in terms of functional
convergence. To any permutation σ ∈ Sn, we associate a cdlg, piecewise affine, measure-
preserving function ϕσ : [0, 1]→ [0, 1] with ϕσ(x) = 1

n
(σ(bntc+ 1)− 1) + 1

n
{nt}.

Corollary 1.4. Let σn be a random permutation in Sn for every n ∈ N. If µσn converges
in distribution to µp, then for every q ∈ [1,∞), we have the convergence in distribution in
the space Lq([0, 1]):

ϕσn
d−−−→

n→∞
ϕe,S

1.5. Properties of the permuton. This continuum construction allows us to derive
several properties of µp. In section 4, we prove the following result.

Theorem 1.5. Almost surely, the support of µp is totally disconnected, and its Hausdorff
dimension is 1 (with one-dimensional Hausdorff measure bounded above by

√
2).

The claim that the Hausdorff dimension is 1 also comes as a special case of a result of
Riera [20]: any permuton limit in distribution of random permutation in a proper class, if
it exists, almost surely has a support of Hausdorff dimension 1.

In section 5, we show that µp inherits the self-similarity properties of e, in that µp

contains a lot of rescaled distributional copies of itself. In particular, we get the following
theorem, illustrated in fig. 2, which states that µp can be obtained by cut-and-pasting three
independent Brownian separable permutons.

Theorem 1.6. Let (∆0,∆1,∆2) be a random variable of Dirichlet(1
2
, 1

2
, 1

2
) distribution. Let

µ0, µ1, µ2 be independent and distributed like µp, and conditionally on µ0, let (X0, Y0) be a
random point of distribution µ0. Let β be an independent Bernoulli r.v. of parameter p.
We define the piecewise affine maps of the unit square into itself:

(2)

θ0(x, y) = (η0(x), ζ0(y)) = ∆0(x, y) + (1−∆0)(1[x>X0],1[y>Y0])

θ1(x, y) = (η1(x), ζ1(y)) = ∆1(x, y) + ∆0(X0, Y0) + ∆2(0, β)

θ2(x, y) = (η2(x), ζ2(y)) = ∆2(x, y) + ∆0(X0, Y0) + ∆1(1, 1− β)

Then

(3) ∆0θ0∗µ0 + ∆1θ1∗µ1 + ∆2θ2∗µ2
d
= µp,

We believe that a result by Albenque and Goldschmidt [1] about the Brownian CRT can
be adapted to show that the distributional identity (3) characterizes µp (see remark 5.5.)
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Figure 2. The construction of µ from three independent permutons dis-
tributed like µ. Here β = 0 and (∆0,∆1,∆2) ≈ (0.4, 0.5, 0.1).

Finally, our construction allows us to compute the averaged permuton Eµp, obtained by
taking Eµp(A) = E[µp(A)] for every Borel set A. We get the following result.

Theorem 1.7. The permuton Eµp is the measure α(x, y)dxdy, where α(x, y) equals∫ min(x,y)

max(0,x+y−1)

3p2(1− p)2da

2π(a(x− a)(1− x− y + a)(y − a))3/2
(
p2

a
+ (1−p)2

(x−a)
+ p2

(1−x−y+a)
+ (1−p)2

(y−a)

)5/2
.

Plots for different values of p are provided on fig. 3. The function αp is a priori a rather
complicated elliptic integral involving the root of a polynomial of degree 3 in a. However
the case p = 1/2 is special: first of all α1/2 has all the symmetries of the square, so that
we may restrict to 0 ≤ x ≤ min(y, 1 − y). Furthermore thanks to some cancellations, the
polynomial under the root is only of degree 2, and the integral can be solved for instance
with a computer algebra system, yielding

α1/2(x, y) =
1

π
(β(x, y) + β(x, 1− y)), 0 ≤ x ≤ min(y, 1− y),(4)

where β(x, y) =
3xy − 2x− 2y + 1

(1− x)(1− y)

√
1− x− y

xy
+ 3 arctan

√
xy

1− x− y
.

The function α already appeared in a different form in the work of Dokos and Pak [12]
as the expected shape of doubly-alternating Baxter permutations. We give more details
about this at the end of the introduction.

1.6. Shuffling of continuous trees. Through a classical construction (which goes back
to Aldous [2]), a Brownian excursion e encodes a continuous (rooted and ordered) tree Te
called the Brownian CRT. This encoding puts inner minima of e in correspondence with
branching points of Te, so that the pair (Te, S) may be seen as a continuous signed tree.

The next few results make this rigorous and explain how the random function ϕe,S relates
to the tree (Te, S), much like separable permutations relate to signed trees. Those results,
and the notation introduced here, are not needed for the rest of the paper, albeit the fact
that e encodes a tree is an idea that underlies most of the arguments of the paper.
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Figure 3. The function αp for p ∈ {0.3, 0.45, 0.5}.

We recall the construction of continuous trees from continuous excursions, in the for-
malism of Le Gall and Duquesne [17, 13]. Let g be a continuous excursion. Set dg(x, y) =
g(x) + g(y)− 2 min[x,y] g for x, y ∈ [0, 1]. The function dg is a pseudo-distance. Identifying
points x, y ∈ [0, 1] such that dg(x, y) = 0 yields a quotient metric space (Tg, dg) with a
continuous canonical surjection pg : [0, 1] 7→ Tg. Let ρg = pg(0) be the root of Tg, and
define a total order ≤g on Tg by setting x ≤g y ⇐⇒ inf p−1

g (x) ≤ inf p−1
g (y). Define a

probability measure λg = pg∗ Leb[0,1]. When g = e, we get the well-known Brownian CRT.
Section 7 is devoted to the proof of the following theorem, illustrated in fig. 4.

Theorem 1.8. There exists a random CRT excursion ẽ, defined on the same probability
space as (e, S), with the following properties:

(1) The excursion ẽ has the distribution of a normalized Brownian excursion, with the
same field of local times at time 1 as e.

(2) Almost surely, the function ϕe,S is an isometry between the pseudo-distances de and
dẽ. In particular, ẽ ◦ ϕe,S = e.

This result has an interpretation in terms of shuffling of continuous trees, mirroring the
construction of separable permutations described in section 1.2.

When g is a CRT excursion, the construction of Tg puts the inner local minima of g in
bijection with the branching points of Tg. Hence, when (g, s) is a signed excursion, the
order ≤sg can be defined on the tree Tg by inverting at all branching points with a minus
sign, as follows. Let x, y ∈ Tg such that x ≤g y. If there exists a strict local minimum bi
such that sup p−1

g (x) < bi < inf p−1
g (y), with g(bi) = inf{g(t), sup p−1

g (x) ≤ t ≤ inf p−1
g (y)},

and s(bi) = 	, then set x ≥sg y. Otherwise, set x ≤sg y. This defines a total order
compatible with the relation on [0, 1] defined in the previous section: whenever x and y are
g-comparable, then x�s

g y ⇐⇒ pg(x) <s
g pg(y). This construction is illustrated in fig. 5.

This allows us to give an interpretation of theorem 1.8 in terms of trees. If we consider
the tree (Tẽ, dẽ, ρẽ,≤ẽ, λẽ), theorem 1.8(2) says that, for x, y ∈ [0, 1], de(x, y) = 0 ⇐⇒
dẽ(ϕe,S(x), ϕe,S(y)) = 0. We deduce that pe(x) = pe(y) ⇐⇒ pẽ(ϕe,S(x)) = pẽ(ϕe,S(y)),
which implies that the map ϕe,S factorizes through pe and pẽ, that is there is a unique map
 : Te → Tẽ such that  ◦ pe = pẽ ◦ ϕe,S. It is immediate than  is an isometry (Te, de) ↔
(Tẽ, dẽ). Moreover,  maps the root of Te to the root of Tẽ, is measure preserving and
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x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	
t1 t2 t3 t4

Figure 4. A realization of (e, S) (here p = 1/2), and the associated func-
tions ϕe,S and ẽ, highlighting the property ẽ ◦ ϕe,S = e. Four points
t1 < . . . < t4 are specified.

(Te,≤e) (Te,≤S
e )

Figure 5. The tree Te, drawn according to the two orders ≤e and ≤Se . Four
point have been marked. The data is the same as in fig. 4.

increasing w.r.t. (≤Se ,≤ẽ). This discussion can be summarized in the following corollary
of theorem 1.8.

Proposition 1.9. The map  : Te ↔ Tẽ provides an isomorphism (of pointed, ordered, mea-
sured metric spaces) between the tree (Te, de, ρe,≤Se , λe) and the Brownian CRT (Tẽ, dẽ, ρẽ,≤ẽ
, λẽ) constructed from the Brownian excursion ẽ.



ON THE BROWNIAN SEPARABLE PERMUTON 8

Combining this with the result of Duquesne on the uniqueness of coding functions of
trees [13, Thm 1.1], we directly get an abstract construction of µe,S.

Proposition 1.10. Almost surely, the functions ẽ and  are uniquely determined by the fact
that ẽ is continuous and  is an isomorphism between (Te, de, ρe,≤Se , λe) and (Tẽ, dẽ, ρẽ,≤ẽ
, λẽ). Any function φ which verifies pẽ ◦ φ =  ◦ pe must coincide with ϕe,S on a set of
measure 1, hence still verifies µe,S = (Id, φ)∗ Leb.

1.7. Comments and perspectives. Let us mention another natural family of permuta-
tions: the doubly-alternating Baxter permutations, which are also the doubly-alternating
separable permutations [18], and are counted by the Catalan numbers. The fact that they
enjoy a tree decomposition similar to separable permutations, along with simulations [12],
allows to boldly conjecture that they converge to the Brownian separable permuton of
parameter 1/2.

Dokos and Pak [12, Thm 1.1] compute the expected shape of doubly-alternating Baxter
permutations: their result implies that for every Borel subset A of the unit square, if
σn is a uniform doubly-alternating permutation of size n, then E[µσn(A)] →

∫
A
ψ, where

ψ has symmetries of the square and ψ(x, y) = 1
4π

∫ x
0
du
∫ x−u

0
dv

[(u+v)(y−v)(1−y−u)]3/2
for 0 ≤

x ≤ y ∧ 1 − y. We can show that this function is the same as the one we computed for
the expectation of the Brownian permuton of parameter 1/2, further strengthening the
conjecture. Indeed,

ψ(x, y) =
1

4π

∫ x

0

du

∫ u

0

dv

[u(y − v)(1− y − u+ v)]3/2

=
1

4π

∫ x

0

du

[
2(−u+ 2v − 2y + 1)

(u− 1)2u3/2
√

(y − v)(1− y − u+ v)

]v=u

v=0

=
1

π

∫ x

0

(γ(u, y) + γ(u, 1− y))du

where γ(x, y) = x+2y−1

2(1−x)2x3/2
√

(y−x)(1−y−x)
. We recall the definition of α1/2 and β from (4).

We can check that ∂xβ(x, y) = γ(x, y), implying that ψ = α1/2.
As already mentioned, the article [6] considers substitution-closed classes, which are

natural generalizations of the class of separable permutations. Depending on the class,
several possible limits appear, among which are the µp for p possibly different from 1/2.
Another family of possible limits is the α-stable permuton driven by ν, for α ∈ (1, 2) and
ν itself a random permuton. We believe a continuum construction similar to the one
presented here is possible, by considering a α-stable tree, with an independent copy of ν at
each branching point, driving the reordering of the (countably infinite number of) branches
stemming from that point.

The structure of the paper is as follows. Section 2 contains various definitions that will
be needed in the rest of the paper, notably the definition of µp and a characterization
through its finite-dimensional marginals that highlights the link with the signed excursion.
Section 3 contains the proof of theorem 1.3, along with some facts about the random
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function ϕe,S that are reused later. Sections 4 to 6 are respectively devoted to the proofs
of theorems 1.5 to 1.7, and Section 7 to the one of theorem 1.8.

2. Definitions

First we set a few notations : if x1, . . . , xk are strictly comparable elements of an ordered
set (E,≤), then rank≤(x1, . . . , xk) is the permutation α such that α(i) < α(j) ⇐⇒ xi < xj
for every 1 ≤ i, j ≤ k. The sequence (xα−1(1) < . . . < xα−1(k)) is called the order statistic
of (x1, . . . , xk) and denoted (x(1) < . . . < x(k)).

2.1. Marginals of a permuton. In this section we want to give a tractable definition of
the random permuton µp. This will take the form of a characterization through its finite-
dimensional marginals, which we define now. If k ≥ 1 and µ is a random permuton, let
subpermk(µ) = rank(Y1, . . . Yk) ◦ rank(X1, . . . Xk)

−1 ∈ Sk, where conditionally on µ, the
(Xi, Yi) for i ∈ J1, kK are independent and distributed according to µ. Then the distribution
of subpermk(µ) is called the k-dimensional marginal of µ. The interest of this definition
lies in the following result, which is an extension of the main theorem of [15] to sequences
of random permutations.

Proposition 2.1 (theorem 2.2 of [6]). Let σn is a sequence of (possibly random) permuta-
tion whose size goes to infinity. The following are equivalent

(1) As n→∞, µσn converges in distribution to some random permuton µ.

(2) For every k ≥ 1, the uniform pattern of length k in σn, denoted σ
(k)
n , converges in

distribution, as n→∞ to some random permutation ρk ∈ Sk.

In this case, the law of µ is characterized by subpermk(µ)
d
= ρk for k ≥ 1.

This is indeed the result used by [7], [6] and [5] to prove permuton convergence. As a
result, the distribution of subpermk(µ

p) for every k is obtained as follows (see [7, prop.
9.1] and [6, def. 5.1])

Definition 2.2. The permuton µp is determined by the relations

(5) ∀k ≥ 1, subpermk(µ
p)

d
= perm(tk,p),

where tk,p is a uniform binary tree with k leaves whose internal vertices are decorated with
i.i.d. signs of bias p.

In the rest of the section, we make apparent a connection with the signed Brownian
excursion.

2.2. A few facts about excursions. We start by constructing a measurable enumeration
as defined in definition 1.2. Let (pi, qi)i∈N be a fixed enumeration of Q2 ∩ [0, 1]. Let g be a
CRT excursion. For i ≥ 1, define wi = min{t ∈ [pi, qi] : g(t) = min[pi,qi] g}, i0 = 0, and for
k ≥ 1, set recursively

ik = inf{i > ik−1, wi ∈ (pi, qi) , wi /∈ {w1, . . . , wik−1
}}.

Finally, for k ∈ N, set bk(g) = wik .
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Lemma 2.3. This construction defines a measurable enumeration.

Proof. It is immediate that all inner local minima will appear in the sequence (wi)i. The
way the subsequence (bi)i of (wi)i is chosen guarantees that only inner local minima appear,
and only once, in (bi)i.

Measurability of g 7→ bi(g) for every i follows from that of g 7→ wi(g) and k 7→ ik.
To prove (ME3) we see that thanks to item (CRT2), the function ECRT×[0, 1]2 → N∪{∞}

(g, x, y) 7→ min

{
i ∈ N, g(bi(g)) = min

[x,y]
g and bi(g) ∈ (x, y) and min

[x,y]
g < min(g(x), g(y))

}
is a measurable functional that maps (g, x, y) to i ∈ N whenever bi is the point in (x, y)
that is the only global minimum of g on [x, y], and ∞ if no such i ∈ N exists. �

We now collect a few facts about CRT excursions. In section 1.6 we saw a that such
functions encode continuous trees. So we borrow the vocabulary of trees in a way that is
coherent with this encoding: the x ∈ [0, 1] which are not one-sided local minima are called
leaves of g. The bi for i ∈ N are called branching points of g and are identified with N. Set

ai = sup{t < bi : g(t) = g(bi)},
ci = inf{t > bi : g(t) = g(bi)};
hi = g(bi) = g(ci) = g(ai).

By definition, for x ∈ (ai, bi)∪ (bi, ci), g(x) ≥ hi, defining two subexcursions at respectively
the left and the right of bi. We collect an immediate consequence of (CRT2), which states
that these subexcursions are nested, with a binary tree structure (which comes from that
of Tg).

Lemma 2.4. For every i, j either [ai, ci] ⊂ [aj, cj] or [aj, cj] ⊂ [ai, ci] or [ai, ci]∩[aj, cj] = ∅.
Furthermore, if [aj, cj] ⊂ [ai, ci] , then either j = i, [aj, cj] ⊂ (ai, bi) or [aj, cj] ⊂ (bi, ci).

If x < y are g-comparable, the bi in which g reaches its minimum between x and y is
called the most recent common ancestor of x and y. We extend this notion to branching
points: if [ai, ci] ∩ [aj, cj] = ∅, then bi and bj are g-comparable. We can always assume by
symmetry that bi < bj and call most recent common ancestor of i and j the k ∈ N such
that [ai, ci] ⊂ (ak, bk) and [aj, cj] ⊂ (bk, ck).

2.3. Extraction of permutations and trees from a signed excursion. Let (g, s) be
a signed excursion. Recall that x and y are g-comparable if the minimum of g on [x, y] is
reached at a unique point, and that point b is a strict local minimum with b ∈ (x, y). We
start by collecting elementary facts on comparability.

Lemma 2.5. Let g be a CRT excursion and s a sequence of signs.

(1) Two leaves of g are always g-comparable. Hence almost every pair of points in [0, 1]
is g-comparable.

(2) The relation �s
g is a strict partial order.
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(3) For almost every x, y ∈ [0, 1],

x�s
g y =⇒ ϕg,s(x) ≤ ϕg,s(y).

Proof. The first claim is immediate: between two leaves, the minimum of the function g
cannot be reached at the endpoints and consequently is reached at some unique point,
which is a inner minimum of g.

It is clear by definition that �s
g is antisymmetric. To show transitivity suppose x�s

gy�
s
gz.

Let bi (resp. bj)be the most recent common ancestor of x and y (resp. y and z). Since
[ai, ci]∩ [aj, cj] contains y, it is nonnempty and by lemma 2.4, either [ai, ci] ⊂ [aj, cj] or the
symmetric case. Let us treat only the first one.

• In the case i = j, then x and z must be on the same side of bi, opposite y. Since
x�s

g y, then z �s
g y, which is impossible.

• In the case [ai, ci] ⊂ (aj, bj), then x, y ∈ (aj, bj) and z ∈ (bj, cj).
• In the case [ai, ci] ⊂ (bj, cj), then x, y ∈ (bj, cj) and z ∈ (aj, bj)

In these last two cases, x and y are on the same side of bj, opposite z. Since y �s
g z, then

x�s
g z too. This proves transitivity.

The third claim is an immediate consequence of the first two. �

If x1, . . . xn are points of [0, 1], pairwise g-comparable, denote by x(1) < . . . < x(n) their
order statistic (for the usual order on [0, 1]). We then define

Permg,s(x1, . . . xn) = rank�sg(x(1), . . . , x(n)).

Observe for instance fig. 4. In this instance, Perme,S(t1, . . . , t4) = (3214).
To understand the structure of these permutations, let us define the (signed) trees ex-

tracted from a (signed) excursion. Following Le Gall [17], when g is a CRT excursion
and t1 < . . . < tk are pairwise g-comparable1, the discrete plane tree with edge-lengths
τ(g, t1, . . . , tk) is constructed recursively as follows:

• If k = 1, then τ(g, t1) is a leaf labeled t1.
• If k ≥ 2, then the minimum of g on [t1, tk] is reached at a strict local mini-

mum bi for some i, and there is j ∈ J2, kK such that {t1, . . . tj−1} ⊂ (ai, bi), and
{tj, . . . tk} ⊂ (bi, ci). Then τ(g, t1, . . . , tk) is a root labeled i, spanning two subtrees
τ(g, t1, . . . , tj−1) and τ(g, tj, . . . , tk).

This yields a binary tree whose internal vertices are put in correspondence with branching
points of g. Then, if (g, s) is a signed excursion, we set τ±(g, s, t1, . . . tk) to be the tree
τ(g, t1, . . . tk), to which we add, at each internal node labeled i, the sign si. The following
observation is capital: (recall the definition of perm from section 1.2)

Observation 2.6. For any signed excursion (g, s) and g-comparable x1, . . . , xn,

Permg,s(x1, . . . xn) = perm(τ±(g, s, x(1), . . . , x(n))).

1The definition there is stated differently and covers any continuous function g and choice of points
t1, . . . tk
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Going back to the example of fig. 4, we see that τ±(e, S, t1, . . . t4) is the tree ,
whose associated permutation is indeed (3214).

If U1, . . . , Uk are independent uniform random variables in [0, 1], then they are almost
surely pairwise g-comparable. We recall that the signed Brownian excursion (e, S) is built
by taking e to be a normalized Brownian excursion, and S an independent i.i.d. se-
quence of signs of bias p. Then a consequence of [17, Theorem 2.11] is that the tree
τ±(e, S, U(1), . . . U(k)) is a uniform binary tree with k leaves, independently decorated with
i.i.d. signs of bias p. From definition 2.2 and observation 2.6 follows a new characterization
of µp, which we use in this paper.

Proposition 2.7. The permuton µp is determined by the relations

(6) ∀k ≥ 1, subpermk(µ
p)

d
= Perme,S(U1, . . . Uk).

Remark 2.8. This connection with the Brownian excursion was present in [7] for p = 1/2.
The main result of that paper actually goes further: the conditional distribution of the
l.h.s. given µ1/2 equals (in distribution) the conditional distribution of the r.h.s given
(e, S), jointly for all k (see [7, thm. 1.6] and its proof). This indeed strongly hinted at the
existence of a direct construction of µ1/2 from (e, S), made explicit in the present paper.

3. The function ϕ

Theorem 1.3 follows from the next two propositions.

Proposition 3.1. If g is a CRT excursion and s a sequence of signs, then (g, s, t) 7→ ϕg,s(t)
and (g, s) 7→ µg,s are measurable. Furthermore, ϕg,s∗ Leb = Leb, hence µg,s is a permuton.

Proof. For the measurability, remark that ((g, s, t), u) 7→ 1[u�s
g t] is a measurable function,

as a result of item (ME3). Then Fubini’s theorem implies that its partial integral over u
is a measurable function of (g, s, t).

Now we only have to prove that ϕ∗ Leb = Leb. Let (Zi)i≥1 be independent uniformly
distributed random variables in [0, 1]. For k ≥ 2, let U1,k = 1

k−1
#{i ∈ J2, kK:Zi �s

g Z1}
and U1 = limk→∞ U1,k. We can apply the law of large numbers conditionally on Z1 to
the sequence 1Z2�sgZ1 ,1Z3�sgZ1 , . . . (which is i.i.d given Z1) to show that this limit is well
defined and equal almost surely to Leb{t : t �s

g Z1} = ϕ(Z1). This means that U1 has
distribution ϕ∗ Leb. On the other hand, by exchangeability of the Zi, the U1,k are uniform
over { 1

k−1
, . . . , k−1

k−1
} so the distribution of the limit U1 must be uniform. This means

precisely that ϕ∗ Leb = Leb. �

Proposition 3.2. The Brownian separable permuton µp is distributed like µe,S.

Proof. By definition of µg,s, subpermk(µe,S) can be realized as rank(Y) ◦ rank(X)−1 where
X1, . . . Xk are independent uniform in [0, 1] and Yi = ϕe,S(Xi) for i ∈ J1, kK Since x �S

e y
implies ϕe,S(x) ≤ ϕe,S(y), and moreover since the Yi are almost surely distinct, then almost
surely subpermk(µe,S) = Perme,S(X1, . . . Xk). According to proposition 2.7, this property
characterizes µp among permutons. �
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We now collect a few results about the excursion and the function ϕ. The first one states
that [0, 1] can almost be covered by a union of small subexcursions.

Lemma 3.3. Let g be a CRT excursion, and δ > 0, ε > 0. There exists a finite I ⊂ N such
that the ([ai, ci])i∈I are disjoint, ci−ai ≤ ε for every i, and Leb(

⊔
i∈I [ai, ci]) =

∑
(ci−ai) >

1− δ.

Proof. Let x be a leaf of the excursion g. Let x0 < x be another leaf. Define recursively bkn
to be the most recent common ancestor of xn and x, and xn+1 to be a leaf in (max{bkn , x−
1
n
}, x). This is possible by density of the leaves. Then necessarily x ∈ [akn , ckn ] and
akn converges to x. Hence g(ckn) = g(akn) converges to g(x), which implies that ckn − akn
converges to 0 (otherwise x couldn’t be a leaf). Hence there must be a i such that |ci−ai| ≤ ε
and x ∈ [ai, ci].

We deduce that
⋃
i:ci−ai≤ε[ai, ci] has measure 1. So a finite union can be found with

measure ≥ 1 − δ. Now thanks to lemma 2.4, this union can be readily rewritten as a
disjoint union. �

Now we want to characterize how the function ϕg,s behaves on a pair of sibling subex-
cursions defined by an interval of the form [ai, ci]. Set a′i = ϕg,s(ai), c

′
i = a′i + ci − ai,

b′i = a′i + (bi − ai)1[si = ⊕] + (ci − bi)1[si = 	]. The numbers a′i, b
′
i, c
′
i ∈ [0, 1] can be

interpreted as the equivalent of ai, bi, ci for the shuffled order.

Lemma 3.4. For i ∈ N, we have

if t ∈ [ai, bi] and si = ⊕, then ϕg,s(t) = a′i + Leb{x ∈ [ai, bi] : x�s
g t} ∈ [a′i, b

′
i].

if t ∈ [bi, ci] and si = ⊕, then ϕg,s(t) = b′i + Leb{x ∈ [bi, ci] : x�s
g t} ∈ [b′i, c

′
i].

if t ∈ [ai, bi] and si = 	, then ϕg,s(t) = b′i + Leb{x ∈ [ai, bi] : x�s
g t} ∈ [b′i, c

′
i].

if t ∈ [bi, ci] and si = 	, then ϕg,s(t) = a′i + Leb{x ∈ [bi, ci] : x�s
g t} ∈ [a′i, b

′
i].

If t ∈ [0, ai) ∪ (ci, 1], then

ϕg,s(t) = Leb{x ∈ [0, ai) ∪ (ci, 1] : x�s
g t}+ 1[ai �s

g t](ci − ai) ∈ [0, a′i] ∪ [c′i, 1]

Proof. We prove the first and last equalities, as the others have a symmetric proof. If
si = ⊕, t ∈ [ai, bi] and u is a leaf, then u�s

g t if and only if u ∈ [0, ai) ∪ (ci, 1] and u�s
g ai,

or u ∈ [ai, bi] and u�s
g t. The first claim follows by taking the measure of such u.

For the last equality, we see that if t ∈ [0, ai) ∪ (ci, 1] and u ∈ [ai, ci], then u�s
g t if and

only if ai �s
g t. �

Lemma 3.5. If [aj, cj] ⊂ (ai, bi), then either si = ⊕ and [a′j, c
′
j] ⊂ [a′i, b

′
i], or si = 	 and

[a′j, c
′
j] ⊂ [b′i, c

′
i].

If [aj, cj] ⊂ (bi, ci), then either si = ⊕ and [a′j, c
′
j] ⊂ [b′i, c

′
i], or si = 	 and [a′j, c

′
j] ⊂

[a′i, b
′
i].

Proof. The four claims have a symmetrical proof, hence we only prove the first. If si = ⊕
and [aj, cj] ⊂ (ai, bi), then the previous lemma implies readily a′i ≤ a′j. We need to prove
c′j ≤ b′i, that is a′j + cj − aj ≤ a′i + bi− ai, which is equivalent to a′j − a′i ≤ aj − ai + bi− cj.
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This is exactly the inequality of measures derived from the inclusion {x, ai �s
g x�s

g aj} ⊂
[ai, aj] t [cj, bi] �

Now we can prove corollary 1.4.

Proof of corollary 1.4. We consider the Kolmogorov distance between probability mea-
sures, which is the uniform distance on the bivariate CDFs (dK(ν, π) = sup0≤x,y≤1 |ν −
π|([0, x] × [0, y])). We use the fact that convergence of permutons is metrized by dK [15,
lemma 5.3], and the following result:

Lemma 3.6. If σ ∈ Sn, dK(µσ, (Id, ϕσ)∗ Leb) ≤ 2
n

Proof. It is enough to notice that both CDFs coincide on points whose coordinates are
entire multiples of 1/n and use the fact that CDFs of permutons are 1-Lipschitz [15, eq.
7] �

All together, this implies (Id, ϕσn)∗ Leb
d−→ (Id, ϕe,S)∗ Leb. With the Skorokhod coupling

we can assume without loss of generality, that the convergence is in fact almost sure. Let
ε and δ be positive real numbers, and apply lemma 3.3. Then

Leb(x : |ϕσn(x)− ϕe,S(x)| > ε) ≤ Leb(x : x /∈
⊔
i∈I

[ai, ci])

+ Leb(x : ∃i s.t. x ∈ [ai, ci], ϕσn(x) /∈ [a′i, c
′
i])

The first term is smaller than δ by construction, and the second term converges to Leb(x :
∃i s.t. x ∈ [ai, ci], ϕe,S(x) /∈ [a′i, c

′
i]) = 0 because of the narrow convergence of (Id, ϕσn) to

(Id, ϕe,S) and the Portmanteau theorem (indeed permutons put no mass on the boundary
of rectangles, because they have uniform marginals). So for q ≥ 1, ||ϕσn − ϕe,S||qLq ≤
εq+δ+o(1). This last quantity can be made arbitrary small by choosing first ε and δ small

enough and then n large enough. We have proven almost sure convergence of ϕσn
Lp−→ ϕe,S

in some coupling, hence the corollary. �

We end this section by considering the following property of signed excursions (g, s):

(A) ∀i 6= j, [a′j, c
′
j] ⊂ [a′i, c

′
i] =⇒ {hl : l ≥ 1, [a′l, c

′
l] ⊂ [a′i, c

′
i] and [a′j, c

′
j] ⊂ [b′l, c

′
l]}

and {hl : l ≥ 1, [a′l, c
′
l] ⊂ [a′i, c

′
i] and [a′j, c

′
j] ⊂ [a′l, b

′
l]} are dense in [hi, hj]

It is very similar to the ”order-leaf-tight” property of continuum trees defined in [2]. Loosely
said, it means that it is impossible to find a nontrivial ancestral path in the tree Tg without
a density of points both on the right and on the left where a subtree is grafted. ”left” and
”right” are understood with regard to the shuffled order ≤sg. This is crucial to the proof
of theorem 1.8. We show that it holds almost surely in our setting.

Proposition 3.7. Let g be a CRT excursion, p ∈ (0, 1) and S be a random i.i.d. sequence
of signs with bias p. Then with probability one, (g, S) verifies property (A)



ON THE BROWNIAN SEPARABLE PERMUTON 15

Proof. By symmetry we prove only the first claim and by countable union we fix i and

j. Let K = {l ≥ 1 : [al, cl] ⊂ [ai, ci] and [aj, cj] ⊂ [bl, cl]}, and K̃ = {l : l ≥ 1, [a′l, c
′
l] ⊂

[a′i, c
′
i] and [a′j, c

′
j] ⊂ [b′l, c

′
l]}. For y ∈ (hi, hj) ∩Q, consider x = sup{t ∈ [ai, aj] : g(t) = y}.

Then by definition g(x) = y and g(t) > y for t > x. Consider a sequence of leaves xn ↗ x
and the minimum bkn of g between xn and ai. Then necessarily kn ∈ K and xn < bkn < x.
So hkn → y.

Now with probability one a subsequence (k′n)n of (kn)n can be found with sk′n = ⊕ for

every n. Then lemma 3.5 implies that k′n ∈ K̃, and hk′n → y. By countable union over y

we have shown that {hl, l ∈ K̃} countains (hi, hj) ∩ Q. So it contains [hi, hj] from which
the proposition follows. �

An immediate consequence of property (A) is the following improvement on lemma 3.5,
with strict inclusions.

Lemma 3.8. Suppose (g, s) verifies (A). Let i 6= j.
If [aj, cj] ⊂ (ai, bi), then either si = ⊕ and [a′j, c

′
j] ⊂ (a′i, b

′
i), or si = 	 and [a′j, c

′
j] ⊂

(b′i, c
′
i).

If [aj, cj] ⊂ (bi, ci), then either si = ⊕ and [a′j, c
′
j] ⊂ (b′i, c

′
i), or si = 	 and [a′j, c

′
j] ⊂

(a′i, b
′
i).

If [ai, ci] ∩ [aj, cj] = ∅, then [a′i, c
′
i] ∩ [a′j, c

′
j] = ∅.

4. The support of the permuton

Theorem 1.5 follows readily from the two propositions of this section.

Proposition 4.1. For every signed excursion (g, s), µg,s has Hausdorff dimension 1 and

its 1-dimensional Hausdorff measure is ≤
√

2.

Proof. Let π1, π2 denote the two coordinate projections of the unit square. For U ⊂ [0, 1]2,
we write width(U) = supπ1(U)− inf π1(U) and height(U) = sup π2(U)− inf π2(U).

We start by showing that dimH(supp(µ)) ≥ 1. If π1 is the projection of the unit square
to its first coordinate, then π1(supp(µ)) = [0, 1], otherwise µ couldn’t have a uniform
marginal. We conclude with the following lemma, which is immediate from the definition
of Hausdorff dimension:

Lemma 4.2. If θ : (E, dE) → (F, dF ) is a contraction, then for X ⊂ E, dimH(X) >
dimH(θ(X))

To prove the upper bound, we apply lemma 3.3 for some choice of ε > δ > 0. Let I be
the set of indices provided by the lemma. Let J = {k : ∃i, j ∈ I, [ai, ci] ⊂ (ak, bk), [aj, cj] ⊂
(bk, ck)}. Let K = I t J We have the following fact, which is a direct consequence of the
nested structure of the [ai, ci].

Fact 4.3. For every i ∈ J , there exists an il ∈ K such that for every j ∈ K, [aj, cj] ⊂ [ai, bi]
implies [aj, cj] ⊂ [ail , cil ] ⊂ [ai, bi]. Similarly for every i ∈ J , there exists be an ir ∈ K such
that for every j ∈ K, [aj, cj] ⊂ [bi, ci] implies [aj, cj] ⊂ [air , cir ] ⊂ [bi, ci]. Also there exists
? ∈ J such that for every k ∈ K, [ak, ck] ⊂ [a?, c?].
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We can define the following subsets of the unit square, which we use to cover supp(µg,s):

Ai = ([ai, ail ] ∪ [cil , bi])× ([a′i, a
′
il
] ∪ [c′il , b

′
i])

∪ ([bi, air ] ∪ [cir , ci])× ([b′i, a
′
ir ] ∪ [c′ir , c

′
i]) if i ∈ J and si = ⊕

Ai = ([ai, ail ] ∪ [cil , bi])× ([b′i, a
′
il
] ∪ [c′il , c

′
i])

∪ ([bi, air ] ∪ [cir , ci])× ([a′i, a
′
ir ] ∪ [c′ir , b

′
i]) if i ∈ J and si = 	

Ai = [ai, ci]× [a′i, c
′
i] if i ∈ I

A0 = ([0, a?] ∪ [c?, 1])× ([0, a′?] ∪ [c′?, 1])

By construction and fact 4.3,
⋃
i∈K∪{0} π1(Ai) = [0, 1], and lemma 3.4 implies that for

x ∈ π1(Ai), (x, ϕg,s(x)) ∈ Ai. This one has:

(7) (Id, ϕg,s)[0, 1] ⊂
⋃

i∈K∪{0}

Ai.

The rest of the proof is devoted to rewriting the right-hand side of (7) as an union of sets in

	

	

⊕

⊕

⊕

⊕

⊕

t

ϕg,s(t)

t

g(t)

Figure 6. A0 in blue, Ai for i ∈ I in green, and Ai for i ∈ J in red.

which we control the sum of diameters. Now, for i ∈ I, diam(Ai) = diam([ai, ci]× [a′i, c
′
i]) =√

2(ci − ai). We deduce that

(8)
∑
i∈I

diam(Ai) ≤
√

2.
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For i ∈ J , Ai is the union of 8 rectangles A1
i , . . . A

8
i . We have that

8∑
j=1

width(Aji ) = 2[(ci − ai)− (cil − ail)− (cir − air)]

8∑
j=1

height(Aji ) = 2[(c′i − a′i)− (c′il − a
′
il
)− (c′ir − a

′
ir)].

And both these quantities are equal and their value is 2 Leb(π1(Ai)). Similarly, A0 is
the union of 4 rectangles A1

0, . . . , A
4
0 whose widths and heights both sum to 2 Leb(π1(A0)).

Hence
4∑
j=1

diam(Aj0) +
∑
i∈J

8∑
j=1

diam(Aji ) ≤
4∑
j=1

(width + height)(Aj0) +
∑
i∈J

8∑
j=1

(width + height)(Aji )

= 4 Leb(π1(A0)) + 4
∑
i∈J

Leb(π1(Ai))

= 4 Leb([0, 1] \
⋃
i∈I

[ai, ci]) ≤ 4δ(9)

By taking the closure and rewriting the right-hand side in eq. (7), we get

(10) supp(µg,s) ⊂ (Id, ϕg,s)[0, 1] ⊂

(⋃
i∈I

Ai

)
∪

(
4⋃
j=0

Aj0

)
∪

(⋃
i∈J

8⋃
j=1

Aji

)
Summing (8) and (9) shows that the sum of diameters in the cover (10) can’t exceed
4δ+

√
2. Moreover, each square and rectangle in the cover has diameter bounded by

√
2ε.

This implies that supp(µ) has 1-dimensional Hausdorff measure bounded above by
√

2. �

Proposition 4.4. If S is an i.i.d sequence of nondeterministic signs, then supp(µg,S) is
almost surely totally disconnected.

Proof. We re-use the notations of the last proof, with ε > δ > 0. We now show that almost
surely, we can build sets Ī ⊃ I and J̄ ⊃ J such that

(1) the statement of fact 4.3 is still true when J is replaced by J̄ and K by K̄ = Ī t J̄ ,
(2) for all i ∈ Ī, ci − ai ≤ ε,
(3) Leb([0, 1] \

⊔
i∈Ī [ai, ci]) < δ,

with the following added constraint:

(11) ∀i ∈ J, s(bir) = s(bil) 6= s(bi).

This is done by adding successively indices to I in order to create new branching points
in between two branching points of the same sign. Condsider i ∈ J and its left child il,
with si = sil = ε. We can build, as in the proof of lemma 3.3, an infinite sequence (brn)n
such that [arn , crn ] ⊂ [ai, bi] and [brk , crk ] ⊃ [ail , cil ]. Almost surely, one of the rn, which
we denote j = j(i, il), is such that sj 6= ε. We can then find, by the same reasoning, a
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k = k(j(i, il)) such that [ak, ck] ⊂ [aj, cj] and sk = ε. We proceed similarly for every i ∈ J
such that si = sir . We can now set

Ī = I ∪ {k(i, il) : i ∈ J, si 6= sil} ∪ {k(i, ir) : i ∈ J, si 6= sir}
J̄ = J ∪ {j(i, il) : i ∈ J, si 6= sil} ∪ {j(i, ir) : i ∈ J, si 6= sir}.

By construction, fact 4.3 applies to Ī and J̄ , and (11) is verified.
Now we can define the sets (Ai)i∈K̄∪{0} as in the previous proof, and we still have

suppµe,S ⊂ C =
⋃

i∈K̄∪{0}

Ai.

We will show that the diameter of any connected component of C is almost surely bounded
by 4ε+ 2δ. This is enough to show that supp(µg,S) is totally disconnected.

For x ∈ C, let us denote by C(x) the connected component of C containing x, and
for X ⊂ C, set C(X) = ∪x∈XC(x). We now set, for i ∈ Ī, Bi = C(Ai), for i ∈ J̄
Bi = C(Ai) \ C(Ail) \ C(Air), and B0 = C(A0) \ C(A∗). Then, immediate induction yields

C =
⊔

i∈K̄∪{0}

Bi.

Now remark that the sets Bi were obtained by inclusion and exclusion of full connected
components of C. Hence each connected component of C appears as a connected compo-
nent of one of the Bi, that we now consider.

It turns out (see fig. 7) that for i ∈ Ī, Bi has only one connected component, and its
diameter is bounded above by 4ε + 2δ. For i ∈ J̄ , Bi has three connected components,
whose diameter is bounded above by 2δ. For i = 0, B0 has two connected components,
and their diameter is also bounded above by 2δ. �

(a) Bi for i ∈ I, in the case
si = ⊕, i = jl for some j.

Ajr

Ajl

(b) Bj for j ∈ J , in the case
sj = ⊕, j = j′l for some j′.

A?

(c) B0, in the case s? = ⊕.

Figure 7. The proof of total disconnection.



ON THE BROWNIAN SEPARABLE PERMUTON 19

5. Self-similarity

Given a CRT excursion g and one of its branching points b , one can build three subex-
cursions by cut-and-pasting, which encode the three connected components of Tg \{pg(b)}.
The goal of this section is do the same procedure on signed excursions, and observe the
consequences on the associated permutons. This will allow us to prove theorem 1.6 in a
”reversed” fashion: we start from µ, build µ1, µ2 and µ3 by cutting along a suitably chosen
branching point, as to be able to use a result of Aldous [3] and identify the distribution
and relative sizes of the subexcursions.

Let (g, s) be a signed excursion. Given ı̄ ∈ N, we can obtain 3 excursions by looking at
the values of g on [aı̄, bı̄], [bı̄, cı̄] and [0, aı̄] t [cı̄, 1]. More precisely, following [3], we define

(12) ∆0 = 1− cı̄ + aı̄,∆1 = bı̄ − aı̄,∆2 = cı̄ − bı̄, X0 =
aı̄
∆0

, Y0 =
a′ı̄
∆0

, β = sı̄.

Given these constants, we can define the contractions θk, ηk, ζk for k ∈ {0, 1, 2}, as in (2),
and

(13) gk =
1√
∆k

g ◦ ηk, k ∈ {0, 1, 2}.

Because each ηk is a piecewise affine function, it pulls back the strict local minima of g
that are in the interior of Im(ηk) onto strict local minima of gk. This is made explicit in
the following result:

Proposition 5.1. For k ∈ {0, 1, 2}, there is an injective map ϑk : N→ N, such that

∀i ∈ N, ηk(bi(gk)) = bϑk(i)(g).

Moreover, the ϑk(N), for k ∈ {0, 1, 2}, form a partition of N\{ı̄}. Finally, for k ∈ {0, 1, 2},
the map (g, ı̄, i) 7→ ϑk(i) is measurable.

Proof. We set ϑk(i) = min{j ∈ N : ηk(bi(gk)) = bj(g)}, and the measurability claim follows
from measurability of (i, g) 7→ bi(g), (̄ı, g) 7→ ηk and (̄ı, g) 7→ gk. The other claims are
immediate by construction and from the definition of a measurable enumeration. �

We can now transport the signs of g onto signs of the gk by setting ski = sϑk(i) for
k ∈ {0, 1, 2} and i ∈ N. A result of this construction is the following crucial observations:

Observation 5.2. For x < y ∈ [0, 1], and k ∈ {0, 1, 2}, x�s
gk
y if and only if ηk(x) �s

g ηk(y).

Observation 5.3. The map (g, ı̄, (si)i∈N) 7→ ski is measurable for every i ∈ N and k ∈ {0, 1, 2}
Now we want to use lemma 3.4 to show that our function ϕg,s can be cut out into rescaled

copies of ϕgk,sk , which translates immediately in termes of measures.

Proposition 5.4. For ı̄ ∈ N, k ∈ {0, 1, 2} and t ∈ [0, 1],

(14) ϕg,s ◦ ηk(t) = ζk ◦ ϕgk,sk(t).
As a consequence,

µg,s =
2∑

k=0

∆k · (θk∗µgk,sk).



ON THE BROWNIAN SEPARABLE PERMUTON 20

Proof. Let us prove (14) for k = 0.

ϕg,s(η0(t)) = Leb{x ∈ [0, aı̄) ∪ (cı̄, 1] : x�s
g η0(t)}+ 1[aı̄ �s

g t](cı̄ − aı̄)
= Leb{x ∈ [0, aı̄) ∪ (cı̄, 1] : x�s

g η0(t)}
+ (cı̄ − aı̄)1

[
Leb{x ∈ [0, aı̄) ∪ (cı̄, 1] : x�s

g η0(t)} > a′ı̄
]

=∆0 Leb{y ∈ [0, 1] : y �s0

e0
t}+ (1−∆0)1

[
∆0 Leb{y ∈ [0, 1] : y �s0

e0
t} > ∆0Y0

]
=ζ0(ϕe0,s0(t))

Where the first two equalities come from lemma 3.4 and the third is the result of the change
of variable x = η0(y). Now, for k = 1,

ϕg,s(η1(t)) = a′ı̄ + (b′ı̄ − a′ı̄)1[sı̄ = 	] + Leb{x ∈ [aı̄, bı̄] : x�s
g η1(t)}

= ∆0Y0 + ∆2β + (bı̄ − aı̄) Leb{y ∈ [0, 1] : y �s1

g1
t}

= ζ1(ϕg1,s1(t))

where the first equality comes from lemma 3.4 and the second is the result of the change
of variable x = η1(y). The case k = 2 is similar. �

This is all we need to show theorem 1.6.

Proof of theorem 1.6. If e is an Brownian excursion, and Xl < Xr are reordered uniform
independent random variables in [0, 1], independent of e, then almost surely there is a ı̄
such that bı̄ = argmin[Xl,Xr]

e. Define ∆0,∆1,∆2, X0, Y0, β as in (12). This allows us to

define the θk as in (2) and the ek, s
k as before.

A result of Aldous [3, cor. 5] states that e0, e1, e2 are Brownian excursions, (∆0,∆1,∆2)
is a Dirichlet(1

2
, 1

2
, 1

2
) partition of 1, and X0 is uniform in [0, 1], all these random variables

being independent.
Now, as a consequence of observation 5.3, for k ∈ [0, 1] and i ∈ N, Ski is a random

variable. Given e and ı̄, the Sk for k ∈ [0, 1] and β are permutations of disjoint subsequences
of S. As a result, the Sk and β are independent (and independent of (e,Xl, Xr)), and
distributed as i.i.d. sequences of signs of bias p.

We finally set µk = µek,Sk for k ∈ {0, 1, 2} and need only prove

(15) Y0 = ϕe0,S0(X0) a.s.

to show that the collection of random variables ((∆k)k∈{0,1,2}, (µk)k∈{0,1,2}, (X0, Y0), β) has
the joint distribution assumed in theorem 1.6. Proposition 5.4 then yields the theorem.
Let us now prove (15).

∆0Y0 = a′i = Leb{x ∈ [0, ai) ∪ (ci, 1) : x ≤Se ai} = ∆0 Leb{y ∈ [0, 1] : y ≤S0
e0
η−1

0 (ai)}
= ∆0 Leb{y ∈ [0, 1] : y ≤S0

e0
X0} = ∆0ϕe0,S0(X0). �

Remark 5.5. As seen in the proof, theorem 1.6 is a direct consequence of the self-similarity
property of the Brownian CRT [3, thm. 2]. It was shown [1] that this property actually
characterizes the Brownian CRT in the space of measured R-trees. We believe that the
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arguments of Albenque and Goldschmidt can be transposed in our setting, to show that
the law of µp is the only distribution on permutons which verifies (3). The main reason
backing that claim is the following: permutons are characterized by their finite-dimensional
marginals, just like measured R-trees are determined by their reduced trees (see section 3
in [1]).

6. Expectation of the permuton

In this section we shall compute the density function of the averaged permuton Eµp for
p ∈ (0, 1). We know that µp = µe,S, where e is a normalized Brownian excursion and S
is an independent sequence of i.i.d. signs with bias p. Since for fixed (g, s), the measure
µg,s is the distribution of the random pair (U,ϕg,s(U)) with U uniform in [0, 1], then by
Fubini’s theorem, we get the following:

Lemma 6.1. Eµp is the distribution of the random pair (U,ϕe,S(U)), where e is a nor-
malized Brownian excursion, S is an independent sequence of i.i.d. signs with bias p, and
U is uniform, those three random variables being independent.

Let (Bt)0≤t≤1 be a normalized Brownian bridge between 0 and 0. Define its local time

at 0 as follows: for t ∈ [0, 1], set Lt = limε→0
1
2ε

∫ t
0
10≤|Bs|≤ε ds in probability. Define also

its right-continuous inverse (Tl)l≥0.
We set ∆Tl = Tl − Tl− for l ≥ 0. We suppose that each l ≥ 0 such that ∆Tl > 0 is

equipped with an independent sign εl with bias p. We will use a result of Bertoin and
Pitman [8] to rewrite the measure Eµp as the distribution of some functional of B.

Lemma 6.2. The measure Eµp is the distribution of
(

P1+P2

P1+P2+P3+P4
, P1+P4

P1+P2+P3+P4

)
, where

(16)
P1 =

∑
l<L1/2,εl=⊕∆Tl, P2 =

∑
l<L1/2,εl=	∆Tl

P3 =
∑

l>L1/2,εl=⊕∆Tl, P4 =
∑

l>L1/2,εl=	∆Tl

Proof. We will build a suitable coupling of (e, S, U) on one hand, and (B, ε) on the other
hand. Start with the bridge B, and set U = TL1/2. Define (Kt)0≤t≤1 as follows: Kt = Lt
for 0 ≤ t ≤ U and Kt = L1 − Lt when U ≤ t ≤ 1. Theorem 3.2 of [8] tells us that if we
set e = K + |B|, then (e, U) is distributed as a Brownian excursion with an independent
uniform variable in [0, 1]. Moreover, the following holds almost surely: for 0 ≤ t ≤ U ,
Kt = inft≤s≤U es and for U ≤ t ≤ 1, Kt = infU≤s≤t es. Finally let S be a sequence of i.i.d.
signs with bias p, independent of (B, e, U). The triple (e, S, U) has the desired distribution.
We can transfer some of the signs of S to form the marking process (εl)l≥0,∆l>0. First remark
that almost surely, U is not a one-sided local minimum of e. For l ≥ 0 such that ∆Tl > 0,

• either l < L1/2 and then Tl− < Tl < U , in which case Tl is an inner local minimum
bıl of e for some ıl ∈ N. We then set εl = Sıl .
• either l > L1/2 and then Tl− < Tl < U , in which case Tl− is an inner local minimum
bıl of e for some ıl ∈ N. We then set εl = Sıl .
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The sequence (ıl)l:∆Tl>0 is a random injection into N that solely depends on B. So con-
ditional on B, the signs in (εl)l:∆Tl>0 are i.i.d. and of bias p. Then (B, ε) has the desired
distribution.

We now show that in this coupling we have the almost sure equality (U,ϕe,S(U)) =(
P1+P2

P1+P2+P3+P4
, P1+P4

P1+P2+P3+P4

)
. Then lemma 6.1 implies the present lemma. If we define

P̂1 = Leb{t : 0 ≤ t ≤ U, t�S
e U}, P̂2 = Leb{t : 0 ≤ t ≤ U, t�S

e U},

P̂3 = Leb{t : U ≤ t ≤ 1, t�S
e U}, P̂4 = Leb{t : U ≤ t ≤ 1, t�S

e U},

then it is immediate that almost surely, P̂1 + P̂2 + P̂3 + P̂4 = 1, P̂1 + P̂2 = U and P̂1 + P̂4 =
ϕe,S(U). Now we need only show that the Pi = P̂i for 1 ≤ i ≤ 4. For instance for i = 1,
we need to observe that t ∈ [0, 1] is such that t < U and t �S

e U if and only if there is
a bi ∈ (t, U) such that bi is the unique minimum of e on [t, U ] and Si = ⊕. Such bi is
necessarily equal to Tl for some l < L1/2 such that Tl− < t < Tl, and then Si = εl. We
have shown the following logical equivalence for t ∈ [0, 1]:

t ≤ U and t�S
e U ⇐⇒ ∃ l < L1/2 s.t. Tl− < t < Tl and εl = ⊕.

Taking the Lebesgue measure on both sides yields P̂1 = P1. For i = 2, 3, 4, the proof is
symmetric. �

Let U be the set of continuous excursions of variable length, with R : U → R+ denoting
the length statistic. Let N be the It excursion measure of Brownian motion. For θ ≥ 0,
define the measure Λθ(dr) = e−θrN(R ∈ dr). Denote by (Xθ

l )l≥0 the process of sums up to
time l of a Poisson point process of intensity dtΛθ. This is a well-defined process because∫

Λθ(dr)(r ∧ 1) is finite. We can state the following rewriting of the distribution Eµp.

Lemma 6.3. For any θ > 0, Eµp is the distribution of
(

P1+P2

P1+P2+P3+P4
, P1+P4

P1+P2+P3+P4

)
, where

conditional on a random variable λY with exponential distribution of parameter
√

2θ, we

define the variables P1, P2, P3 and P4 to be independent with P1
d
= P3

d
= Xθ

pλY /2
and

P2
d
= P4

d
= Xθ

(1−p)λY /2.

Proof. Let us reuse the notations of lemma 6.2. We make use of the results of Perman and
Wellner [19], which show that the most tractable object in terms of its excursions is not
the normalized Brownian bridge, but the random-length bridge (βt)t≥0 defined as follows:

βt = 10≤t≤Y
√
Y Bt/Y where Y is a random variable of distribution Γ(1/2, θ) independent

of B. Its local time λ, inverse local time τ and jump process ∆τ are related to those of
B by λt =

√
Y Lt/Y , τl = Y Tl/

√
Y and ∆τl = Y∆Tl/

√
Y . The marking process ε can be

modified accordingly by setting εl = εl/
√
Y for l ≥ 0 such that ∆τl > 0.

Now if we set
P1 =

∑
l<λ1/2,εl=⊕∆τl, P2 =

∑
l<λ1/2,εl=	∆τl

P3 =
∑

l>λ1/2,εl=⊕∆τl, P4 =
∑

l>λ1/2,εl=	∆τl

then by construction,
(

P1+P2

P1+P2+P3+P4
, P1+P4

P1+P2+P3+P4

)
=
(

P1+P2

P1+P2+P3+P4
, P1+P4

P1+P2+P3+P4

)
.
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We now have to identify the joint distribution of the Pi. It results from [19, thm 1

and 4] that λY is distributed as an exponential random variable of parameter
√

2θ, and
that, conditional on λY , the excursions of β away from 0, parametrized by the local time,
form a Poisson point process of intensity dle−θR(w)N(dw) over [0, λY ]×U . The random set
{(l,∆τl), l ≥ 0,∆l > 0}, which is just the point process of excursion lengths, is then also
Poisson with intensity dlΛθ(dt) over [0, λY ]×R+. This results from the mapping property
of Poisson processes. Now, since the marking process (εl)l≥0 is a choice of i.i.d. marks,
chosen independent of B, the marking property of point processes [16, sect. 2.3] tells us
that {(l,∆τl, εl), l ≥ 0,∆l > 0} is itself a Poisson process of intensity dlΛθ(dt)(pδ⊕ + (1−
p)δ	)(dε) over [0, λY ]× R+ × {⊕,	}.

Since they are functionals of the same Poisson process restricted to disjoint subsets, the
processes {∆τl, 0 ≤ l ≤ λY /2,∆l > 0, εl = ⊕}, {∆τl, 0 ≤ l ≤ λY /2,∆l > 0, εl = 	},
{∆τl, λY /2 ≤ l ≤ λY ,∆l > 0, εl = ⊕} and {∆τl, λY /2 ≤ l ≤ λY ,∆l > 0, εl = 	},
are independent. Moreover, by the mapping property, they are themselves Poisson, with

respective intensity measures pλY
2

Λθ(dr),
(1−p)λY

2
Λθ(dr),

pλY
2

Λθ(dr) and (1−p)λY
2

Λθ(dr). The
lemma follows. �

Proof of theorem 1.7. By a classical argument using Girsanov’s theorem2, Xθ
l is distributed

as the hitting time of level l by a Brownian motion with positive drift θ, hence its density

is d
dt
P(Xθ

l ∈ dt) = yθl (t) = 1t≥0
e−θt l e−l

2/(2t)

e−
√

2θl
√

2πt3
(see [10, ch. II.1, eq. 2.0.2]).

Then, going back to the notations of lemma 6.3, the joint density of (P1,P2,P3,P4) at
(t1, t2, t3, t4) ∈ (R+)4 equals∫ ∞

0

dλ
√

2θe−
√

2θλyθpλ/2(dt1)yθ(1−p)λ/2(dt2)yθ(1−p)λ/2(dt3)yθpλ/2(dt4)

=

√
2θp2(1− p)2

24(
√

2π)4

e−θ(t1+t2+t3+t4)

(t1t2t3t4)3/2

∫ ∞
0

λ4e
−λ2/2

(
p2

4t1
+

(1−p)2
4t2

+ p2

4t3
+

(1−p)2
4t4

)
dλ

=

√
2θp2(1− p)2

24(
√

2π)4

e−θ(t1+t2+t3+t4)

(t1t2t3t4)3/2

3
√

2π

2
(
p2

4t1
+ (1−p)2

4t2
+ p2

4t3
+ (1−p)2

4t4

)5/2
.

Now we define the random variables S = P1 +P2 +P3 +P4, Q = P1/S, U = (P1 +P2)/S
and V = (P1+P4)/S. According to lemma 6.3, Eµp is the distribution of the pair (U, V ). It
follows from the Lebesgue change of variables theorem that the joint density of (S,Q, U, V )
at (s, q, u, v) ∈ (R+ × R+ × [0, 1]× [0, 1]) is equal to

s3 1max(0,u+v−1)≤q≤min(u,v)
3
√

2θp2(1−p)2
25(
√

2π)3
e−θs

(sq s(u− q) s(1− u− v + q) s(v − q))3/2
(
p2

4sq
+ (1−p)2

4s(u−q) + p2

4s(1−u−v+q)
+ (1−p)2

4s(v−q)

)5/2
,

2It also follows from Campbell’s formula [16, sect. 3.2] and [10, ch. II.1, eq. 2.0.1]
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which we rewrite as(√
θe−θs√
π
√
s

)
3p2(1−p)2

2π
1max(0,u+v−1)≤q≤min(u,v)

(q(u− q)(1− u− v + q)(v − q))3/2
(
p2

q
+ (1−p)2

(u−q) + p2

(1−u−v+q)
+ (1−p)2

(v−q)

)5/2
.

Now we get the joint distribution of (U, V ) by integrating with respect to s and q, which
immediately yields theorem 1.7. �

7. Shuffling of continuous trees

The goal of this section is to build, from a signed excursion (g, s), a shuffled excursion fg,s,
that verifies the conclusions of theorem 1.8 after setting ẽ = fe,S. This will not be possible
for every choice of deterministic signed excursion, but we will show that it is possible for
signed excursions with property (A), which is the case of (e, S) with probability 1.

We start from the following observation: for every CRT excursion g, if we define the
ai, bi, ci, hi as before, then by density of the branching points it is easy to see that

g(t) = sup
i
hi 1[ai,ci](t).

Hence, given a sequence of signs s, which provides us the numbers a′i, b
′
i, c
′
i, it is natural to

define a shuffled version as such:

fg,s(t) = sup
i
hi 1[a′i,c

′
i]
(t)

The map (g, s, t) 7→ fg,s(t) is measurable because the g(ai), a
′
i and c′i are measurable

functions of g and s.
From now on, we will drop the dependency in (g, s) in the proofs. So we set f = fg,s

and ϕ = ϕg,s. The first step is to show that f is continuous whenever (g, s) verifies (A).
We start with two lemmas. Let ω(g, δ) stand for the modulus of continuity of g at radius
δ.

Lemma 7.1. For a′k ≤ u ≤ b′k, hk ≤ f(u) ≤ hk + ω(g, b′k − a′k).
For b′k ≤ u ≤ c′k, hk ≤ f(u) ≤ hk + ω(g, c′k − b′k).

Proof. The two claims are symmetric, thus only the first is proved. Recall that f(u) =
sup[a′i,c

′
i]3u

hi and suppose u ∈ [a′k, b
′
k]. For i such that [a′i, c

′
i] 3 u, either hi ≤ hk, or hi > hk.

In the latter case, [a′i, c
′
i] ⊂ [a′k, b

′
k]. Hence |ai−bk| < |b′k−a′k|, and hi−hk = g(ai)−g(ak) ≤

ω(g, bk − ak) = ω(g, b′k − a′k).
This shows that for every i such that [a′i, c

′
i] 3 u, hi < hk + ω(g, b′k − a′k) Taking the

supremum gives the claim of the lemma. �

Lemma 7.2. The b′i, for i ∈ N, are dense in [0, 1].

Proof. The leaves of g are of full Lebesgue measure. If x and y are leaves, there is a i such
that ai < x < bi < y < ci. As a result of lemma 3.4, b′i must lie between ϕ(x) and ϕ(y).
Since ϕ is measure-preserving, the images of leaves of g by ϕ are of full measure, and hence
dense in [0, 1]. So the b′i are dense. �
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Proposition 7.3. Under (A), the function f is continuous.

Proof. Let t be in [0, 1] and δ > 0. By lemma 7.2, we can find b′i < t < b′j with (b′j−b′i) ≤ δ.
Let k be the most recent common ancestor of i and j, so that b′i < b′k < b′j. We shall show
that there is a continuous function f such that for u ∈ [b′i, b

′
j],

(17) f(u) ≤ f(u) ≤ f(u) + ω(g, δ)

Which is enough, since δ was arbitrary, to show continuity in t. We build f and show (17)
on [b′k, b

′
j] only. The interval [b′i, b

′
k] can be treated with a symmetric proof.

Set f : [b′k, b
′
j]→ R+, with

f = sup{hl 1[a′l,c
′
l]
| l : [a′k, c

′
k] ⊃ [a′l, c

′
l] ⊃ [a′j, c

′
j]}.

Clearly, f ≤ f . It is also clear that f is increasing from hk to hj, because the indicator
functions are nested and hl increases as a′l decreases. Lemma 3.8 implies that the a′l are all
distinct, while property (A) implies that the hl are dense in [hk, hj]. This implies continuity
of f .

Now we shall show (17) for u in [b′k, b
′
j].

Case 1: for every l s.t. u ∈ [a′l, c
′
l], we have [a′l, c

′
l] ⊃ [a′j, c

′
j]. Then f(u) = f(u).

Case 2: there exists l s.t. x ∈ [a′l, c
′
l] and [a′l, c

′
l] + [a′j, c

′
j]. Then consider the most recent

common ancestor m of l and j. Necessarily,

b′k < a′m < a′l < u < c′l < b′m < a′j < c′j < c′m.

Then lemma 7.1 gives hm ≤ g(u) ≤ hm + ω(g, δ). It is clear that hm = f(u), proving
(17). �

Now that we have shown that f is continuous, it becomes possible to define the distance
df on [0, 1] and the structured real tree Tf .
Proposition 7.4. Under (A), we have g = f ◦ ϕ, and furthermore, ϕ is a ([0, 1], dg) →
([0, 1], df ) isometry.

Proof. Let t ∈ [0, 1]. To show g(t) = f(ϕ(t)) it is enough to see that

(18) {k : t ∈ [ak, ck]} = {k : ϕ(t) ∈ [a′k, c
′
k]}.

because e(t) and f(ϕ(t)) are just the respective suprema of i 7→ hi over these two sets. If
k is such that t ∈ [ak, ck], then by lemma 3.4, ϕ(t) ∈ [a′k, c

′
k]. If on the other hand k is

such that t /∈ [ak, ck], by symmetry suppose t < ak. It is then possible to find i such that
t < ai < ak < ck ≤ ci. Then lemmas 3.4 and 3.8 imply that ϕ(t) /∈ [a′k, c

′
k].

Now to show that ϕ is a (dg, df ) isometry, we need only show that for x < y,

min
[x,y]

g = min
[ϕ(x),ϕ(y)]

f.

Case 1: min[x,y] g = g(x). Then for every i, x ∈ [ai, ci] implies y ∈ [ai, ci]. So ϕ(x) ∈ [a′i, c
′
i]

implies ϕ(y) ∈ [a′i, c
′
i] and then [ϕ(x), ϕ(y)] ⊂ [a′i, c

′
i]. The definition of f then yields

f(t) ≥ f(ϕ(x)) for every t ∈ [ϕ(x), ϕ(y)]. Hence

min
[ϕ(x),ϕ(y)]

f = f(ϕ(x)) = g(x) = min
[x,y]

g.
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Case 2: min[x,y] g = g(y). This case is similar by symmetry.
Case 3: min[x,y] g = bi for some bi ∈ (x, y). Then we conclude immediately by applying
case 2 on [x, bi] and case 1 on [bi, y]. �

Proposition 7.5. The random continuous function fe,S has the distribution of a Brownian
excursion with the same local times at 1 as e.

Proof. The claim on the local times is an immediate consequence of the fact that for every
y ≥ 0, Leb{t, fg,s(t) ≤ y} = Leb{t, fg,s(ϕg,s(t)) ≤ y} = Leb{t, g(t) ≤ y}.

To show that the random continuous functions e and f = fe,S have the same distribution,
we shall show that for every k ≥ 1, if U(1) < . . . < U(k) are reordered uniform variables in
[0, 1], independent of e, S, then

(19) (e(U(1)), . . . , e(U(k)))
d
= (f(U(1)), . . . , f(U(k))).

Deriving e
d
= f from there is classical, see for instance the end of the proof of the direct

implication of [2, thm. 20].
Let us consider U(1) < . . . < U(k) the order statistics of k uniform random variables in

[0, 1], independent of e, S. Set Vi = ϕ(U(i)) for every 1 ≤ i ≤ k. Then there exists α ∈ Sk

such that W1 = Vα(1) < . . . < Vα(k) = Wk. Since ϕ preserves the Lebesgue measure,
(W1, . . . ,Wk) has the distribution of the order statistic of k uniform variables.

We consider the marked trees, as per the definition of [17, sect. 2.5], associated to a CRT
excursion and a finite number of points. For any set t = (t1 < . . . < tk) of leaves of g,
θ(g; t) is built from the tree τ(g; t) by adding edge-lengths compatible with the distances
in the tree Tg. Since the root of τ(g; t) has a positive height, a new root ∅ is added below
it. It is characterized (among plane trees with edge-lengths up to isomorphism) by the
following fact:

(20) dθ(g;t)(`i, `j) = dg(ti, tj), dθ(g;t)(∅, `i) = g(ti),

where dθ(g;t) denotes the graph distance, taking edge-lengths into account, and in any plane
tree `1, . . . , `k is an enumeration of the leaves in the natural ordering.

Let T = θ(e; U), and let T̃ be obtained from T by inverting the order of the children at
each branching point corresponding to a bi where the sign si is a 	. By definition there

is an isomorphism of rooted trees with edge-lengths T̃ ↔ T . This isomorphism necessarily

permutes the leaves: set β ∈ Sk such that `i(T̃ ) ↔ `β(i)(T ). Then by construction β is
such that ϕe,S(Uβ(1)) < . . . < ϕe,S(Uβ(k)). We deduce β = α, and hence

dT̃ (`i, `j) = dT (`α(i), `α(j)) = de(Uα(i), Uα(j)) = df (ϕ(Uα(i)), ϕ(Uα(j))) = dθ(f ;W)(`i, `j)

dT̃ (`i, ∅) = dT (`α(i), ∅) = g(Uα(i)) = g(Wi) = dθ(f ;W)(`i, ∅).

So T̃ = θ(f,W).

Finally we consider the distribution of T̃ . Theorem 2.11 of [17] tells us that the structure
of T is that of a uniform planted binary tree with k leaves, and the edge-lengths are
exchangeable. So an independent shuffling of T is still distributed like T , and this is the
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case of T̃ . We deduce θ(e; U) = T
d
= T̃ = θ(f ; W). From there, (20) implies that we can

recover (19). �

Now theorem 1.8 follows from propositions 3.7 and 7.3 to 7.5, after setting ẽ = fe,S.
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[15] Carlos Hoppen, Yoshiharu Kohayakawa, Carlos Gustavo Moreira, Balzs Rth, and Rudini Menezes

Sampaio. Limits of permutation sequences. Journal of Combinatorial Theory, Series B, 103(1):93 –
113, 2013.

[16] J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in Probability. Oxford University
Press, New York, 1993.

[17] Le Gall, Jean-Fran cois. Random trees and applications. Probab. Surveys, 2:245–311, 2005.
[18] Erik Ouchterlony. Pattern avoiding doubly alternating permutations. In Proceedings of FPSAC 2005,

2005.



ON THE BROWNIAN SEPARABLE PERMUTON 28

[19] Mihael Perman and Jon A. Wellner. An excursion approach to maxima of the Brownian bridge.
Stochastic Processes and their Applications, 124(9):3106 – 3120, 2014.

[20] Armand Riera. personal communication.
[21] Louis Shapiro and A. B. Stephens. Bootstrap percolation, the Schröder numbers, and the N -kings
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