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Classes of permutation and pattern-avoidance

Example: Av(321) can be drawn on (MacMahon 1915),
Av(231) stack-sortable permutations (Knuth 1968),
Av(2413, 3142): separable permutations, Av(321, 2143, 2413)
are riffle shuffle permutations, ...

Permutation class: set of permutations closed under pattern
extraction. Can always be written as Av(B), the set of
permutations that avoid patterns in some basis B.

What does a large permutation in a class look like?



Av(231) Av(4321)Sn

Av(4231) Av(2413, 3142, 2143, 34512) Av(2413,3142)

(E. Slivken)

(Madras-Yildrim) ={separables}
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Permutons
A permuton is a
probability measure
on [0, 1]2 with both
marginals uniform.

1
2

4
4

=⇒ compact metric space (with weak convergence).

1 n 0 1
0

1

1

n
density 0

density n

σ µσ

Permutations of all sizes are densely embedded in
permutons.



The Brownian limit of separable permutations
σn uniform of size n in C = Av(2413, 3142) = {separables}:
Theorem (Bassino, Bouvel, Féray, Gerin, Pierrot 2016)
σn converges in distribution to some random permuton µ,
called the Brownian separable permuton.



The main theorem.

Theorem (BBFGMP 2019)
Many other classes of permutation converge also to the
Brownian permuton, or a 1-parameter deformation. Those
behave nicely under the so-called
"substitution-decomposition" (precise statement later)



The main theorem.
Theorem When C =
Av(31452, 41253, 41352, 531642, 25413, 35214, 25314, 246135),
µσn also converges to the Brownian permuton.
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The main theorem.
Theorem: When C = Av(2413, 1243, 2341, 531642, 41352),
µσn converges to a deterministic V-shape.

x

x ≈ 0.818632668576995 is the only real root of
19168x5 − 86256x+155880x3 − 141412x2 + 64394x− 1177



Part 1 - the proof method
(illustrated on the case of separable permutations)
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0 - General idea and limit object

Separable permutation
perm(τ) = (1 2 10 7 6 5 8 9 4 3)

⊕

⊕
	

	

Alternating-signs Schröder tree

Counted by large Schröder numbers
1, 2, 6, 22, 90, 394, 1806, 8558, . . . � (3 +

√
8)nn−3/2
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Many "nice" models of random trees (tn)n where n is the
size, converge to (a multiple of) the Brownian CRT when
distances are rescaled by

√
n. More precisely, if Cn is the

contour function of tn, for some constant c > 0, cn−1/2Cn
converges in distribution to the normalized Brownian
excursion.
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0 1 t

cn−1/2Cn(t)

d−−−→
n→∞

0 1

e(t)

t

Leaf-counted Schröder trees are (critical, finite-variance)
BGW trees conditioned on the number of leaves and fall in
this category (Kortchemski ’12, Pitman-Rizzolo ’12)



0 - General idea and limit object

0 1 t

cn−1/2Cn(t)

d−−−→
n→∞

0 1

e(t)

t−
+

−
+ +

+

− −

+

The main point: signs at macroscopic branching points
become independent as the tree gets larger. This tells us
how the corresponding permutation looks like in the large
scale.
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0 - General idea and limit object

x

e(x)

ϕ(x)

−
−
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e Brownian excursion, S i.i.d.
balanced signs indexed by the
local minima of e.
Define a shuffled pseudo-order
on [0, 1]: x CS

e y if and only if

x y⊕ y x	
or

ϕ(t) = Leb({u ∈ [0, 1], u CS
e t})

is the only (up to a.e. equality)
Lebesgue-preserving function
sending ≤ to CS

e

Then µ = (id, ϕ)?Leb is the
Brownian separable permuton
(M. 2017) x
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I - Permuton convergence and patterns

Theorem (Hoppen et. al. ’2013, BBFGMP ’2017)
The random permutons (µσn) converge in distribution to µ

iff for every k, permk(σn)
d−−−→

n→∞
permk(µ).

For σ ∈ Sn and k ≤ n, permk(σ) is a uniform
subpermutation of length k in σ.

This notion is extended to permutons: permk(µ) is the
random permutation that is order-isomorphic to an i.i.d.
pick according to µ.
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II - Patterns and the tree encoding

Consider a uniform k-reduced tree of a Schröder tree of size
n. Here k = 3.

tn

Ik
n

What does it look like as n→ ∞?

⊕

tn |In patIn
(σn)

⊕

A subpermutation of σn can be read on a reduced tree of tn
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III - Patterns in the Brownian permuton

x

e(x)

ϕ(x)

− +−

bk

Hence permk(µ)
has the distribution
of perm(bk) where
bk is a uniform
signed binary tree
with k leaves.

Reduced trees of the Brownian
excursion are uniform binary
trees (Aldous ’93, Le Gall ’93)



Summing up

Fix a signed binary tree τ with k leaves. We need only show
that

#{Schröder trees of size n with k marked leaves inducing τ}
#{Schröder trees of size n with k marked leaves}

converges to

P(bk = τ) =
1

2k−1Catk−1
.



IV - Analytic combinatorics
Let (an)n be a nonnegative sequence and A(z) = ∑n anzn its
generating function of radius ρ
Transfer Theorem (Flajolet & Odlyzko) If
• A is defined on a ∆-domain at ρ > 0 (e.g. is algebraic)
• A(z) =

z→ρ
g(z) + (C + o(1))(ρ− z)δ with g analytic,

δ /∈N,
then an =

n→∞
( C

Γ(−δ)
+ o(1))ρ−nn−1−δ

Proposition (Singular differentiation) Under the same
hypotheses, A′(z) =

z→ρ
g′(z) + δ(C + o(1))(ρ− z)δ−1
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schema).
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Analytic combinatorics for leaf-counted trees
Recall: nice trees converge to the Brownian CRT.
Recursive trees counted by number of leaves.
T(z) = z + F(T(z)) (Schröder: F(t) = ∑k≥2 tk).

In this case, "very nice" if
∃ 0 < u < RF, F′(u) = 1.
Then T is ∆-analytic at ρ
with T(ρ) = u and a
square-root singularity
(smooth implicit function
schema).

F(t)

tu

z

T(z)

u

ρ

This is the case for Schröder
(F rational)



Uniform k-subtree in large unsigned trees
T has square-root singularity at ρ and F analytic at T(ρ).
Then, the g. f of trees with k marked leaves that induce the
k-tree τ is

zkT′(z) ∏
v internal node of τ

T′(z)deg(v) 1
deg(v)!

F(deg(v))(T(z))
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Uniform k-subtree in large unsigned trees
T has square-root singularity at ρ and F analytic at T(ρ).
Then, the g. f of trees with k marked leaves that induce the
k-tree τ is

zkT′(z) ∏
v internal node of τ

T′(z)deg(v) 1
deg(v)!

F(deg(v))(T(z))

∼ρ Cτ(ρ− z)−#{nodes in τ}/2.
Dominates when τ binary.
(Then Cτ doesn’t depend on
τ).
Transfer: tn |Ik

n
converges in

distribution to a uniform
binary tree.

τ

F(3)

3! (T)

zT′

T′

zT′ zT′
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adding parity constraints on the height of the marked leaf
in the marked trees.
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Replace instances of T′ by T′0 (even height) or T′1 (odd
height). T′0 + T′1 = T′ and T′1 = F′(T)T′0, so T′0 ∼ T′1 ∼

1
2 T′.

g.f. of Trees with k marked leaves that induce the signed
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zk(T′0 + T′1)T
′
0

bT′1
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v internal node of τ

1
deg(v)!

F(deg(v))(T(z))

where a (resp. b) is the number of edges of τ incident to two
nodes of the same (resp. different) signs



Uniform k-subtree in large signed trees
Counting signed trees that induce a given signed tree τ:
adding parity constraints on the height of the marked leaf
in the marked trees.
Replace instances of T′ by T′0 (even height) or T′1 (odd
height). T′0 + T′1 = T′ and T′1 = F′(T)T′0, so T′0 ∼ T′1 ∼

1
2 T′.

g.f. of Trees with k marked leaves that induce the signed
k-tree τ :

zk(T′0 + T′1)T
′
0

bT′1
aT′k ∏

v internal node of τ

1
deg(v)!

F(deg(v))(T(z))

where a (resp. b) is the number of edges of τ incident to two
nodes of the same (resp. different) signs

Hence all signed binary trees have the same asymptotic
probability, what whe needed for permuton convergence.
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Substitution decomposition
For σ ∈ Sk, ρ1, . . . , ρk ∈ S, define σ[ρ1, . . . , ρk] by replacing
the i-th dot in σ by πi.
Example : 132[21, 312, 2413] = 219784635.

Given σ, either :

• We can find a proper interval mapped to an interval,
and then σ can be written as a substitution of smaller
permutations

• Or σ can’t be decomposed by a nontrivial substitution :
σ is a simple permutation. Ex :
1, 12, 21, 2413, 3142, 31524, ... ∼ n!

e2 .

⊕ and 	 are just substitutions into
increasing and decreasing permutations
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Substitution decomposition

(8, 10, 9, 2, 11, 1, 4, 7, 3, 6, 5)

42513

2413⊕
		

Theorem (Albert, Atkinson 2005):
Any permutation can be
decomposed into a substitution
tree with nodes labeled by simple
permutations, unique as long as
no ⊕ is the left child of a ⊕ (same
for 	)
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Study classes using substitution
S ⊂ {simple permutations }.
S̃ = {permutations built by substituting simples of S}.

Proposition: Let C = Av(B) be a class. Then C ⊂ S̃C where
SC is the set of simple permutations in C.
When B has only simples, then C = S̃C . We say that C is
substitution-closed.

This is the case of the separable permutations

Av(2413, 3142) = {̃⊕,	}.
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→ system of equations on the generating functions of the
specified families, made of analytic functions with
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→ a Boltzmann sampler for the class.



Specifications
A substitution-closed-class T has the following
specification:

T = {•} ⊎ ⊕[T not⊕, T ] ⊎ 	[T not	, T ] ⊎ (⊎π∈ST ,|π|≥4 π[T , . . . , T ]
)

T not⊕ = {•} ⊎ 	[T not	, T ] ⊎ (⊎
π∈ST ,|π|≥4 π[T , . . . , T ]

)
T not	 = {•} ⊎ ⊕[T not⊕, T ] ⊎ (⊎

π∈ST ,|π|≥4 π[T , . . . , T ]
)

→ system of equations on the generating functions of the
specified families, made of analytic functions with
nonnegative coefficients.
→ a Boltzmann sampler for the class.
→ trees coding specification-closed classes are 3-type
Galton-Watson trees conditioned on their number of leaves.
In BBFGMP 2017 we treat substitution-closed classes in
wider generality



Specifications

Theorem (Bassino, Bouvel, Pivoteau, Pierrot, Rossin 2017)
If ST is finite, then there is a finite specification
Ti = εi{•} ]

⊎
π∈ST

⊎
(k1,...,k|π|)∈Ki

π
π[Tk1 , . . . , Tk|π| ]

where T = T0 ⊃ T1, . . . Td and εi ∈ {0, 1}.
Moreover, there is an algorithm (implemented!) to find it.

→ system of equations on the generating functions of the
specified families, made of analytic functions with
nonnegative coefficients.
→ a Boltzmann sampler for the class.



The case of Av(132)

T = {•}
⊎

⊕[T not⊕, T〈21〉]
⊎

	[T not	, T ]

T not⊕ = {•}
⊎

	[T not	, T ]

T not	 = {•}
⊎

⊕[T not⊕, T〈21〉]

T〈21〉 = {•}
⊎

⊕[T not⊕
〈21〉 , T〈21〉]

T not⊕
〈21〉 = {•}.



The case of Av(132)

T

T not⊕

critical series

T not	

T〈21〉

T not⊕
〈21〉

T = {•}
⊎

⊕[T not⊕, T〈21〉]
⊎

	[T not	, T ]

T not⊕ = {•}
⊎

	[T not	, T ]

T not	 = {•}
⊎

⊕[T not⊕, T〈21〉]

T〈21〉 = {•}
⊎

⊕[T not⊕
〈21〉 , T〈21〉]

T not⊕
〈21〉 = {•}.

We plot the dependency graph of the system. In gray,
critical families, of maximal growth rate (minimal radius of
convergence)
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The main theorem
Theorem (BBFGMP 2019) Consider the specification of a
class C with a finite number of simples. Assume that there
is only one strongly connected critical component.

If the specification is linear in the
critical families, then σn converges to a
X-permuton with explicit parameters.

Otherwise, σn converges to a biased
Brownian permuton of explicit
parameter.

mass pleft
−

mass pleft
+

mass pright
−

mass pright
+



Examples: linear case

T0 = {•} ] ⊕[T1, T2] ]⊕[T1, T3] ]⊕[T4, T2] ]	[T5, T0] ] 3142[T1, T1, T1, T6]
T1 = {•} ] 	[T7, T1]
T2 = {•} ] ⊕[T7, T2]
T3 = ⊕[T8, T2] ]	[T9, T6]
T4 = 	[T10, T11] ]	[T10, T1] ]	[T7, T11] ] 3142[T1, T1, T1, T6]
T5 = {•} ] ⊕[T1, T1] ] 3142[T1, T1, T1, T1]
T6 = {•} ] ⊕[T12, T2] ]	[T9, T6]
T7 = {•}
T8 = 	[T9, T6]
T9 = {•} ] ⊕[T1, T7]
T10 = ⊕[T1, T1] ] 3142[T1, T1, T1, T1]
T11 = ⊕[T1, T2] ]⊕[T1, T3] ]⊕[T4, T2] ]	[T10, T11] ]	[T10, T1] ]	[T7, T11]

]3142[T1, T1, T1, T6]
T12 = {•} ] 	[T9, T6]

The V-shape class from earlier:



Examples: linear case

T0 = {•} ] ⊕[T1, T2] ]⊕[T1, T3] ]⊕[T4, T2] ]	[T5, T0] ] 3142[T1, T1, T1, T6]
T1 = {•} ] 	[T7, T1]
T2 = {•} ] ⊕[T7, T2]
T3 = ⊕[T8, T2] ]	[T9, T6]
T4 = 	[T10, T11] ]	[T10, T1] ]	[T7, T11] ] 3142[T1, T1, T1, T6]
T5 = {•} ] ⊕[T1, T1] ] 3142[T1, T1, T1, T1]
T6 = {•} ] ⊕[T12, T2] ]	[T9, T6]
T7 = {•}
T8 = 	[T9, T6]
T9 = {•} ] ⊕[T1, T7]
T10 = ⊕[T1, T1] ] 3142[T1, T1, T1, T1]
T11 = ⊕[T1, T2] ]⊕[T1, T3] ]⊕[T4, T2] ]	[T10, T11] ]	[T10, T1] ]	[T7, T11]

]3142[T1, T1, T1, T6]
T12 = {•} ] 	[T9, T6]

Critical series are T0, T4, T11. The critical system is not
strongly connected, but aae permutation of T0 is in T11.
Removing T0 we can apply the theorem.

The V-shape class from earlier:
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Av(2413, 3142, 2143, 34512)Av(2413, 1243, 2341, 41352, 531642)
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Examples: nonlinear case.

Av(132) Av(2413, 31452, 41253, 531642, 41352)
p = 1 p ≈ 0.47 is algebraic of degree 9.



Examples: nonlinear case.

Av(132) Av(2413, 31452, 41253, 531642, 41352)
p = 1 p ≈ 0.47 is algebraic of degree 9.



Part 3 - proof of the main theorem
(in the nonlinear case)



Substitution decomposition and patterns

σ = 24387156

2413

132 - +

312

+

patI(σ) = 4123

t

tI



Our goal

Fix a signed binary tree τ with k leaves. We need only show
that

#{trees in T of size n with k marked leaves inducing τ}
#{trees in T of size n with k marked leaves}

converges to

P(bp
k = τ) =

p#⊕(1− p)#	

Catk−1
.



Our goal

Fix a signed binary tree τ with k leaves. We need only show
that

#{trees in T of size n with k marked leaves inducing τ}
#{trees in T of size n with k marked leaves}

converges to

P(bp
k = τ) =

p#⊕(1− p)#	

Catk−1
.

The denominator is [zn−k]T(k)
0 .
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G.F. of the numerator

Ta
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a

cb

T′e
T′f

∂+b,cFa(z, T)

T′h
T′i

∂−h,iFg(z, T)

0

d

e f
g

h i

Tg
c

Td
b

∂−e, f Fd(z, T)

∑
a,b,c,d,e, f ,g,h,i



DLW Theorem

We can apply the following theorem to our system of
equations, partially applied in the subcritical series.



DLW Theorem

Theorem (Drmota 2009) Let T = Φ(z, T) be a system of
equations, Φ = Φ(z, t) with nonnegative coefficients and
no constant term or ti term. Assume that Φ is analytic in z
with radius > ρ, polynomial and nonlinear in T. Assume
the graph of dependence is strongly connected. Then
1. All Ti have a square root singularity at ρ

T(z) = T(ρ)− c(v + o(1))
√

z− ρ.
2. Defining (Mi,j(z))i,j = JacTΦ(z, T(z)), then M(ρ) has

Perron eigenvalue 1 with left and right eigenvectors u
and v. Moreover
(T j

i )i,j = (Id−M(z))−1 ∼z→ρ CvuT 1√
z−ρ

.

We can apply the following theorem to our system of
equations, partially applied in the subcritical series.
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Asymptotics of numerator

a

cb

0

d

e f
g

h i

c−ghi

c−de f

c+abc

∑
a,b,c,d,e, f ,g,h,i

K

veud

vb

(z− ρ)−7/2

v f

vcua

ug vh vi

∼ KA1
+A2
−(z− ρ)−7/2

∼ Kk A#⊕
+ A#	

− (z− ρ)−1/2−k

same order as the denominator !
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Part 4 - what’s the point ?
of scaling-limit results for pattern-avoiding permutations ?
On a continuous limiting object, we can compute things,
then recover results on the discrete objects !
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Some previous work
• Extremal combinatorics: Presutti-Stromquist (2009) introduced

permutons to provide a lower bound for the packing density of
(2413) (conjectured tight)

• Joint convergence of all pattern densities is automatic.

• Asymptotics of the number of cycles of fixed length (Mukherjee
’16), of the length of the longest increasing subsequence (Mueller,
Starr,’13) and of the total displacement (Bevan, Winkler, ’19) in
Mallows permutations using the permuton limit + regularity of
convergence.



Expectation of the permuton
As µ is a random measure, it is natural to compute its
average Eµ, which is the limit of the permuton obtained by
stacking all separable permutations of a given size.
Theorem (M. 2017) The permuton Eµ has density function
1
π (β(x, y) + β(x, 1− y)), 0 ≤ x ≤ min(y, 1− y)

β(x, y) =
3xy− 2x− 2y + 1
(1− x)(1− y)

√
1− x− y

xy
+ 3 arctan

√
xy

1− x− y
.

We recover the expected shape of
doubly-alternating Baxter permutations.
(Dokos-Pak)




