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Reminder on non-local games

Non-local game: G with input spaces X ,Y and output spaces A,B, defined by its input
probability distribution π : X ×Y → [0,1] and its winning condition V : A×B×X ×Y →{0,1}.
Strategy of the players: Conditional probability distribution p : A×B×X ×Y → [0,1].
−→When receiving the pair of inputs (x ,y) ∈ X ×Y , the players answer the pair of outputs
(a,b) ∈ A×B with probability p(a,b|x ,y).

Winning probability of the players when playing game G with strategy p:

ω(G,p) := ∑
x∈X ,y∈Y

π(x ,y) ∑
a∈A,b∈B

p(a,b|x ,y)V(a,b,x ,y) .

Quantum (tensor product) strategy: p defined by a state |ϕ〉 ∈ Cd ⊗Cd and projection-valued
measures (PVMs) {Aa

x}a∈A, x ∈ X , {Bb
y }b∈B , y ∈ Y , on Cd s.t.

p(a,b|x ,y) = 〈ϕ|Aa
x ⊗Bb

y |ϕ〉 .

Quantum (tensor product) value of G:

ωq(G) := sup{ω(G,p) : p quantum strategy} .
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Self-testing

Definition [ Self-testing (Mayers/Yao) ]

A non-local game G self-tests a quantum strategy p ≡
(
{{Aa

x}a}x ,{{Bb
y }b}y , |ϕ〉

)
on Cd ⊗Cd if

any quantum strategy p′ ≡
(
{{Aa

x
′}a}x ,{{Bb

y
′}b}y , |ϕ′〉

)
on Cd ′ ⊗Cd ′ achieving ωq(G) is

equivalent to p up to local isometries.
That is, there exist s ∈ N and isometries U,V : Cd ′ → Cd ⊗Cs s.t.

UAa
x
′U∗ = Aa

x ⊗ I for all x ,a, VBb
y
′
V ∗ = Bb

y ⊗ I for all y ,b,
U⊗V |ϕ′〉= |ϕ〉⊗ |θ〉 for some state |θ〉 ∈ Cs⊗Cs .

This is a rigidity result: the optimal quantum strategy for G is essentially unique.

Interest: A classical verifier (the referee) can certify that quantum provers (the players) perform a
specific procedure (specific measurements on a specific state).
−→ Relevant to design certified device-independent protocols in quantum information theory
(randomness generation, delegated computation etc.)
−→ Can be used as an “entanglement dimension witness”: If the provers achieve a given
performance, then they must share an entangled state of a given local dimension.

Seminal example: The CHSH game self-tests
the maximally entangled state on C2⊗C2: |ψ〉= (|00〉+ |11〉)/

√
2,

measurements in the basis (|0〉, |1〉) and its rotation by π/4 for Alice, measurements in the
rotation by π/8 of these for Bob.
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The Magic Square game

Goal: Find v1, . . . ,v9 ∈ {0,1} s.t.

(e1) v1⊕ v2⊕ v3 = 0

(e4) v1⊕ v4⊕ v7 = 0

(e2) v4⊕ v5⊕ v6 = 0

(e5) v2⊕ v5⊕ v8 = 1

(e3) v7⊕ v8⊕ v9 = 0

(e6) v3⊕ v6⊕ v9 = 0

v7 v8 v9

v4 v5 v6

v1 v2 v3

e3

e2

e1

e4 e5 e6

This is impossible!

Equivalent: Find v1, . . . ,v9 ∈ {−1,1} s.t.

(e1) v1× v2× v3 = 1

(e4) v1× v4× v7 = 1

(e2) v4× v5× v6 = 1

(e5) v2× v5× v8 =−1

(e3) v7× v8× v9 = 1

(e6) v3× v6× v9 = 1

Magic Square (MS) game (Mermin, Peres, Cleve/Høyer/Toner/Watrous):

The referee picks an equation (ex ) uniformly at random and a variable vy appearing in (ex )
uniformly at random. Alice gets (ex ) and has to answer with an assignment to the variables
appearing in it. Bob gets vy and has to answer with an assignment to it. They win if the
assignments of Alice satisfy (ex ) and if her assignment for vy matches the one of Bob.
−→ X = {1, . . . ,6},Y = {1, . . . ,9} and A = {0,1}3,B = {0,1}.

π(x ,y) = 1/18 if vy appears in (ex ), π(x ,y) = 0 otherwise.
V(a,b,x ,y) = 1 iff a = (a(vy ),a(vy ′),a(vy ′′)) satisfies (ex ) and b = a(vy ).

Claim: The maximum winning probability for classical players is 17/18, while quantum players
can win with probability 1.
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Optimal quantum strategy for the Magic Square game

Alice and Bob share the maximally entangled state on C4⊗C4 ≡ (C2⊗C2)⊗ (C2⊗C2), i.e.

|ψ〉AB =
1
2

(|00〉A⊗|00〉B + |01〉A⊗|01〉B + |10〉A⊗|10〉B + |11〉A⊗|11〉B) .

After receiving their equation or variable, they both perform binary PVMs on their share of |ψ〉AB
(three for Alice, one for Bob) and answer with the obtained outcomes. They choose the
measurements to be performed (on C4 ≡ C2⊗C2) according to the following rule:

X ⊗ I X ⊗X I⊗X

X ⊗Z ZX ⊗XZ Z ⊗X

I⊗Z Z ⊗Z Z ⊗ I
X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
X2 = Z 2 = I, XZ =−ZX .

Binary PVM corresponding to an
observable W with eigenvalues
{+1,−1}: projectors {P+,P−}
on its +1 and −1 eigenspaces.

The operators in a given line (row or column) commute.
−→ The outcomes of Alice’s three measurements are well defined.
The product of the operators in a given line is I, except for the central column where it is −I.
−→ The outcomes of Alice’s measurements always satisfy the equation.
The state of Alice and Bob is left invariant by the operators that they perform on their
common input.
−→ The outcomes of Alice’s and Bob’s measurements are always consistent.
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Generalization: binary linear system games

Let Mv = µ be a binary linear system (BLS) with p equations in n variables, i.e. M ∈ Zp×n
2 , µ ∈ Zp

2 .

Associated BLS game (Cleve/Mittal):
Alice receives as input x ∈ {1, . . . ,p}, Bob receives as input y ∈ {1, . . . ,n} s.t. Mx ,y = 1 (i.e. vy
appears in equation x).
Alice has to output an assignment to the variables vz ’s s.t. Mx ,z = 1 (i.e. those appearing in
equation x), Bob has to output an assignment to the variable vy .
They win if Alice’s assignment satisfies equation x and their assignments for variable vy coincide.

Important observation:
A perfect quantum strategy for Alice and Bob in this BLS game (i.e. one which allows them to win
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Perfect quantum strategies for binary linear system games

Definition [ Solution group of a BLS (Cleve/Mittal) ]

The solution group of a BLS Mv = µ is the group Γ generated by g1, . . . ,gn and f , satisfying the
following relations:

Generators are involutions: g2
i = e for all 1 6 i 6 n and f 2 = e.

f commutes with all other generators: [gi , f ] = e for all 1 6 i 6 n.
Local compatibility: if there exists 1 6 k 6 p s.t. Mk ,i = Mk ,j = 1, then [gi ,gj ] = e.

Constraint satisfaction: g
Mk ,1
1 · · ·gMk ,n

n = f µk for all 1 6 k 6 p.
Notation: e is the identity of Γ and [a,b] = aba−1b−1 is the commutator of a,b.

Recall the following definition: A d-dimensional representation of a finite group G is a
homomorphism σ : G→ Cd×d from G to the group of invertible linear operators on Cd .

Theorem [ Characterizing perfect quantum strategies for BLS games (Cleve/Liu/Slofstra) ]

Let Mv = µ be a BLS. The following are equivalent:
1 There is a perfect quantum strategy for the associated game.
2 The associated solution group Γ has a finite-dimensional representation σ s.t. σ(f ) =−I.
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Idea of the proof

(2)⇒ (1): Let σ : Γ→ Cd×d , with σ(f ) =−I, be a finite-dimensional representation of the
solution group of the BLS. Fixing an orthonormal basis of Cd , set |ϕ〉 := |ψ〉 (the maximally
entangled state on Cd ⊗Cd ) and, for all x ,y s.t. Mx ,y = 1, Ax ,y := σ(gy ),By := σ(gy )T .
This defines a perfect quantum strategy for the BLS game.
Indeed, the equation satisfaction and consistency properties are satisfied:

for all x , 〈ϕ|AMx ,1
x ,1 · · ·A

Mx ,n
x ,n ⊗ I|ϕ〉= 〈ψ|σ(g1)Mx ,1 · · ·σ(gn)Mx ,n︸ ︷︷ ︸

=σ

(
g

Mx ,1
1 ···gMx ,n

n

)
=σ(f µx )=σ(f )µx =(−I)µx

⊗I|ψ〉= (−1)µx ,

for all x ,y s.t. Mx ,y = 1, 〈ϕ|Ax ,y ⊗By |ϕ〉= 〈ψ|σ(gy )⊗σ(gy )T |ψ〉 =
(?)
〈ψ|σ(gy )2︸ ︷︷ ︸
=σ(g2

y )=σ(e)=I

⊗I|ψ〉= 1.

(?) is because M⊗NT |ψ〉= MN⊗ I|ψ〉

Similarly, the involution and commutation properties of the gy ’s imply those of the Ax ,y ’s, By ’s.

(1)⇒ (2): Let ({Ax ,y ,By ∈ Cd×d}x ,y , |ϕ〉 ∈ Cd ⊗Cd ) be a perfect quantum strategy for the BLS
game. Set E := supp(ϕA)⊂ Cd , where ϕA := IA⊗TrB(|ϕ〉〈ϕ|AB), and PE the projector onto E .
By assumption, for any x ,y s.t. Mx ,y = 1, 〈ϕ|Ax ,y ⊗By |ϕ〉= 1, which means that
|ϕ〉= Ax ,y ⊗By |ϕ〉, i.e. Ax ,y ⊗ I|ϕ〉= I⊗B−1

y |ϕ〉. Hence, for any x ,x ′,y s.t. Mx ,y = Mx ′,y = 1,
Ax ,y ⊗ I|ϕ〉= Ax ′,y ⊗ I|ϕ〉, which implies that PE Ax ,y PE = PE Ax ′,y PE =: Ay .
The homomorphism σ : Γ→ Cd×d defined by σ(gy ) = Ay for all y and σ(f ) =−I is a
finite-dimensional representation of Γ.
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Rigidity for binary linear system games

Recall the following definitions:
A representation of a finite group is irreducible if it cannot be decomposed into a direct sum
of representations, each of non-zero dimension.
Two representations σ1,σ2 of a finite group G are equivalent if there exists a unitary U
s.t. σ2(g) = Uσ1(g)U∗ for all g ∈ G.

Theorem [ Rigidity for BLS games (Coladangelo/Stark) ]

Let Mv = µ be a BLS with associated solution group Γ. Assume that Γ is finite and that all its
irreducible finite-dimensional representations which map f to −I are equivalent to a given
irreducible finite-dimensional representation σ̂ : Γ→ Cd×d .
Suppose that

(
|ϕ〉 ∈ Cd ′ ⊗Cd ′ ,{Ax ,y ,By ∈ Cd ′×d ′}x∈{1,...,p},y∈{1,...,n},Mx ,y=1

)
is a perfect

quantum strategy for the associated game. Then, there exist s ∈ N and isometries
U,V : Cd ′ → Cd ⊗Cs s.t., for all x ∈ {1, . . . ,p},y ∈ {1, . . . ,n} s.t. Mx ,y = 1,
UAx ,y U∗ = σ̂(gy )⊗ I and VBy V ∗ = σ̂(gy )T ⊗ I.

Proof idea:
We know that a perfect quantum strategy on Cd ′ ⊗Cd ′ is equivalent to a representation
σ : Γ→ Cd ′×d ′ s.t. σ(f ) =−I. Decompose σ into a direct sum of irreducible representations, as
σ =

⊕s
i=1 σi . We then have

⊕s
i=1 σi (f ) = σ(f ) =−Id ′ , so necessarily σi (f ) =−Idi for each i .

Hence by assumption, all σi ’s are equivalent to σ̂. And thus σ is equivalent to
⊕s

i=1 σ̂≡ σ̂⊗ Is .
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A few facts about the Pauli group

Definition [ n-qubit Pauli group ]

The n-qubit Pauli group P⊗n, seen as “presented over Z2” (Slofstra), is the group which is
generated by {x1, . . . ,xn,z1, . . . ,zn, f}, satisfying the relations:

f 2 = e and x2
i = z2

i = e for all i
[xi , f ] = [zi , f ] = e for all i

}
standard relations of a group presented over Z2

[xi ,zi ] = f for all i
[xi ,xj ] = [zi ,zj ] = [xi ,zj ] = e for all i 6= j

}
additional relations

P⊗n has a natural 2n-dimensional representation π : P⊗n→ (C2×2)⊗n, defined by:
π(f ) =−I⊗n

π(xi ) = I⊗(i−1)⊗X ⊗ I⊗(n−i) for all i
π(zi ) = I⊗(i−1)⊗Z ⊗ I⊗(n−i) for all i

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
This representation of P⊗n is irreducible. The other non-equivalent irreducible representations of
P⊗n are 22n 1-dimensional representations, all sending f on the identity.

Proof: Given a finite group G, the two following facts hold:
A representation σ of G is irreducible iff ∑g∈G Tr(σ(g))Tr(σ(g)−1) = |G|.
A set S of non-equivalent irreducible representations of G is maximal iff ∑σ∈S |σ|2 = |G|.

Applying the above to G = P⊗n, σ = π, S = {π,σ1, . . . ,σ22n}, we do get equalities (to 22n+1).
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Rigidity for the Magic Square game

Observation: The solution group of the MS game is the 2-qubit Pauli group P⊗2, generated by
{x1,x2,z1,z2, f}. Indeed, g1 = z2, g2 = z1z2, g3 = z1, g4 = x1z2, g5 = z1x1x2z2, g6 = z1x2,
g7 = x1, g8 = x1x2, g9 = x2 satisfy the MS solution group relations.

Theorem [ Rigidity for MS game ]

Let
(
|ϕ〉 ∈ Cd ⊗Cd ,{Ax ,y ,By ∈ Cd×d}x∈{1,...,6},y∈{1,...,9},vy in (ex )

)
be a perfect quantum

strategy for the MS game. Then, there exist s ∈ N and isometries U,V : Cd → C4⊗Cs s.t.
U⊗V |ϕ〉= |ψ〉⊗ |θ〉 for some |θ〉 ∈ Cs⊗Cs ,
for all x ∈ {1, . . . ,6},y ∈ {1, . . . ,9} s.t. vy in (ex ), UAx ,y U∗ = VBy V ∗ = π(gy )⊗ I.
Concretely: π(g1) = I⊗Z , π(g2) = Z ⊗Z , π(g3) = Z ⊗ I, π(g4) = X ⊗Z ,
π(g5) = ZX ⊗XZ , π(g6) = Z ⊗X , π(g7) = X ⊗ I, π(g8) = X ⊗X , π(g9) = I⊗X .

Proof:
Form of the observables: It follows directly from the general rigidity theorem for BLS games,
together with the facts about the representation theory of P⊗2.
Form of the state: By assumption we have, for all x ,y s.t. vy in (ex ), 〈ϕ|Ax ,y ⊗By |ϕ〉= 1.
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Outlook

We have seen that, given a BLS, there is a one-to-one correspondence between perfect
quantum tensor product strategies for the associated game and finite-dimensional
representations of the associated solution group mapping a distinguished element on −I.
Similarly, it can be shown that perfect quantum commuting strategies are equivalent to
(possibly infinite-dimensional) such representations (Cleve/Liu/Slofstra).

Through the representation theory of the n-qubit Pauli group, one can design BLS games
that self-test the maximally entangled state on C2n ⊗C2n

. For instance: CHSH or MS game
performed in parallel, or so-called Pauli-braiding test (cf. next week).
−→ Entanglement dimension certification: passing one of these tests requires an entangled
state of local dimension 2n.

Need: Robust version of these results (again, cf. next week).
Namely: Given a game G, if a strategy p′ is s.t. ω(G,p′) > ωq(G)− ε, then p′ is δ(ε)-close
to p (up to local isometries).
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