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P decision problems

De�nition
A decision problem (x ∈ L? for a subset L of {0, 1}∗) is in P (Polynomial
time) if there is a Turing machine M deciding each instance in time
polynomial with respect to the input size. Thus M always halts in
polynomial time, and computes the characteristic function of L.

Examples in P

I Coprimeness of natural integers (Euclid)

I Correctness of a proposed formalized proof of a mathematical
statement, e.g. in PA (or ZFC, or ZF+DC)

I 2SAT : satis�ability of a 2CNF boolean formula such as
(x0 ∨ ¬x4) ∧ (x10 ∨ x2) ∧ · · · ∧ (¬x117 ∨ ¬x42)

I LP : Non-emptiness of an intersection of rational halfspaces in Rn

(Kachiyan 1979)

I Primeness of natural integers (AKS primality test 2002)



NP decision problems

De�nition
A decision problem (i.e. subset L of {0, 1}∗) is in NP (Non-deterministic
Polynomial time) if there is a polynomial P and a polynomial time Turing
machine M that for each x accepts some "witness", or "certi�cate", u of
size ≤ P(|x |) (seen as a proposed proof that x ∈ L) if and only if x ∈ L.
More formally, x ∈ L⇔ ∃u ∈ {0, 1}P(|x |),M(x , u) = 1.

Note
This could as well have been called "Polynomially Checkable Proof" ;)

Remark
Contrary to P there is a huge dissymmetry between true and false
instances, because x 6∈ L⇔ ∀u ∈ {0, 1}P(|x |),M(x , u) = 0. Hence a class
coNP, conjectured to be 6= NP. Obviously P ⊂ NP ∩ coNP (no witness
needed).



Examples in NP

I 3SAT : Satis�ability of a 3CNF boolean formula

I ¬PRIME : Compositeness of natural numbers is in NP

I PRIME : Primeness of natural numbers is in NP (A polynomial size
certi�cate is not so obvious. It recursively uses that an odd n is prime
i� (Z/nZ)× is cyclic of order n− 1. A generator a together with prime
factorization n− 1 =

∏
prii begins the certi�cate, which continues with

primeness certi�cates for the pi etc. The machine checks e.g. that
an−1 ≡ 1 mod n but a(n−1)/pi 6≡ 1 mod n using fast exponentiation)

I 3COL : 3-colorability of a �nite graph is in NP

Note
Problems in NP are decidable, hence truth of PA statements is not in NP.



NP completeness

Theorem
(Cook 1971) Every NP problem is polynomial-time-reducible to 3SAT .

3SAT is the �rst "NP-complete" decision problem.

De�nition
A decision problem x ∈ L is NP-hard if any NP problem is
polynomial-time-reducible to it, and NP-complete if it is moreover in NP .

Note
The following special case of SDP (SemiDe�nite Programming) is
apparently not known to be in NP : Given non-negative integers
a1, . . . , ak , b1, . . . , bk , decide if

√
a1 + . . .

√
ak ≥

√
b1 + . . .

√
bk .

The problem is with the precision needed to decide (on the other hand it
is, like SDP, polynomial-time-decidable if a small additive error is allowed).



PCP classes

De�nition
A language/decision problem L ⊂ {0, 1}∗ is in the class PCP(r(n), q(n)) if
there is a polynomial-time probabilistic Turing machine V ("veri�er")
which on inputs x and π from {0, 1}∗ ("statement" and "proof") accepts
(V (x , π) = 1) or rejects (V (x , π) = 0) as follows

1. It �ips r(|x |) random (fair) coins.

2. From these, it reads only q(|x |) bits π′ = (πi )i∈I from π.

3. ∀x ∈ L, ∃π, E[V (x , π′)] = 1 (π is always accepted).

4. ∀x 6∈ L, ∀π, E[V (x , π′)] ≤ 1/2 (π is rejected at least half of the time).

Remark
A crucial point is that the length of "proofs" π is a priori arbitrary, even
though in fact one can assume the proof to be of length ≤ 2r(|x |)q(|x |), the
maximum number of bits of π read in all possible runs with input (x , π).



Note
There are also variants Σ-PCPc,s(r(n), q(n)) with parameters c , s
(completeness, resp. soundness) giving bounds on the probability of
accepting valid resp. invalid proofs, and a bigger alphabet Σ instead of
{0, 1}. The previous de�nition corresponds to {0, 1}-PCP1,1/2(r(n), q(n)).

Note
Randomness plays a very important role in computational complexity, and
its power is not yet completely understood. For example, no polynomial
time deterministic algorithm is known to output a prime number with n
digits, whereas an obvious probabilistic sampling followed by a polynomial
time primality test runs in polynomial expected time (see polymath4
project, 2009).

https://polymathprojects.org/category/finding-primes/
https://polymathprojects.org/category/finding-primes/


The PCP theorem, proof-checking version

Theorem (Arora, Lund, Motwani, Szegedy, Sudan 1992)

There is a universal constant Q such that NP ⊆ PCP(O(log n),Q).

Note
The proof was subsequently improved by many people, culminating with
Irit Dinur's "much simpler" proof in 2007, which earned her the 2019 Gödel
Prize. In 2001, the same prize was already awarded to ALMSS + Feige,
Goldwasser, Lovász, Safra for work on PCP and hardness of approximation.

Remarks
Taking Q = 16 is enough for the above statement to hold (see Nelson's
lecture 22). The implicit constant in O(log n) depends on the NP problem
considered. The length of the proofs examined by the resulting veri�ers is
polynomial in n.

http://eatcs.org/index.php/component/content/article/1-news/2808-2019-03-17-19-26-19
http://eatcs.org/index.php/component/content/article/1-news/2808-2019-03-17-19-26-19


PCP theorem can (a bit tautologically, but perhaps suggestively) be viewed
as a hardness result for a "gap problem" :

Corollary

Given a PCP veri�er V for some NP-complete problem, e.g. 3SAT, it is

NP-hard to decide between ω(V , x) = 1 and ω(V , x) ≤ 1/2, where

ω(V , x) = max
π∈{0,1}∗

E[V (x , π)]

is the maximum probability of acceptance of a proof of x .



The PCP theorem, game version

De�nition
A 2-provers 1-round (2P1R) game G is given by �nite sets X1, X2 of
questions, A1, A2 of answers, functions f1 : X1 → A1, f2 : X2 → A2
(strategies of the provers), a probability µ on X1 × X2 and a predicate

V : X1 × X2 × A1 × A2 → {0, 1}

for acceptance of answers.
The value of G is then

ω(G ) = max
f1,f2

Ex1,x2 [V (x1, x2, f1(x1), f2(x2))].



Theorem (PCP, game version)

There is a constant ε0 > 0 such that for any L ⊂ {0, 1}∗ in NP, there is a

polynomial-time-computable mapping x 7→ Gx from {0, 1}∗ to 2P1R games

such that ω(Gx) = 1 for x ∈ L and ω(Gx) ≤ 1− ε0 otherwise.

Note
This could be ampli�ed using the "parallel repetition theorem" discovered
by Raz (1998)...



Outline of proof of a "toy" PCP theorem

Theorem
There is a constant q such that NP ⊆ PCP(poly(n), q).

The proofs examined by such veri�ers could be huge (of size 2cn
k
), but

only a constant number of bits of them will be examined.

It is enough to construct a veri�er with the required properties for one
NP-complete decision problem.

The chosen decision problem will be the satis�ability of systems of
quadratic equations over the �eld F2 = Z/2Z.



To show NP-completeness, observe that since

a ∨ b ∨ c = a + b + c + ab + bc + ca + abc

in F2 = {0, 1}, any instance of 3SAT can be viewed as a system of cubic
equations over F2.

The classical trick of introducing auxiliary variables xij = xixj for
intermediate products gives an equi-satis�able system of quadratic
equations, whose size is polynomial in the size of the 3SAT instance.

So we consider systems of equations

Qi (x) + Li (x) = ci , i = 1, . . . ,m, x ∈ Fn
2 (Q)

where Qi , Li are homogeneous polynomials of degree 2 resp. 1, aka
quadratic and linear forms in x , and ci are constants in F2.



The veri�er will examine proofs of satis�ability consisting of a pair of
functions

Π1 : Fn
2 → F2, α 7→ Π1

α

Π2 : Fn
2 ⊗ Fn

2 = Fn2
2 → F2, β 7→ Π2

β.

Such a proof will be correct i� there is an x ∈ Fn
2 such that for all α ∈ Fn

2,

β ∈ Fn2
2

Π1
α = α · x , Π2

β = β · (x ⊗ x),

and moreover x satis�es the system Qi (x) + Li (x) = ci for i = 1, . . . ,m.

Remark
This resembles the previously encountered "long encoding" of x . Here
x ∈ Fn

2 is represented as a string of 2n + 2n
2
bits.



Writing Li (x) = αi · x , Qi (x) = βi · (x ⊗ x), this satisfaction is checked by

I Choosing (a1, . . . , am) ∈ Fm
2 uniformly at random

I Computing α =
∑

i aiα
i , β =

∑
i aiβ

i , c =
∑

i aici
I Querying Π1

α, Π2
β

I Accepting i� Π1
α + Π2

β = c

By the magic of F2-linear algebra, this falsely accepts with probability
≤ 1/2.
But the veri�er still has to (randomly) check that α 7→ Π1

α, β 7→ Π2
β are

linear, and moreover of the form

Π1
α = α · x , Π2

β = β · (x ⊗ x)

for some x . Given linearity, this is ensured by checking that

Π2
α⊗α′ = Π1

αΠ1
α′

for α, α′ ∈ Fn
2 uniformly random, and one can show that the probability of

falsely accepting is ≤ 3/4. This leads us to...



Linearity testing

Theorem (Blum,Luby,Rubinfeld 1993)

Let F : Fn
2 → F2 be an arbitrary function, and equip Fn

2 and its square with

the uniform probability. Then if Px ,y [F (x + y) = F (x) + F (y)] ≥ ρ > 1/2,
there is a linear form L such that Px [F (x) = L(x)] ≥ ρ.
L is unique if ρ > 3/4.

Note ("local decoding")

When ρ > 3/4, even if F is not exactly linear, L(x) can be e�ciently
recovered at all points x by evaluating F (x + r)− F (r) for random r . This
is easily seen to equal L(x) with probablility ≥ 2ρ− 1 > 1/2, i.e. ≥ 1− 2δ
if ρ = 1− δ.



Proof : Fourier(-Walsh) analysis on Fn
2.

Euclidean space of functions f : Fn
2 → R with scalar product

〈f , g〉 = Ex [f (x)g(x)].

Orthonormal basis :

χα(x) = (−1)α·x , α ∈ Fn
2,

(all characters, i.e. group homomorphisms Fn
2 → C∗)

We will use that χ0 ≡ 1 is orthogonal to all others, and χαχβ = χα+β .



Replace F by f = (−1)F : Fn
2 → {±1}. Then

Ex ,y [f (x + y)f (x)f (y)] = 2Px ,y [f (x + y) = f (x)f (y)]− 1

and
〈f , g〉 = Ex [f (x)g(x)] = 2Px [f (x) = g(x)]− 1

for any g : Fn
2 → {±1}. Writing f =

∑
α fαχα,

f (x + y)f (x)f (y) =
∑
α,β,γ

fαfβfγχα(x + y)χβ(x)χγ(y)

=
∑
α,β,γ

fαfβfγχα+β(x)χα+γ(y)

Ex ,y [f (x + y)f (x)f (y)] =
∑
α

f 3α ≤ max
α

fα
∑
α

f 2α = max
α

fα



Conclusion : Px ,y [f (x + y) = f (x)f (y)] ≥ ρ implies

fα = 〈f , χα〉 ≥ 2ρ− 1

for some α so Px [F (x) = α · x ] = Px [f (x) = χα(x)] ≥ ρ as claimed.

If ρ > 3/4 and Px [F (x) = β · x ] ≥ ρ, then by "union bound"

Px [α · x = β · x ] > 1/2

so α = β because hyperplanes are "half spaces" over F2.

�



Wrapup

There is δ0 > 0 and a PCP1,1−δ0(O(n2), 13) veri�er for satis�ability a
system of quadratic equations over F2

αi · x + βi · (x ⊗ x) = ci , x ∈ Fn
2, i = 1, . . . ,m

which performs the following tests on a proof (Π1,Π2) ∈ F2
n+2n

2

2 , rejecting
it if one test fails :

1. Linearity test on Π1 : verify if Π1
α + Π1

α′ = Π1
α+α′ for uniformly

random α, α′ ∈ Fn
2.

2. Linearity test on Π2 (same form).

3. Consistency of tensor product : for uniformly random α, α′ ∈ Fn
2,

β ∈ Fn2
2 , verify if Π2

α⊗α′+β = Π1
αΠ1

α′ + Π2
β.

4. Satisfaction of the quadratic system : for uniformly random a ∈ Fm
2 ,

compute α =
∑

i aiα
i , β =

∑
i aiβ

i , c =
∑

i aici , and verify if
Π1
α + Π2

β = c .



Repeating this veri�er's test k0 times with (1− δ0)k0 ≤ 1/2, we have
obtained NP ⊆ PCP(O(n2), 13 k0).

��

Thanks !
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