From the compression theorem to the undecidability of approximating the
quantum value of a game

Omar Fawzi

ENS DE LYON

GDT Connes-Tsirelson, Lyon, April 16th, 2020

arXiv:2001.04383

1/9

https://arxiv.org/pdf/2001.04383.pdf

Recall the setup

Theorem (Game value at least as hard as halting)

For all Turing machines M, there exists a game & 4 such that
o If M halts on empty tape, then val* (&pq) =1
o If M does not halt on empty tape, then val*(®) < %

Moreover, a description of the game & x4 can be computed in polynomial time in the size of the
description of M.

® is described by:
@ A probability measure p on inputs X X), p(x,y): prob. of choosing questions x, y
o A verification predicate D : X x Y X A x B — {0,1}: D(x,y,a, b) =1 means win

Val*(QS) = sup Z U(Xa)/) Z D(Xv)/7 a, b)pabxy
PECe X,y a,b

2/9

Recall the setup

Theorem (Game value at least as hard as halting)

For all Turing machines M, there exists a game & 5 such that
o If M halts on empty tape, then val* (&pq) =1
o If M does not halt on empty tape, then val*(®) < %

Moreover, a description of the game & x4 can be computed in polynomial time in the size of the
description of M.

® is described by:
@ A probability measure p on inputs X X), p(x,y): prob. of choosing questions x, y
o A verification predicate D : X x Y X A x B — {0,1}: D(x,y,a, b) =1 means win

Val*(ﬁ) = sup Z U(Xa)/) Z D(Xv)/7 a, b)pabxy
PECe X,y a,b

Remark:

Let &(®, p) := min. dimension needed for winning prob > p (can be +o0)

Statement of the form &(&, val* (&) — %) < f(®) with f computable contradicts theorem
= Need to show existence of games & that need entanglement > size of description of &

2/9

A few things about Turing machines

® A k-input Turing machine (TM) M computes a partial function f : ({0,1}*)% — {0,1}*,
that we also call M. If M does not halt on xi, ..., xk, we set M(xq,...,x() =L

o A TM M (a tuple with states and transition rules) can be described by a bitstring
M € {0,1}*. We use | M| for the length of the bitstring M

@ Conversely any a € {0,1}* can be interpreted as a k-input TM [a]x

o It is possible to simulate TMs from their description

Theorem (Efficient universal Turing machines)

For any k, there exists a 2-input TM Uy such that for any o € {0,1}*, x € ({0, 1}*)k,
Uy (a, k) = [o]k(x). Uk(a, x) halts within Ci o T log T steps if [c]x(x) halts in T steps.

@ TIME a4, denotes the running time of M on input x (oo if does not halt)

@ In the rest oLthe talk, we will not always make the distinction between M and its
description M

3/9

Describing families of games
Will need families of games described by Turing machines

Definition

A normal form verifier (NFV) is a pair V = (S, D) of Turing machines.

e S is called a sampler (full definition is complicated and not important for today)
On input starting with n € N outputs a description of
a probability distribution ps,, on {0, 1}§RANDS(”) x {0, 1}§RANDS(”)
@ D is called a decider and is a 5-input Turing machine
Input of the form (n, x, y, a, b) with n € N and x,y,a, b € {0,1}*
TIMEp(n): max. running time on inputs (n, x, y, a, b)
D outputs 0 or 1

A normal form verifier defines a family of nonlocal games for every n

Definition

V defines the games {V,} with
@ question sets X =) = {0, 1} <RANDs(n)
o answer sets A = B = {0,1}<TMEp(n)

prob distribution on questions us ,

o decision predicate is D(n, ., ., .,.)

RANDg(n) and TIMEp(n) will be polynomials in n

4/9

The compression theorem: overview

The main theorem of the paper is:

Theorem (Compression theorem)

There exists a polynomial-time Turing machine Compress that takes as input a NFV'V = (S, D)
and outputs another NFV V' = (S’, D’) satisfying for all n € N

@ Ifval*(Von) =1, then val*(V}) =1
@ Ifval*(Vn) < 1, then val*(V}) < 3

0 6V}, 1) > max{&(Van, 3),22""}

(8, %) := min. dimension needed to get a winning prob > %
The sampler S’ does not depend on V

Today: Compression theorem = Game value as hard as halting

5/9

The compression theorem: overview

The main theorem of the paper is:

Theorem (Compression theorem)

There exists a polynomial-time Turing machine Compress that takes as input a NFV'V = (S, D)
and outputs another NFV V' = (S’, D’) satisfying for all n € N

@ Ifval*(Von) =1, then val*(V}) =1
@ Ifval*(Vn) < 1, then val*(V}) < 3

0 6V}, 1) > max{&(Van, 3),22""}

(8, %) := min. dimension needed to get a winning prob > %
The sampler S’ does not depend on V

Today: Compression theorem = Game value as hard as halting

Sketch:
e Given M, construct a NFV VM = (SM DM) with DM working as follows:
On input (n, x,y, a, b), execute M for n steps, if halts = output 1
Else compute a description of V' = (S’,D’) := Compress(VM) and output D’(n, x, y, a, b)
o If M halts in T steps, then n > T, val*(VM) =1
For n < T, val*(VM) = val* (V1) = Val*(V%) =-.=1
o If M does not halt, then for any n i
SV 3) 65 2222

n» 2
EWVL D) =400 = valr(yM) <1 »

The compression theorem in more detail

Definition

V = (8, D) is A bounded if
Q@ V|<A

@ For all n, TIMEp(n), RANDs(n) < (An)*
i.e., the game V, has questions and answers bitstrings of length < (/\n)>‘

| \

Theorem (Compression theorem)

For every A\ € Nt (parameter that will govern the game families for which compression works)
there exists a TM Compress
V=(S5,D) — Compressy, — VYCOMR = (SCOMPR DOOMPR)
o Description of Compressy can be computed in time poly(log \)
o Compressy runs in time polynomial in |V| and log X
o |DCOMPR| = poly(|V], log A) and |SCOMPE| = poly(log A)
@ TIMEpcowrr (n) = poly(n,|V|,\) and RAND scomer (n) = poly(n, A)
and if V is A-bounded then for all n > ng (universal constant)
o I[fval*(Von) =1, then val*(VJOMPR) =1
o Ifval*(Von) < 1, then val*(VSOMTR) < 1

o &(V), 3) > max{&(Van, 3), %2>\2An}

Using the compression theorem

For every TM M and parameters A\, A, we construct a TM F:

o Input: description of D of 5-input TM

o OQutput: description of D’ of a 5-input TM that works as follows
On input (n,x,y,a, b
@ Run M on empty tape for n steps. If M halts, accept
e Else VCOMPR — (‘SCOMFR7 IDCUMPR) — Compressx(v)
© Return DY (n, x, y, a, b)

If it has not stopped after (An)2 steps, reject

Claim: F halts on all inputs and the description of F can be computed in time
poly(|]M],log A, log A)

Notation: M = M’ when they compute the same function

Theorem (Applying the Kleene-Roger fixed point theorem to F)

Because F halts on all inputs, there exists a TM DYALT such that DUALT = .7-;(1)‘““)
In addition, there is a Turing machine ComputeFP such that ComputeFP , (F) = DUALT
Moreover, D" (x) runs in time poly(|F|, TIMEx a1, TIME z(puairy)

Define V = (SCOMPR DHALT) he a normal form verifier. Then it satisfies the following properties:
@ For any n, if M halts in n steps, then val*(V,) =1

o For any n, if M does not halt in n steps then the decision predicate for V, is defined as
= val*(V,) = val*(V5°M™") and & (Va, %) = &(VFoMPR, %)

7/9

Putting things together

Theorem (Game value at least as hard as halting)

For all Turing machines M, there exists a game & x such that
o If M halts on empty tape, then val* (&) =1
o If M does not halt on empty tape, then val*(®) < %

Moreover, a description of the game & x4 can be computed in polynomial time in the size of the
description of M.

o Given M compute appropriately large enough A\, A (to guarantee that later }V is A-bounded
and F(D) does not exceed the time bound)

e Construct V such that D = F(D)
@ The game & 5 will be defined as the Vp,

o If M halts after T steps then for n > T, val*(V,) = 1 (all questions and answers win!)
For ng < n< T < 2" then D(n,x,y,a,b) = D°M%(n,x,y,a, b)
but we know that val*(Van) = 1, thus val*(VSOMPR) = val*(V,) = 1
In general, repeat this inductively
o If M does not halt, we have for n > ng
(Vo 1) = E(VE 1) > £(Vn, 1)

L2n
Repeating, &(Vn, %) > (5”()/22...211 , %) > %2A2Az

E(Vn, 3) =400 & val*(Vy) < 1

8/9

Suggestions for future talks

Self testing and nonlocal games
PCP theorem
Quantum low-degree test

Putting things together

9/9

