
From the compression theorem to the undecidability of approximating the
quantum value of a game

Omar Fawzi

GDT Connes-Tsirelson, Lyon, April 16th, 2020

arXiv:2001.04383

1/9

https://arxiv.org/pdf/2001.04383.pdf

Recall the setup

Theorem (Game value at least as hard as halting)

For all Turing machines M, there exists a game GM such that

If M halts on empty tape, then val∗(GM) = 1

If M does not halt on empty tape, then val∗(GM) ≤ 1
2

Moreover, a description of the game GM can be computed in polynomial time in the size of the
description of M.

G is described by:

A probability measure µ on inputs X × Y, µ(x , y): prob. of choosing questions x , y

A verification predicate D : X × Y ×A× B → {0, 1}: D(x , y , a, b) = 1 means win

val∗(G) = sup
p∈Cq⊗

∑
x,y

µ(x , y)
∑
a,b

D(x , y , a, b)pabxy

Remark:
Let E (G, p) := min. dimension needed for winning prob ≥ p (can be +∞)
Statement of the form E (G, val∗(G)− 1

4
) ≤ f (G) with f computable contradicts theorem

⇒ Need to show existence of games G that need entanglement � size of description of G

2/9

Recall the setup

Theorem (Game value at least as hard as halting)

For all Turing machines M, there exists a game GM such that

If M halts on empty tape, then val∗(GM) = 1

If M does not halt on empty tape, then val∗(GM) ≤ 1
2

Moreover, a description of the game GM can be computed in polynomial time in the size of the
description of M.

G is described by:

A probability measure µ on inputs X × Y, µ(x , y): prob. of choosing questions x , y

A verification predicate D : X × Y ×A× B → {0, 1}: D(x , y , a, b) = 1 means win

val∗(G) = sup
p∈Cq⊗

∑
x,y

µ(x , y)
∑
a,b

D(x , y , a, b)pabxy

Remark:
Let E (G, p) := min. dimension needed for winning prob ≥ p (can be +∞)
Statement of the form E (G, val∗(G)− 1

4
) ≤ f (G) with f computable contradicts theorem

⇒ Need to show existence of games G that need entanglement � size of description of G

2/9

A few things about Turing machines

A k-input Turing machine (TM) M computes a partial function f : ({0, 1}∗)k → {0, 1}∗,
that we also call M. If M does not halt on x1, . . . , xk , we set M(x1, . . . , xk) =⊥
A TM M (a tuple with states and transition rules) can be described by a bitstring
M∈ {0, 1}∗. We use |M| for the length of the bitstring M
Conversely any α ∈ {0, 1}∗ can be interpreted as a k-input TM [α]k

It is possible to simulate TMs from their description

Theorem (Efficient universal Turing machines)

For any k, there exists a 2-input TM Uk such that for any α ∈ {0, 1}∗, x ∈ ({0, 1}∗)k ,
Uk (α, k) = [α]k (x). Uk (α, x) halts within Ck,αT log T steps if [α]k (x) halts in T steps.

TIMEM,x denotes the running time of M on input x (∞ if does not halt)

In the rest of the talk, we will not always make the distinction between M and its
description M

3/9

Describing families of games

Will need families of games described by Turing machines

Definition

A normal form verifier (NFV) is a pair V = (S,D) of Turing machines.

S is called a sampler (full definition is complicated and not important for today)
On input starting with n ∈ N outputs a description of
a probability distribution µS,n on {0, 1}≤RANDS (n) × {0, 1}≤RANDS (n)

D is called a decider and is a 5-input Turing machine
Input of the form (n, x , y , a, b) with n ∈ N and x , y , a, b ∈ {0, 1}∗
TIMED(n): max. running time on inputs (n, x , y , a, b)
D outputs 0 or 1

A normal form verifier defines a family of nonlocal games for every n

Definition

V defines the games {Vn} with

question sets X = Y = {0, 1}≤RANDS (n)

answer sets A = B = {0, 1}≤TIMED(n)

prob distribution on questions µS,n

decision predicate is D(n, ., ., ., .)

RANDS(n) and TIMED(n) will be polynomials in n
4/9

The compression theorem: overview

The main theorem of the paper is:

Theorem (Compression theorem)

There exists a polynomial-time Turing machine Compress that takes as input a NFV V = (S,D)
and outputs another NFV V ′ = (S′,D′) satisfying for all n ∈ N

1 If val∗(V2n) = 1, then val∗(V ′n) = 1

2 If val∗(V2n) ≤ 1
2

, then val∗(V ′n) ≤ 1
2

3 E (V ′n, 1
2

) ≥ max{E (V2n ,
1
2

), 22Ω(n)}

E (G, 1
2

) := min. dimension needed to get a winning prob ≥ 1
2

The sampler S′ does not depend on V

Today: Compression theorem =⇒ Game value as hard as halting

Sketch:
Given M, construct a NFV VM = (SM,DM) with DM working as follows:
On input (n, x , y , a, b), execute M for n steps, if halts ⇒ output 1
Else compute a description of V ′ = (S′,D′) := Compress(VM) and output D′(n, x , y , a, b)
If M halts in T steps, then n ≥ T , val∗(VMn) = 1
For n < T , val∗(VMn) = val∗(VM2n) = val∗(VM

22n) = · · · = 1

If M does not halt, then for any n

E (V ′n, 1
2

) ≥ E (VM2n ,
1
2

) ≥ · · · ≥ 22···2
n

E (V ′n, 1
2

) = +∞ =⇒ val∗(VMn) ≤ 1
2

5/9

The compression theorem: overview

The main theorem of the paper is:

Theorem (Compression theorem)

There exists a polynomial-time Turing machine Compress that takes as input a NFV V = (S,D)
and outputs another NFV V ′ = (S′,D′) satisfying for all n ∈ N

1 If val∗(V2n) = 1, then val∗(V ′n) = 1

2 If val∗(V2n) ≤ 1
2

, then val∗(V ′n) ≤ 1
2

3 E (V ′n, 1
2

) ≥ max{E (V2n ,
1
2

), 22Ω(n)}

E (G, 1
2

) := min. dimension needed to get a winning prob ≥ 1
2

The sampler S′ does not depend on V

Today: Compression theorem =⇒ Game value as hard as halting

Sketch:
Given M, construct a NFV VM = (SM,DM) with DM working as follows:
On input (n, x , y , a, b), execute M for n steps, if halts ⇒ output 1
Else compute a description of V ′ = (S′,D′) := Compress(VM) and output D′(n, x , y , a, b)
If M halts in T steps, then n ≥ T , val∗(VMn) = 1
For n < T , val∗(VMn) = val∗(VM2n) = val∗(VM

22n) = · · · = 1

If M does not halt, then for any n

E (V ′n, 1
2

) ≥ E (VM2n ,
1
2

) ≥ · · · ≥ 22···2
n

E (V ′n, 1
2

) = +∞ =⇒ val∗(VMn) ≤ 1
2 5/9

The compression theorem in more detail

Definition

V = (S,D) is λ bounded if

1 |V| ≤ λ
2 For all n, TIMED(n),RANDS(n) ≤ (λn)λ

i.e., the game Vn has questions and answers bitstrings of length ≤ (λn)λ

Theorem (Compression theorem)

For every λ ∈ N+ (parameter that will govern the game families for which compression works)
there exists a TM Compressλ
V = (S,D) → Compressλ → Vcompr = (Scompr,Dcompr)

Description of Compressλ can be computed in time poly(log λ)

Compressλ runs in time polynomial in |V| and log λ

|Dcompr| = poly(|V|, log λ) and |Scompr| = poly(log λ)

TIMEDcompr (n) = poly(n, |V|, λ) and RANDScompr (n) = poly(n, λ)

and if V is λ-bounded then for all n ≥ n0 (universal constant)

If val∗(V2n) = 1, then val∗(Vcompr
n) = 1

If val∗(V2n) ≤ 1
2

, then val∗(Vcompr
n) ≤ 1

2

E (V ′n, 1
2

) ≥ max{E (V2n ,
1
2

), 1
2

2λ2λn}

6/9

Using the compression theorem

For every TM M and parameters λ,∆, we construct a TM F :

Input: description of D of 5-input TM

Output: description of D′ of a 5-input TM that works as follows
On input (n, x , y , a, b)

1 Run M on empty tape for n steps. If M halts, accept
2 Else Vcompr = (Scompr,Dcompr) = Compressλ(V)
3 Return Dcompr(n, x, y , a, b)

If it has not stopped after (∆n)∆ steps, reject

Claim: F halts on all inputs and the description of F can be computed in time
poly(|M|, log λ, log ∆)

Notation: M≡M′ when they compute the same function

Theorem (Applying the Kleene-Roger fixed point theorem to F)

Because F halts on all inputs, there exists a TM Dhalt such that Dhalt ≡ F(Dhalt)
In addition, there is a Turing machine ComputeFPk such that ComputeFPk (F) = Dhalt

Moreover, Dhalt(x) runs in time poly(|F|,TIMEF,M,TIMEF(Dhalt),x)

Define V = (Scompr,Dhalt) be a normal form verifier. Then it satisfies the following properties:

For any n, if M halts in n steps, then val∗(Vn) = 1

For any n, if M does not halt in n steps then the decision predicate for Vn is defined as
Dcompr(n, x , y , a, b)
=⇒ val∗(Vn) = val∗(Vcompr

n) and E (Vn, 1
2

) = E (Vcompr
n , 1

2
)

7/9

Putting things together

Theorem (Game value at least as hard as halting)

For all Turing machines M, there exists a game GM such that

If M halts on empty tape, then val∗(GM) = 1

If M does not halt on empty tape, then val∗(GM) ≤ 1
2

Moreover, a description of the game GM can be computed in polynomial time in the size of the
description of M.

Given M compute appropriately large enough λ,∆ (to guarantee that later V is λ-bounded
and F(D) does not exceed the time bound)

Construct V such that D ≡ F(D)

The game GM will be defined as the Vn0

If M halts after T steps then for n ≥ T , val∗(Vn) = 1 (all questions and answers win!)
For n0 ≤ n < T ≤ 2n, then D(n, x , y , a, b) = Dcompr(n, x , y , a, b)
but we know that val∗(V2n) = 1, thus val∗(Vcompr

n) = val∗(Vn) = 1
In general, repeat this inductively

If M does not halt, we have for n ≥ n0

E (Vn, 1
2

) = E (Vcompr
n , 1

2
) ≥ E (V2n ,

1
2

)

Repeating, E (Vn, 1
2

) ≥ E (V
22···2n ,

1
2

) ≥ 1
2

2λ2λ2...2
n

E (Vn, 1
2

) = +∞ ⇔ val∗(Vn) ≤ 1
2

8/9

Suggestions for future talks

Self testing and nonlocal games

PCP theorem

Quantum low-degree test

Putting things together

9/9

