
The PCP theorem and the complexity of 2 prover games

A game G is described four finite nonempty sets X ,Y,A,B, a probability distribution µ : X ×Y → R+

(we assume that for all x, y, µ(x, y) can be represented by abitstring of length at most dlog(|X ||Y|)e) and a
table V : X ×Y×A×B → {0, 1}. To see it as the input of a computational problem which should represent
G using a finite bitstring. One way to represent such a G is by the following string:

repr(G) := bin(|X |) | bin(|Y|) | bin(|A|) | bin(|B|) | bindlog(|X ||Y|)e(µ(x, y))x,y∈X ,Y | (V (x, y, a, b))x,y,a,b∈X ,Y,A,B

where bin(n) is the binary representation of the integer n, bink(α) for α ∈ (0, 1) is the binary representation
of α truncated after k bits, | is a separator symbol. To represent the lists for µ and V , we have implicitly
chosen a fixed orders on X ×Y and X ×Y×A×B and the list is represented as a separated sequence of bit-
strings in the corresponding order. Note that the size of the string representingG containsO(|X ||Y||A||B|)
symbols.

Given a game G, we can define its value

val(G) = sup
p,q

∑
x,y

µ(x, y)
∑
a,b

V (x, y, a, b)p(a|x)q(b|y) ,

where p, q are such that p(.|x), q(.|y) are probability distributions for every x, y. As the function is linear in p
and q, we can restrict the optimization to p, q satisfying p(a|x), q(b|y) ∈ {0, 1}, i.e., deterministic strategies.
We can then define the promise problem ρ-GAPGAMEVAL as follows: for any G as above if val(G) = 1,
then repr(G) is a YES instance and if val(G) ≤ ρ, then repr(G) is a NO instance

Proposition 0.1. There exists a constant ρ < 1 such that promise problem ρ-GAPGAMEVAL is NP-hard in the
sense that for any L ∈ NP , there is a polynomial time function f such that if x ∈ L, then f(x) is a YES instance of
ρ-GAPGAMEVAL and if x /∈ L, f(x) is a NO instance of ρ-GAPGAMEVAL.

Proof We are going to use the NP-hardness of ρ-GAP3SAT (see the chapter on PCP theorem in the Arora-
Barak book https://theory.cs.princeton.edu/complexity/book.pdf). An instance of GAP3SAT is given by
a set of variables labeled by [n], and a set of constraints labeled by [m]. A constraint i ∈ [m] contains three
variables v1(i), v2(i), v3(i) ∈ [n] and each variable appears with a negation or not we represent this with
w1(i), w2(i), w3(i) ∈ {0, 1}. For example, a constraint x1∨x̄10∨x12 is represented by v1 = 1, v2 = 10, v3 = 12
and w1 = 0, w2 = 1, w3 = 0. The game we construct is as follows: X = [n],Y = [m],A = {0, 1},B = {0, 1}3.
Then µ(v, i) = 1

3m if variable v ∈ {v1(i), v2(i), v3(i)} and otherwise 0. Also we set V (v, i, a, (b1, b2, b3)) = 1

when b1, b2, b3 satisfies the constraint i (i.e., b̄w1(i)
1 ∨ b̄w2(i)

2 ∨ b̄w3(i)
3 = 1, where the notation b̄w refers to b if

w = 0 and b̄ if w = 1) and a = bj where v = vj(i). And V is set to 0 otherwise. Note that all the operations
take a time which is polynomial in n and m so this is a valid reduction.

Now assume that the instance of GAP3SAT is satisfiable. Then the game has a strategy than wins with
probability 1: just take a satisfying assignment and both players answer according to this. Conversely,
assume the game has a winning probability 1−δ. Then let us construct an assignment of the variables. We
may assume that the strategy achieving 1− δ is deterministic. Thus, the first player’s strategy is described
by a function σ : [n]→ {0, 1} and we interpret this as an assignment to the variables. Then the probability
of losing the game can be written as

1

3m

∑
i∈[m]

3∑
j=1

1σ(vj(i))6=bj(i) OR b̄1(i)w1(i)∨b̄2(i)w2(i)∨b̄3(i)w3(i)=0
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We know that this quantity is ≤ δ. We are on the other hand interested in

1

m

∑
i∈[m]

1
σ(v1(i))

w1(i)∨σ(v2(i))
w2(i)∨σ(v3(i))

w3(i)=0
≤ 1

m

∑
i∈[m]

1b̄1(i)w1(i)∨b̄2(i)w2(i)∨b̄3(i)w3(i)=01σ(vj(i))=bj(i)∀j∈{1,2,3}

+
1

m

∑
i∈[m]

3∑
j=1

1σ(vj(i))6=bj(i)

≤ 6δ .

So the formula si (1− 6δ)-satisfiable and this concludes the proof of the converse. ut

Note that we can even obtain the NP-hardness for any constant ρ < 1. This follows immediately from
the parallel repetition theorem. In fact, we will give a reduction from ρ-GAPGAMEVAL to ε-GAPGAMEVAL

for any ε > 0. Take an instance G for ρ-GAPGAMEVAL and then consider the game G′ obtained by parallel
repetition G a constant c(ρ, ε) number of times. Then G′ can be obtained in polynomial time from G, and
if G had a value of 1, then so does G′, and if G had a value ≤ ρ, then G′ has a value ≤ ε if c(ρ, ε) is chosen
appropriately.
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