The Navascués–Pironio–Acín hierarchy

Guillaume Aubrun

Université Lyon 1, France

April 9, 2020

Reference : arXiv:0803.4290, A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations.

Recall from lecture 1: Connes' embedding problem \iff Kirchberg conjecture \iff Tsirelson problem.

Tsirelson problem asks whether the equality $C_{qc}^{m,d} = \overline{C_{q\otimes}^{m,d}}$ holds for every m, d (definition in next slides). A negative answer is announced in the MIP^{*} = RE paper.

 $qc = quantum \text{ commuting}, q \otimes = quantum \text{ tensor product}$

Recall from lecture 1: Connes' embedding problem \iff Kirchberg conjecture \iff Tsirelson problem.

Tsirelson problem asks whether the equality $C_{qc}^{m,d} = \overline{C_{q\otimes}^{m,d}}$ holds for every m, d (definition in next slides). A negative answer is announced in the MIP^{*} = RE paper.

 $qc=\mbox{quantum}$ commuting, $q\otimes=\mbox{quantum}$ tensor product

Both $C_{qc}^{m,d}$ and $C_{q\otimes}^{m,d}$ are sets of correlation matrices, of the form $p(ab|xy)_{a,b\in[m]:x,y\in[d]},$

such that, at fixed x, y, $p(ab|xy)_{a,b}$ is a probability distribution on $[m]^2$.

We now drop the superscripts m and d.

$$p(ab|xy) = \langle \xi | P^a_x Q^b_y | \xi
angle$$

where

- ξ is a unit vector in a Hilbert space \mathcal{H} ,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H} ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H} ,
- for every $x, y \in [d]$, and $a, b \in [m]$, we have $[P_x^a, Q_y^b] = 0$.

 PVM (projector-valued measure) = finite family of orthogonal projections summing to $\mathrm{Id}.$

$$p(ab|xy) = \langle \xi | P_x^a Q_y^b | \xi
angle$$

where

- ξ is a unit vector in a Hilbert space \mathcal{H} ,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H} ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H} ,
- for every $x, y \in [d]$, and $a, b \in [m]$, we have $[P_x^a, Q_y^b] = 0$.

 PVM (projector-valued measure) = finite family of orthogonal projections summing to $\mathrm{Id}.$

 $\mathsf{C}_{\mathrm{qc}} \subset [0,1]^{\textit{m}^2\textit{d}^2}$;

$$p(ab|xy) = \langle \xi | P_x^a Q_y^b | \xi
angle$$

where

- ξ is a unit vector in a Hilbert space \mathcal{H} ,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H} ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H} ,
- for every $x, y \in [d]$, and $a, b \in [m]$, we have $[P_x^a, Q_y^b] = 0$.

 PVM (projector-valued measure) = finite family of orthogonal projections summing to Id.

$$\mathsf{C}_{\mathrm{qc}} \subset [0,1]^{m^2 d^2}$$
 ; C_{qc} is a convex set (easy) ;

$$p(ab|xy) = \langle \xi | P^a_x Q^b_y | \xi
angle$$

where

- ξ is a unit vector in a Hilbert space \mathcal{H} ,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H} ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H} ,
- for every $x, y \in [d]$, and $a, b \in [m]$, we have $[P_x^a, Q_y^b] = 0$.

 PVM (projector-valued measure) = finite family of orthogonal projections summing to Id.

$$C_{qc} \subset [0,1]^{m^2d^2}$$
; C_{qc} is a convex set (easy);
dim $(C_{qc}) = m^2(d-1)^2 + 2m(d-1) < m^2d^2$ — because of the
nonsignalling conditions $p(a|xy) = p(a|xy')$, $p(b|xy) = p(b|x'y)$

$$p(ab|xy) = \langle \xi | P^a_x Q^b_y | \xi
angle$$

where

- ξ is a unit vector in a Hilbert space \mathcal{H} ,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H} ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H} ,
- for every $x, y \in [d]$, and $a, b \in [m]$, we have $[P_x^a, Q_y^b] = 0$.

 PVM (projector-valued measure) = finite family of orthogonal projections summing to $\mathrm{Id}.$

 $\mathsf{C}_{\rm qc} \subset [0,1]^{m^2d^2}$; $\mathsf{C}_{\rm qc}$ is a convex set (easy); $\mathsf{dim}(\mathsf{C}_{\rm qc}) = m^2(d-1)^2 + 2m(d-1) < m^2d^2$ — because of the nonsignalling conditions p(a|xy) = p(a|xy'), p(b|xy) = p(b|x'y) $\mathsf{C}_{\rm qc}$ is closed (not obvious, will follow from today's proof)

$$p(ab|xy) = \langle \xi | P_x^a \otimes Q_y^b | \xi \rangle$$

where

- ξ is a unit vector in $\mathcal{H}_1 \otimes \mathcal{H}_2$ where $\mathcal{H}_1, \mathcal{H}_2$ are Hilbert spaces,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H}_1 ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H}_2 .

$$p(ab|xy) = \langle \xi | P_x^a \otimes Q_y^b | \xi \rangle$$

where

- ξ is a unit vector in $\mathcal{H}_1 \otimes \mathcal{H}_2$ where $\mathcal{H}_1, \mathcal{H}_2$ are Hilbert spaces,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H}_1 ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H}_2 .

 $C_{q\otimes} \subset C_{qc}$ because $[P_x^a \otimes \mathrm{Id}, \mathrm{Id} \otimes Q_y^b] = 0;$

$$p(ab|xy) = \langle \xi | P_x^a \otimes Q_y^b | \xi \rangle$$

where

- ξ is a unit vector in $\mathcal{H}_1 \otimes \mathcal{H}_2$ where $\mathcal{H}_1, \mathcal{H}_2$ are Hilbert spaces,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H}_1 ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H}_2 .

$$C_{q\otimes} \subset C_{qc}$$
 because $[P_x^a \otimes \mathrm{Id}, \mathrm{Id} \otimes Q_y^b] = 0;$
 $C_{q\otimes}$ is convex (easy)

$$p(ab|xy) = \langle \xi | P_x^a \otimes Q_y^b | \xi \rangle$$

where

- ξ is a unit vector in $\mathcal{H}_1 \otimes \mathcal{H}_2$ where $\mathcal{H}_1, \mathcal{H}_2$ are Hilbert spaces,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H}_1 ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H}_2 .

$$C_{q\otimes} \subset C_{qc}$$
 because $[P_x^a \otimes \mathrm{Id}, \mathrm{Id} \otimes Q_y^b] = 0;$
 $C_{q\otimes}$ is convex (easy)
 $\dim(C_{q\otimes}) = \dim(C_{qc})$

$$p(ab|xy) = \langle \xi | P_x^a \otimes Q_y^b | \xi \rangle$$

where

- ξ is a unit vector in $\mathcal{H}_1\otimes\mathcal{H}_2$ where $\mathcal{H}_1,\mathcal{H}_2$ are Hilbert spaces,
- for every $x \in [d]$, $(P_x^a)_{a \in [m]}$ is a PVM on \mathcal{H}_1 ,
- for every $y \in [d]$, $(Q_y^b)_{b \in [m]}$ is a PVM on \mathcal{H}_2 .

$$\begin{array}{l} \mathsf{C}_{\mathrm{q}\otimes}\subset\mathsf{C}_{\mathrm{qc}} \text{ because } [P^a_x\otimes\mathrm{Id},\mathrm{Id}\otimes Q^b_y]=0;\\ \mathsf{C}_{\mathrm{q}\otimes} \text{ is convex (easy)}\\ \dim(\mathsf{C}_{\mathrm{q}\otimes})=\dim(\mathsf{C}_{\mathrm{qc}})\\ \mathsf{C}_{\mathrm{q}\otimes} \text{ is not closed (cf. lecture 3).} \end{array}$$

Tsirelson's problem asks whether $\overline{C_{q\otimes}}=C_{qc}$. By the Hahn–Banach theorem, this is false if and only if there is a linear form G such that $sup_{C_{q\otimes}} \ G < max_{C_{qc}} \ G$.

In this talk, what we call a *game* is a linear form on $\mathbf{R}^{m^2d^2}$ with rational coefficients (games satisfy some extra constraints, such as mapping correlation matrices to [0, 1])

In this talk, what we call a *game* is a linear form on $\mathbf{R}^{m^2d^2}$ with rational coefficients (games satisfy some extra constraints, such as mapping correlation matrices to [0, 1])

Theorem 1 (Theorem 12.10 in the $MIP^* = RE$ paper)

There is a computable function which maps a Turing machine ${\rm T}$ to a game G such that

- If T halts on the empty word, then $\sup G = 1$,
- $\begin{tabular}{l} C_{\rm q\otimes} \\ \hline {\bf C}_{\rm q\otimes} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ \hline {\bf C}_{\rm q\otimes} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ C_{\rm q\otimes} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ C_{\rm q\otimes} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ C_{\rm q\otimes} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ C_{\rm q\otimes} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ C_{\rm q\otimes} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ C_{\rm q\otimes} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ C_{\rm q\otimes} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ C_{\rm q\otimes} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} C_{\rm q\otimes} \\ C_{\rm q\otimes} \end{tabular} \end{t$

In this talk, what we call a *game* is a linear form on $\mathbf{R}^{m^2d^2}$ with rational coefficients (games satisfy some extra constraints, such as mapping correlation matrices to [0, 1])

Theorem 1 (Theorem 12.10 in the $MIP^* = RE$ paper)

There is a computable function which maps a Turing machine ${\rm T}$ to a game G such that

• If
$${\rm T}$$
 halts on the empty word, then $\sup_{C_{q\otimes}} G=1,$

2 If ${\rm T}$ does not halt on the empty word, then $\sup_{{\sf C}_{q\otimes}}G\leqslant 1/2.$

Formally, $f : \{0,1\}^* \to \{0,1\}^*$ and $\langle G \rangle = f(\langle T \rangle)$. The parameters m, d of the game G depend on T and are included in $\langle G \rangle$.

We show the following. Consider m, d and a linear form G on $[0,1]^{m^2d^2}$.

• There is an algorithm which computes an increasing sequence (α_N) such that

$$\alpha_1 \leqslant \alpha_2 \leqslant \cdots \leqslant \lim_{N \to \infty} \alpha_N = \sup_{\mathsf{C}_{\mathsf{q}} \otimes} \mathsf{G}.$$

Output: Provide the address of the sequence (β_N) such that

$$\beta_1 \ge \beta_2 \ge \cdots \ge \lim_{N \to \infty} \beta_N = \max_{C_{qc}} G.$$

We show the following. Consider m, d and a linear form G on $[0,1]^{m^2d^2}$.

There is an algorithm which computes an increasing sequence (α_N) such that

$$\alpha_1 \leqslant \alpha_2 \leqslant \cdots \leqslant \lim_{N \to \infty} \alpha_N = \sup_{\mathsf{C}_{\mathsf{q}} \otimes} \mathsf{G}.$$

There is an algorithm which computes a decreasing sequence (\(\beta_N\)) such that

$$\beta_1 \geqslant \beta_2 \geqslant \cdots \geqslant \lim_{N \to \infty} \beta_N = \max_{C_{qc}} G.$$

Algorithm = computable function $\{0,1\}^* \rightarrow \{0,1\}^*$.

If Tsirelson problem has a positive answer, then for every linear form G

$$\sup_{\mathsf{C}_{\mathrm{q}\otimes}} G = \max_{\mathsf{C}_{\mathrm{qc}}} G.$$

If Tsirelson problem has a positive answer, then for every linear form G

$$\sup_{\mathsf{C}_{\mathrm{q}\otimes}} G = \max_{\mathsf{C}_{\mathrm{qc}}} G.$$

In that case, the algorithms 1. and 2. can be combined into a Turing machine T_0 which, given $\langle G \rangle$ as input, and computes the pair (α_N, β_N) for increasing integers N, until either $\alpha_N > 1/2$ (then it accepts G) or $\beta_N < 1$ (then it rejects G). This machine always halts.

If Tsirelson problem has a positive answer, then for every linear form G

$$\sup_{\mathsf{C}_{\mathrm{q}\otimes}} G = \max_{\mathsf{C}_{\mathrm{qc}}} G.$$

In that case, the algorithms 1. and 2. can be combined into a Turing machine T_0 which, given $\langle G \rangle$ as input, and computes the pair (α_N, β_N) for increasing integers N, until either $\alpha_N > 1/2$ (then it accepts G) or $\beta_N < 1$ (then it rejects G). This machine always halts.

Consider the Turing machine $D = T_0 \circ f$, where f is the function from Theorem 12.10 (recall that $f(\langle M \rangle)$ is a game with value = 1 or $\leq 1/2$ depending whether M halts on the empty word).

The Turing machine D solves the halting problem (on the empty word). This is a contradiction, and therefore the Tsirelon problem has a negative answer.

Fact: if $C_{q\otimes,N}$ is the same set as $C_{q\otimes}$, but with the restriction that $\dim(\mathcal{H}_1) \leqslant N$ and $\dim(\mathcal{H}_2) \leqslant N$, then

$$\overline{\bigcup_{N}\mathsf{C}_{\mathrm{q}\otimes,N}}=\overline{\mathsf{C}_{\mathrm{q}\otimes}}.$$

Fact: if $C_{q\otimes,N}$ is the same set as $C_{q\otimes}$, but with the restriction that $\dim(\mathcal{H}_1) \leqslant N$ and $\dim(\mathcal{H}_2) \leqslant N$, then

$$\bigcup_{N} \mathsf{C}_{\mathrm{q}\otimes,N} = \overline{\mathsf{C}_{\mathrm{q}\otimes}}.$$

A POVM (positive operator-valued measure) is a finite family of positive operators (A_i) summing to Id. Every PVM is a POVM.

Fact: if $C_{q\otimes,N}$ is the same set as $C_{q\otimes}$, but with the restriction that $\dim(\mathcal{H}_1) \leqslant N$ and $\dim(\mathcal{H}_2) \leqslant N$, then

$$\bigcup_{N} \mathsf{C}_{\mathrm{q}\otimes,N} = \overline{\mathsf{C}_{\mathrm{q}\otimes}}.$$

A POVM (positive operator-valued measure) is a finite family of positive operators (A_i) summing to Id. Every PVM is a POVM.

We can replace PVMs by POVMs in the definition of $C_{q\otimes}$. This is because of the Naimark dilation theorem: if (A_1, \ldots, A_n) is a POVM on \mathcal{H} , then there is an isometry $\iota : \mathcal{H} \to \mathcal{H}'$ and a PVM (P_i) on \mathcal{H}' such that $A_i = \iota^* P_i \iota$.

Fact: if $C_{q\otimes,N}$ is the same set as $C_{q\otimes}$, but with the restriction that $\dim(\mathcal{H}_1) \leqslant N$ and $\dim(\mathcal{H}_2) \leqslant N$, then

$$\bigcup_{N} \mathsf{C}_{\mathrm{q}\otimes,N} = \overline{\mathsf{C}_{\mathrm{q}\otimes}}.$$

A POVM (positive operator-valued measure) is a finite family of positive operators (A_i) summing to Id. Every PVM is a POVM.

We can replace PVMs by POVMs in the definition of $C_{q\otimes}$. This is because of the Naimark dilation theorem: if (A_1, \ldots, A_n) is a POVM on \mathcal{H} , then there is an isometry $\iota : \mathcal{H} \to \mathcal{H}'$ and a PVM (P_i) on \mathcal{H}' such that $A_i = \iota^* P_i \iota$.

Proof: define $\mathcal{H}' = \oplus_{i=1}^n \mathcal{H}$, P_i = the projection on the *i*th copy, and

$$\iota(x) = (A_1^{1/2}x, \ldots, A_n^{1/2}x), \ \iota^*(x_1, \ldots, x_n) = \sum_i A_i^{1/2}x_i.$$

With the definition via POVMs is it easy to prove $\overline{\bigcup C_{q\otimes,N}} = \overline{C_{q\otimes}}$: take finite-rank projectors Π_1 , Π_2 such that $\|(\Pi_1 \otimes \Pi_2)\xi - \xi\| \leq \varepsilon$, and replace the POVMs (P_x^a) , (Q_y^b) by the POVMs $(\Pi_1 P_x^a \Pi_1)$, $(\Pi_2 Q_y^b \Pi_2)$ on the finite-dimensional Hilbert spaces $\Pi_1(\mathcal{H}_1)$, $\Pi_2(\mathcal{H}_2)$.

With the definition via POVMs is it easy to prove $\overline{\bigcup C_{q\otimes,N}} = \overline{C_{q\otimes}}$: take finite-rank projectors Π_1 , Π_2 such that $\|(\Pi_1 \otimes \Pi_2)\xi - \xi\| \leq \varepsilon$, and replace the POVMs (P_x^a) , (Q_y^b) by the POVMs $(\Pi_1 P_x^a \Pi_1)$, $(\Pi_2 Q_y^b \Pi_2)$ on the finite-dimensional Hilbert spaces $\Pi_1(\mathcal{H}_1)$, $\Pi_2(\mathcal{H}_2)$.

Algorithm 1 computes a $\frac{1}{N}$ -approximation of

 $\sup_{p\in C_{q\otimes,N}}G(p).$

Indeed the unit sphere of $\mathbf{C}^N \otimes \mathbf{C}^N$, and the set

$$\{(P_1,\ldots,P_m) : P_i \ge 0, \sum P_i = \mathrm{Id}\}$$

are compact, so there admit finite ε -dense subsets. Moreover, such subsets can obtained algorithmically. The algorithm optimizes over these finite subsets.

Consider the alphabet $S = \{p_x^a\}_{x \in [d], a \in [m]} \cup \{q_y^b\}_{y \in [d], b \in [m]}$. We write S_N for the set of words of length at most N, and $S^* = \bigcup S_N$. The concatenation of the words s and t is denoted $s \cap t$.

Consider the alphabet $S = \{p_x^a\}_{x \in [d], a \in [m]} \cup \{q_y^b\}_{y \in [d], b \in [m]}$. We write S_N for the set of words of length at most N, and $S^* = \bigcup S_N$. The concatenation of the words s and t is denoted $s \frown t$.

Let $p(ab|xy) \in C_{qc}$; so there are commuting PVMs (P_x^a) , (Q_y^b) and a unit vector ξ . To a word $s \in S$ corresponds an operator $\pi(s)$ on \mathcal{H} , such that $\pi(p_x^a) = P_x^a$, $\pi(q_y^b) = Q_y^b$ and $\pi(s^{\frown}t) = \pi(s)\pi(t)$.

Consider the alphabet $S = \{p_x^a\}_{x \in [d], a \in [m]} \cup \{q_y^b\}_{y \in [d], b \in [m]}$. We write S_N for the set of words of length at most N, and $S^* = \bigcup S_N$. The concatenation of the words s and t is denoted $s \frown t$.

Let $p(ab|xy) \in C_{qc}$; so there are commuting PVMs (P_x^a) , (Q_y^b) and a unit vector ξ . To a word $s \in S$ corresponds an operator $\pi(s)$ on \mathcal{H} , such that $\pi(p_x^a) = P_x^a$, $\pi(q_y^b) = Q_y^b$ and $\pi(s^{\frown}t) = \pi(s)\pi(t)$. Set

$$\Gamma_{s,t} = \langle \pi(s)\xi, \pi(t)\xi \rangle = \langle \xi, \pi(s)^*\pi(t)\xi \rangle.$$

Consider the alphabet $S = \{p_x^a\}_{x \in [d], a \in [m]} \cup \{q_y^b\}_{y \in [d], b \in [m]}$. We write S_N for the set of words of length at most N, and $S^* = \bigcup S_N$. The concatenation of the words s and t is denoted $s \frown t$.

Let $p(ab|xy) \in C_{qc}$; so there are commuting PVMs (P_x^a) , (Q_y^b) and a unit vector ξ . To a word $s \in S$ corresponds an operator $\pi(s)$ on \mathcal{H} , such that $\pi(p_x^a) = P_x^a$, $\pi(q_y^b) = Q_y^b$ and $\pi(s^{\frown}t) = \pi(s)\pi(t)$. Set

$$\Gamma_{s,t} = \langle \pi(s)\xi, \pi(t)\xi \rangle = \langle \xi, \pi(s)^*\pi(t)\xi \rangle.$$

The matrix $(\Gamma_{s,t})_{s,t\in S^*}$ is positive, its entries satisfy some affine relations A1 $\Gamma_{p_s^2,q_s^b} = p(ab|xy)$,

A2 If $g \in S$ and $s, t \in S^*$, then $\Gamma_{g \frown s, g \frown t} = \Gamma_{g \frown s, t} = \Gamma_{s, g \frown t}$,

A3 If $a \neq a' \in [m]$, $x \in [d]$ and $s, t \in S^*$, then $\Gamma_{p_x^a \frown s, p_x^{a'} \frown t} = 0$, and same for y, b, b'

A4 If $x \in [d]$, $s, t \in S^*$, then $\sum_{a} \Gamma_{p_x^a \frown s, t} = \Gamma_{s,t}$, same for y [so $\Gamma_{\emptyset,\emptyset} = 1$] A5 If $x, y \in [d]$, $a, b \in [m]$ and $s, t \in S^*$, then $\Gamma_{p_x^a \frown s, q_x^b \frown t} = \Gamma_{q_x^b \frown s, p_x^a \frown t}$.

Theorem 2

 $p(ab|xy) \in C_{qc}$ if and only if it admits a certificate.

Theorem 2

 $p(ab|xy) \in C_{qc}$ if and only if it admits a certificate.

Since Γ is postive, it can be realized as a Gram matrix: there is a Hilbert space \mathcal{H} and vectors $(v(s))_{s\in S^*}$ in \mathcal{H} such that

$$\Gamma_{s,t} = \langle v(s), v(t) \rangle$$

for every $s, t \in S^*$. We can assume that $\mathcal{H} = \overline{\text{span}}\{v(s) : s \in S^*\}$.

Theorem 2

 $p(ab|xy) \in C_{qc}$ if and only if it admits a certificate.

Since Γ is postive, it can be realized as a Gram matrix: there is a Hilbert space \mathcal{H} and vectors $(v(s))_{s\in S^*}$ in \mathcal{H} such that

$$\Gamma_{s,t} = \langle v(s), v(t) \rangle$$

for every $s, t \in S^*$. We can assume that $\mathcal{H} = \overline{\text{span}}\{v(s) : s \in S^*\}$. We then define

- $\xi = v(\emptyset)$,
- $P_{_X}^a=$ orthogonal projector onto $\overline{\operatorname{span}}\{v(p_{_X}^a\frown s)\ :\ s\in \mathcal{S}^*\}$,
- $Q_y^b = ext{orthogonal projector onto } \overline{\operatorname{span}}\{v(q_y^b \frown s) \ : \ s \in \mathcal{S}^*\}.$

- $\xi = v(\emptyset)$,
- $P_x^a = ext{orthogonal projector onto } \overline{ ext{span}} \{ v(p_x^a \widehat{\ } s) \ : \ s \in \mathcal{S}^* \}$,
- $Q_y^b = \text{orthogonal projector onto } \overline{\text{span}}\{v(q_y^b \cap s) : s \in S^*\}.$

We have

- **2** for every x, y, a, b, we have $p(ab|xy) = \langle \xi | P_x^a Q_y^b | \xi \rangle$,
- (a) for every x, $(P_x^a)_a$ is a PVM. The fact that $P_x^a P_x^{a'} = 0$ if $a \neq a'$ follows from Axiom 3 and the fact that $\sum_a P_x^a = \text{Id}$ follows from Axiom 4,
- for every y, $(Q_v^b)_b$ is a PVM. Same as before,
- **5** for every x, y, a, b, we have $[P_x^a, Q_y^b] = 0$. This follows from Axiom 5.

- $\xi = v(\emptyset)$,
- $P_x^a = ext{orthogonal projector onto } \overline{ ext{span}} \{ v(p_x^a \widehat{\ } s) \ : \ s \in \mathcal{S}^* \}$,
- $Q_y^b = \text{orthogonal projector onto } \overline{\text{span}}\{v(q_y^b \cap s) : s \in S^*\}.$

We have

- **2** for every x, y, a, b, we have $p(ab|xy) = \langle \xi | P_x^a Q_y^b | \xi \rangle$,
- (a) for every x, $(P_x^a)_a$ is a PVM. The fact that $P_x^a P_x^{a'} = 0$ if $a \neq a'$ follows from Axiom 3 and the fact that $\sum_a P_x^a = \text{Id}$ follows from Axiom 4,
- for every y, $(Q_v^b)_b$ is a PVM. Same as before,
- **5** for every x, y, a, b, we have $[P_x^a, Q_y^b] = 0$. This follows from Axiom 5.

Question for C^* -algebraists: is this the GNS construction?

Lemma 3

A correlation matrix admits a certificate iff it admits a N-certificate for every N.

Lemma 3

A correlation matrix admits a certificate iff it admits a N-certificate for every N.

We claim that $|\Gamma_{s,t}^N| \leq 1$, and then for some subsequence $\lim_{N\to\infty} \Gamma_{s,t}^N$ exists for every s, t (diagonal extraction) and also satifies axioms A1–A5.

Lemma 3

A correlation matrix admits a certificate iff it admits a N-certificate for every N.

We claim that $|\Gamma_{s,t}^{N}| \leq 1$, and then for some subsequence $\lim_{N\to\infty} \Gamma_{s,t}^{N}$ exists for every s, t (diagonal extraction) and also satifies axioms A1–A5. Since Γ^{N} is positive, it satisfies $|\Gamma_{s,t}^{N}| \leq |\Gamma_{s,s}^{N}|^{1/2} |\Gamma_{t,t}^{N}|^{1/2}$.

Lemma 3

A correlation matrix admits a certificate iff it admits a N-certificate for every N.

We claim that $|\Gamma_{s,t}^{N}| \leq 1$, and then for some subsequence $\lim_{N\to\infty} \Gamma_{s,t}^{N}$ exists for every s, t (diagonal extraction) and also satifies axioms A1–A5. Since Γ^{N} is positive, it satisfies $|\Gamma_{s,t}^{N}| \leq |\Gamma_{s,s}^{N}|^{1/2} |\Gamma_{t,t}^{N}|^{1/2}$. We prove $\Gamma_{s,s}^{N} \leq 1$ by induction on the length of s. For every $g \in S$, we have $\Gamma_{g^{\frown}s,g^{\frown}s}^{N} = \Gamma_{s,g^{\frown}s}^{N}$. Since the matrix $\begin{pmatrix} \Gamma_{s,s}^{N} & \Gamma_{s,g^{\frown}s}^{N} \\ \Gamma_{g^{\frown}s,s}^{N} & \Gamma_{g^{\frown}s,g^{\frown}s}^{N} \end{pmatrix}$ is positive, we have $\Gamma_{g^{\frown}s,g^{\frown}s}^{N} \leq \Gamma_{s,s}^{N}$.

$$\bigcap_{N \geqslant 1} \mathsf{C}_{\mathrm{qc},N} = \mathsf{C}_{\mathrm{qc}}.$$

This shows that $C_{\rm qc}$ is closed.

$$\bigcap_{V \geqslant 1} \mathsf{C}_{\mathrm{qc},N} = \mathsf{C}_{\mathrm{qc}}.$$

This shows that $C_{\rm qc}$ is closed.

Let $M = \operatorname{card}(S_N)$. The set of *N*-certificates is the intersection of the cone PSD_M of $M \times M$ positive matrices with an affine subspace (given by the axioms A2–A5).

$$\bigcap_{\mathsf{V}\geqslant 1}\mathsf{C}_{\mathrm{qc},\mathsf{N}}=\mathsf{C}_{\mathrm{qc}}.$$

This shows that $C_{\rm qc}$ is closed.

Let $M = \operatorname{card}(S_N)$. The set of *N*-certificates is the intersection of the cone PSD_M of $M \times M$ positive matrices with an affine subspace (given by the axioms A2–A5).

Fix a game G. The value $\beta_N^{opt} = \max_{C_{qc,N}} G$ can be computed up to error ε in time $\operatorname{poly}(M, \log(1/\varepsilon))$ by semi-definite programming, so β_N^{opt} is a decreasing sequence which converges to $\max_{C_{qc}} G$.

$$\bigcap_{\mathsf{V}\geqslant 1}\mathsf{C}_{\mathrm{qc},\mathsf{N}}=\mathsf{C}_{\mathrm{qc}}.$$

This shows that $C_{\rm qc}$ is closed.

Let $M = \operatorname{card}(S_N)$. The set of *N*-certificates is the intersection of the cone PSD_M of $M \times M$ positive matrices with an affine subspace (given by the axioms A2–A5).

Fix a game G. The value $\beta_N^{opt} = \max_{C_{qc,N}} G$ can be computed up to error ε in time $\operatorname{poly}(M, \log(1/\varepsilon))$ by semi-definite programming, so β_N^{opt} is a decreasing sequence which converges to $\max_{C_{qc}} G$.

In a more elementary way: we can compute β_N , a $\frac{1}{N}$ -approximation to β_N^{opt} by a discretization argument. For example, replace PSD_M by the cone of self-adjoint operators A which satisfy $\langle x|A|x \rangle \ge 0$ for every x in a finite ε -dense subset of the unit sphere.