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Abstract. If E is an operator space, the non-commutative vector val-
ued Lp spaces Sp[E] have been defined by Pisier for any 1 ≤ p ≤ ∞.
In this paper a necessary and sufficient condition for a Hankel matrix
of the form (ai+j)0≤i,j with coefficients in E to be bounded in Sp[E]
is established. This extends previous results of Peller where E = C or
E = Sp. This condition is that the series ϕ(z) =

∑
n≥0 anz

n belongs
to some vector valued Besov space. In particular this condition only
depends on the Banach space structure of E. We also show that the
norm of the isomorphism ϕ 7→ (ϕ̂(i + j))i,j grows as √p as p → ∞,
and compute the norm on Sp of the natural projection onto the space
of Hankel matrices.

Introduction

This paper is devoted to the study of Hankel matrices in the vector-valued
non-commutative Lp-space Sp[E] defined by Pisier [7]. A Hankel matrix is
a matrix the entries of which are indexed by (j, k) ∈ N × N and depend
only on the sum j + k. The celebrated theorem of Nehari characterizes the
Hankel matrices that represent a bounded operator on B(`2), and states that
the operator norm a such a matrix (xi+j)i,j≥0 is equal to the smallest value
of ‖ϕ‖L∞ , for ϕ ∈ L∞(T) such that ϕ̂(n) = xn for all n ≥ 0. Peller [2]
has characterized the Hankel matrices belonging to the Schatten class Sp for
all p > 0 (see below). For a detailed exposition on Hankel matrices and
applications, see [5].

The main result of this paper is a characterization, for any operator space
E, of the norm of Hankel matrices in the vector-valued non-commutative Lp-
space Sp[E] in terms of vector-valued Besov spaces Bsp (E)+ defined in the
second section. The surprising fact is that these norms only depend on the
Banach-space structure of E. The main result is the following.

If ϕ =
∑
n∈N anz

n is a formal series with an belonging to an operator space
E, we denote an = ϕ̂(n) (ϕ̂(n) coincides with the Fourier coefficient of ϕ when
ϕ ∈ L1(T;E)), the Hankel matrix Γϕ is defined by its matrix representation

Γϕ = (ϕ̂(j + k))j,k≥0 .
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Theorem 0.1. Let 1 ≤ p <∞. A Hankel matrix (aj+k)j,k≥0 belongs to Sp[E]
if and only if the formal series

∑
n≥0 anz

n belongs to B1/p
p (E)+.

More precisely there is a constant C > 0 such that for any operator space
E and any formal series ϕ =

∑
n≥0 anz

n

C−1 ‖ϕ‖
B

1/p
p (E)+

≤ ‖Γϕ‖Sp[E] ≤ C
√
p ‖ϕ‖

B
1/p
p (E)+

.

Moreover the rate of growth as √p is optimal already in the scalar case:
there is a constant c > 0 (independent of p) and ϕ ∈ B1/p

p+ such that ‖Γϕ‖Sp ≥
c
√
p ‖ϕ‖

B
1/p
p+

.

As a consequence we also get that the norm of the natural projection onto
the space of Hankel matrices grows as √p as p → ∞, and as 1/

√
p− 1 as

p→ 1:

Theorem 0.2. Let PHank be the natural projection from the space of infinite
matrices to the subspace of Hankel matrices:

PHank ((aj,k)j,k≥0) =

 1
j + k + 1

∑
s+t=j+k

as,t


j,k≥0

.

Then, for 1 < p < ∞, PHank is bounded on Sp (and on Sp[E] for any
operator space E) and its norms satisfy the following inequality with a constant
C > 0 independent of E and p:

C−1

√
p2

p− 1
≤ ‖PHank‖Sp→Sp ≤ ‖PHank‖Sp[E]→Sp[E] ≤ C

√
p2

p− 1
.

As often for results on non-commutative Lp spaces, Theorem 0.1 is proved
using the complex interpolation method. For p = 1 the above theorem can
be proved directly. A first natural attempt to derive the Theorem for any p
would be to get something for p = ∞. Bounded Hankel operators are well-
known with Nehari’s theorem and its operator valued version, which states
that for E ⊂ B(`2) and p =∞, Γϕ belongs to B(`2)⊗ E if and only if there
is a function ψ ∈ L∞(T;B(`2)) such that ψ̂(k) = ϕ̂(k) for k > 0. But for
non-injective operator spaces, this seems very complicated (at least to me) to
relate this function ψ to properties of E, and the results of Theorem 0.1 even
seem quite disjoint from Nehari’s theorem. Another natural attempt would
be to interpolate between p = 2 and p = 1 since often for p = 2 results are
obvious. But it should be pointed out that here the Theorem is non trivial for
p = 2 as well. We are thus led to pass from a problem with only one parameter
p to a problem with more parameters to “get room” in order to be able to use
the interpolation method. This is done with the so-called generalized Hankel
matrices.
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For real (or complex) numbers α, β the generalized Hankel matrix with
symbol ϕ is defined by

Γα,βϕ =
(
(1 + j)α(1 + k)βϕ̂(j + k)

)
j,k≥0 .

Our main theorem characterizes, for an operator space E and a 1 ≤ p ≤ ∞,
the generalized Hankel matrices that belong to Sp[E] under the conditions
that α+ 1/2p > 0, β + 1/2p > 0.

Theorem 0.3. Let 1 ≤ p ≤ ∞ and α, β > −1/2p. Then for a formal series ϕ =∑
n≥0 ϕ̂(n)zn with ϕ̂(n) ∈ E, Γα,βϕ ∈ Sp[E] if and only if ϕ ∈ B1/p+α+β

p (E)+.
More precisely, for all M > 0, there is a constant C = CM (depending only

on M , not on p, E) such that for all such ϕ, all 1 ≤ p ≤ ∞ and all α, β ∈ R
such that −1/2p < α, β < M ,

(1) C−1 ‖ϕ‖
B

1/p+α+β
p (E)+

≤
∥∥Γα,βϕ ∥∥

Sp[E]

≤ C√
min(α, β) + 1/2p

1+1/p ‖ϕ‖B1/p+α+β
p (E)+

.

The usual convention is to define S∞[E] as K ⊗min E. However in the
previous Theorem one has to (abusively) understand ‖·‖S∞[E] as ‖·‖B(`2)⊗minE
(if E is finite dimensional) or even as ‖ · ‖B(`2⊗H) if E ⊂ B(H).

Note that surprisingly, this theorem shows that the condition Γα,βϕ ∈ Sp[E]
only depends on the Banach space structure of E (whereas the Banach space
structure of Sp[E] depends on the operator space structure of E).

These results extend results of Peller in the scalar case or in the case when
E = Sp ([2],[4],[3],[5]). In the scalar case Peller’s theorem indeed shows that
the spaceHankp of Hankel matrices in Sp is isomorphic to a Besov space B1/p

p+ .
The case when E = Sp shows that this isomorphism is in fact a complete
isomorphism. The results stated above show that this isomorphism has the
stronger property of being regular as well as its inverse in the sense of [6]. In
this paper the choice was made to use the vocabulary of regular operators,
but one could easily avoid this notion (replacing, in the proof of Lemma 3.1,
the use of Pisier’s Theorem 1.3 by Stein’s interpolation method).

Remark. If E and F are subspaces of commutative or non-commutative Lp-
spaces (on finite hyperfinite von Neumann algebras), one can define the regular
distance between E and F as the least value of ‖T‖reg‖T−1‖reg, over all regu-
lar isomorphisms T : E → F (see section 1 for definitions). Thus Theorem 0.1
states that the regular distance of Hankp to the set of subspaces of commuta-
tive Lp spaces is less than C2√p. It can be shown that this rate of growth is
also optimal. See Proposition 3.3. To summarize, there is a constant C ′ such
that this distance dp satisfies
(2) C ′−1√p ≤ dp ≤ C ′

√
p.
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The natural projection PHank was also studied by Peller (Chapter 6 of [5])
who proved that it is bounded on Sp if 1 < p <∞ and unbounded if p = 1 or
∞. Here we prove that it is even regular, and show that its norm as well as
its regular norm behaves as √p (p ≥ 2) or as 1/

√
p− 1 (p ≤ 2). This seems

to be new even in the scalar case.
These results should be considered as remarks on Peller’s proof rather than

new theorems, since the steps presented here are all close to one of Peller’s
proofs ([5], sections 8 and 9 of Chapter 6). There are still some adaptations
to make since for example the result for p = 2 is non-trivial here whereas it is
obvious in Peller’s case. Moreover as far as the constants in the isomorphisms
are concerned, our results are more precise and optimal in some sense (if one
follows Peller’s proofs, one is led to constants growing at least as fast as p in
the right-hand side of the inequality of the Theorem 0.1). For completeness
we provide a detailed proof. We would also like to mention here the fact that
Éric Ricard has found a much shorter and elementary proof of Theorem 0.1
(which is in particular a new simpler proof of Peller’s results), but it leads to
constants of order p instead of √p. It is also worth mentioning that (at least
one direction of) his proof also works for p < 1 (in the scalar and Sp-valued
case).

Peller’s classical results also have an extension to the case 0 < p < 1. Here
there are some obstructions: we should first of all clarify the notion of vector-
valued non-commutative Lp spaces for p < 1. But even then, since the proof
given here really lies on duality and interpolation, some new ideas would be
needed.

This paper is organized as follows: in the first section we recall briefly
definitions and facts on regular operators. In the second section we give
definitions and classical results on Besov spaces of analytic functions Bsp,q+
that will be used later. All results are proved. In the third and last section
we prove the main result.

Notation. We will use the following notation: if X and Y are two Banach
spaces (resp. operator spaces), we write X ' Y if X and Y are isomorphic
(resp. completely isomorphic). Most of the time the isomorphism will not be
explicitly stated since it is natural. If A and B are two nonnegative numerical
expressions (depending on some parameters), we will write A ≈ B if there is
a constant c such that c−1A ≤ B ≤ cA. In the whole paper N will stand for
the set of non-negative integers:

N = {0, 1, 2, 3, . . . }.

1. Background on regular operators

1.1. Commutative case. We start by recalling the definition of regular op-
erators in the commutative setting.
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Definition 1.1. A linear operator u : Λ1 → Λ2 between Banach lattices is
said to be regular if for any Banach space X, u ⊗ idX : Λ1(X) → Λ1(X) is
bounded. Equivalently (taking for X = `∞n ), if there is a constant C such
that for any n and f1, . . . , fn ∈ Λ1,∥∥∥∥sup

k
|u(fk)|

∥∥∥∥
Λ2

≤ C
∥∥∥∥sup

k
|fk|
∥∥∥∥

Λ1

.

The smallest such C is denoted by ‖u‖r.
This theory applies in particular if Λ1 = Λ1 are (commutative) Lp spaces:

when p = 1 or p =∞ a map is regular if and only if it is bounded. Similarly,
a map that is simultaneously bounded L1 → L1 and L∞ → L∞ is regular on
Lp. This is not far from being a characterization since it is known that the set
of regular operators: Lp → Lp coincides with the interpolation space (for the
second complex interpolation method) between B(L∞, L∞) and B(L1, L1).

We refer to [1] for facts on the complex interpolation method.

1.2. Non-commutative case. Let S be a subspace of a non-commutative
Lp space constructed on a hyperfinite von Neumann algebra. In the sequel
for an operator space E we will denote by S[E] the (closure of) the subspace
S⊗E of the vector valued non-commutative Lp-space Lp(τ ;E) defined in [7].
Definition 1.2. A linear map u : S → T between subspaces S and T of
non-commutative Lp spaces as above is said to be regular if for any operator
space E, u⊗ idE : S[E]→ T [E] is bounded. As in the commutative case ‖u‖r
will denote the best constant C such that ‖u⊗ idE‖S[E]→T [E] ≤ C for all E.

The set of regular operators equipped with this norm will be denoted by
Br(S, T ).

Since classical Lp spaces are special cases of non-commutative Lp spaces,
this notion applies also for commutative Lp spaces (but fortunately the two
notions coincide). This notion was defined and studied in [6]. In particular
the following result was proved:
Theorem 1.3 (Pisier). Let (M, τ) and (N , τ̃) be hyperfinite von Neumann
algebras with normal semi-finite faithful traces. Then a map u : Lp(τ) →
Lp(τ̃) is regular is and only if it is a linear combination of bounded completely
positive operators. Moreover isomorphically (with constant not depending on
p or on M,N )

Br(Lp, Lp) '
[
CB(L∞, L∞), CB(L1, L1)

]θ for θ = 1/p.
We will only apply this fact in the case of von Neumann algebras that

are either commutative or equal B(`2) equipped with the usual trace. The
following result was also proved:
Theorem 1.4. Let 1 ≤ p < ∞. Then u : Lp(τ) → Lp(τ̃) is regular if and
only if u∗ : Lp′(τ̃)→ Lp

′(τ) is regular, and ‖u‖r = ‖u∗‖r.
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2. Vector valued Besov spaces

In this section we introduce the Besov spaces of analytic functions Bsp,q+.
Before that we need some facts on Fourier multipliers. Everything in this
section is classical (the results are stated in [5], and they are proved for the
real line instead of the unit circle in [1]), but we give precise proofs in order
to get quantitative bounds on the norms of the different isomorphisms.

2.1. Fourier Multipliers on the circle. Here T will denote the unit circle:
T = {z ∈ C, |z| = 1} and will be equipped with its Haar probability measure.

The Fourier multiplier with symbol (λk)k∈Z (λk ∈ C) is the linear map on
the polynomials in z and z denoted by M(λk)k and mapping

∑
k∈Z akz

k to∑
k∈Z λkakz

k. For 1 ≤ p ≤ ∞ we say that the Fourier multiplier is bounded
on Lp if the map M(λk)k can be extended to a bounded operator on Lp(T)
such that for f ∈ Lp(T), g = M(λk)k(f) satisfies ĝ(k) = λkf̂(k).

Similarly if X is a Banach space the multiplier M(λk)k is said to be bounded
on Lp(T;X) if M(λk)k ⊗ idX extends to a continuous map on Lp(T;X) (which
we still denote by M(λ)k)), such that for f ∈ Lp(T;X), g = (M(λk)k ⊗ idX)(f)
satisfies ĝ(k) = λkf̂(k).

In the vocabulary of section 1 a multiplier M(λk)k is said to be regular on
Lp if it is bounded on Lp(T;X) for any Banach space X.

For example if λk = µ̂(k) for some complex Borel measure µ on T then
M(λk)k is bounded on Lp(T;X) (1 ≤ p ≤ ∞) for any Banach space X since
it corresponds to the convolution map f 7→ µ ? f . Its regular norm on Lp is
therefore equal to the total variation of µ.

The following Lemma will be essential.

Lemma 2.1. Let λ = (λk)k∈Z ∈ CZ satisfying ‖λ‖2 < ∞. Then the Fourier
multiplier with symbol λ is bounded on every Lp and

∥∥M(λk)k
∥∥
Lp→Lp ≤

2√
π

√
‖λ‖2‖(λk+1 − λk)k‖2.

It is even regular and its regular norm on Lp is less than or equal to

2/
√
π
√
‖λ‖2‖(λk+1 − λk)k‖2.

Proof. Since ‖(λk)‖2 < ∞, the function f : z 7→
∑
k∈Z λkz

k is in L2 and
‖f‖2 = ‖(λk)‖2. Similarly, the function g : z 7→ (1 − z)f(z) satisfies ‖g‖2 =
‖(λk − λk+1)k∈Z‖2.

Since the multiplier with symbol (λk) corresponds to the convolution by
f , by the remark preceding the Lemma we only have to prove that ‖f‖21 .
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‖f‖2‖g‖2. But for any 0 < s < 1/2:

‖f‖1 =
∫ 1

0
|f(e2iπt)|dt

=
∫ s

−s
|f(e2iπt)|dt+

∫ 1−s

s

1
|1− e2iπt|

|(1− e2iπt)f(e2iπt)|dt

≤
√

2s‖f‖2 +

√∫ 1−s

s

1
|1− e2iπt|2

dt‖g‖2

by the Cauchy-Schwarz inequality. The remaining integral can be computed:∫ 1−s

s

1
|1− e2iπt|2

dt = 2
∫ 1/2

s

1
4 sin2(πt)

dt

= 1
2

[
− cos(πt)
π sin(πt)

]1/2
s

= 1
2π tan(πs)

≤ 1
2π2s

where we used that tan x ≥ x for all 0 ≤ x ≤ π/2. Taking s = ‖g‖2/2π‖f‖2 ≤
1/2 we get the desired inequality. �

The following consequence will be also used a lot:

Lemma 2.2. Let I = [a, b] ⊂ Z be an interval of size N and take (λk)k∈Z ∈
CZ.

Then for any 1 ≤ p ≤ ∞, any Banach space X and any f ∈ Lp(T;X) such
that f̂ is supported in I,
(3)∥∥M(λk)kf

∥∥
Lp(T;X) ≤ 2‖f‖p max

(
sup
k∈I
|λk|,

√
N sup

k∈I
|λk| sup

a≤k<b
|λk − λk+1|

)
.

In other words, the restriction of the multiplier Mλ to the subspace of Lp(T)
of functions with Fourier transform vanishing outside of I has a regular norm
less than the right-hand side of this inequality.

Proof. Consider the multiplier Mµ with symbol (µk)k∈Z where µk = λk if
k ∈ I, µk = 0 if k ≤ a −N or if k ≥ b +N , and µk is affine on the intervals
[a−N, a] and [b, b+N ].

Since Mµ and Mλ coincide on the space of functions such that f̂(k) = 0
for k /∈ I, the claim will follow from the fact that the regular norm of Mµ

is less that the right-hand side of (3). For this we use Lemma 2.1, so we
have to dominate ‖(µk)‖2 and ‖(µk+1 − µk)‖2. Since both sequences (µk)k
and (µk+1 − µk)k are supported in ]a − N, b + N ] which is of size less than
3N , their `2-norm is less than

√
3N times their `∞ norm. The inequality

supk |µk| ≤ supk∈I |λk| is obvious by definition of µk. On the other hand we
have |µk+1 − µk| = |λk+1 − λk| if k ∈ [a, b[, and |µk+1 − µk| ≤ supk∈I |λk|/N
otherwise since µk is affine on the intervals of size N [a−N, a] and [b, b+N ].
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Thus by Lemma 2.1,

‖Mµ‖Lp(T;X)→Lp(T;X)

≤ 2
√

3√
π

max

(
sup
k∈I
|λk|,

√
N sup

k∈[a,b[
|λk| sup

k∈I
|λk − λk+1|

)
.

This concludes the proof since 3 ≤ π. �

For all n ∈ N, n > 0 we define the function Wn on T (see Figure 1) by

Ŵn(k) =

 2−n+1(k − 2n−1) if 2n−1 ≤ k ≤ 2n
2−n(2n+1 − k) if 2n ≤ k ≤ 2n+1

0 otherwise.
We also define W0(z) = z + 1.

2n−1 2n 2n+1

1

k

Figure 1. Ŵn(k)

Note that for all k ∈ N,
∑
n∈N Ŵn(k) = 1 (finite sum).

Since for n > 0, ‖(Ŵn(k))k‖2 ≤
√

2n and ‖(Ŵn(k) − Ŵn(k + 1))k‖2 =√
3/2n, Lemma 2.1 implies that the multiplier f 7→Wn ? f has regular norm

less than 2
√

3/π ≤ 2 on Lp(T) any 1 ≤ p ≤ ∞. The same is obvious for W0.

2.2. Besov spaces of vector-valued analytic functions. We define the
X-valued weighted `p spaces `sp(N;X) for p > 0, s ∈ R and a Banach space
X as the space of sequences (xn)n∈N ∈ XN such that ‖(xn)n‖`sp(N;X) =
‖(2ns‖xn‖X)n∈N‖p <∞.

We will deal in this paper with Besov spaces of “analytic functions”, which
are defined in the following way. First note that the reader should take the
term “analytic” with care. Elements of the Besov spaces are indeed defined
as formal series

∑
k≥0 xkz

k with z ∈ T. The term analytic means that the
formal series are indexed by N and not Z (in particular this has nothing to
do with analytic functions defined on the real analytic manifold T).

Let X be a Banach space; p, q > 0 and s real numbers. The Besov space
Bsp,q (X)+ is defined as the space of formal series f(z) =

∑
k∈N xkz

k with xk ∈
X such that (2ns‖Wn ? f‖p)n∈N ∈ `q, with the norm ‖(2ns‖Wn ? f‖p)n∈N‖q.
Here by Wn ?f we mean the (finite sum)

∑
k≥0 Ŵn(k)xkzk, and this coincides
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with the classical notion when f ∈ L1(T;X). When X = C the Besov space
Bsp,q (X)+ is simply denoted by Bsp,q+.

Remark (Elements of Bsp,q (X)+ as functions). It is easy to see that when
s > 0, any f ∈ Bsp,q (X)+ corresponds to a function belonging to Lp(T;X)
(and therefore also to L1(T;X)). In this case the series

∑
n≥0Wn ? f indeed

converges in Lp(T;X) (because
∑
n≥0 ‖Wn ? f‖p < ∞). It is also immediate

to see that for any real s, ‖xk‖X ≤ C‖f‖Bsp,q(X)+
k−s for some constant C =

C(s) > 0, and thus that for any f ∈ Bsp,q (X)+,
∑
k≥0 xkz

k converges for all
z in the unit ball D of C.

On the opposite when s < 0 there are elements f =
∑
k≥0 xkz

k ∈ Bsp,q (X)+
such that the sequence xk is not even bounded (and thus cannot represent a
function in L1(T;X)).

The space can be equivalently defined as a subspace of `sq(N;Lp(T;X)) with
the isometric injection

Bsp,q (X)+ −→ `sq(N;Lp(T;X))
f 7→ (Wn ? f)n∈N

Moreover the image of Bsp,q (X)+ in the isometric injection is a complemented
subspace. The projection map is given by
P : `sq(N;Lp(T;X)) −→ Bsp,q (X)+

(an) 7→ (W0 +W1) ? a0 +
∑
n≥1

(Wn−1 +Wn +Wn+1) ? an

and has norm less than C22|s| for some constant C ≤ 20. Indeed, if Vn =
Wn−1 + Wn + Wn+1 if n ≥ 1 and V0 = W0 + W1, then Wm ? Vn = 0 if
|n −m| > 2, and moreover if |n −m| ≤ 2, ‖(Wm ? Vn) ? an‖p ≤ 4‖an‖p by
Lemma 2.1. This implies that∥∥∥∥∥∥
∑
n≥0

Vn ? an

∥∥∥∥∥∥
Bsp,q(X)+

≤
∑
−2≤ε≤2

4 ‖(2ns‖an+ε‖p)n∈N‖q

≤ 4
(
2−2s + 2−s + 1 + 2s + 22s) ‖(2ns‖an‖p)n∈N‖q .

When p = q, the Besov space Bsp,q (X)+ is also denoted by Bsp (X)+. In
this case Bsp+ is a subspace of `sp(N;Lp(T)) which is just the Lp space on N×T
with respect to the product measure of the Lebesgue measure on T and the
measure on N giving mass 2nsp to {n}. Moreover (at least for p <∞) Bsp (X)+
is the closure of Bsp+⊗X in the vector-valued Lp space Lp(N×T;X). This will
allow to speak of regular operators between Bsp+ and another (subspace of a)
non-commutative Lp space. Note in particular that the above remark shows
that Bsp+ is a complemented subspace of Lp(N × T) and that the projection
map P (which does not depend on p) is regular.
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As a consequence of the complementation, we have the following property
of Besov spaces:

Theorem 2.3. The properties of the Besov spaces with respect to duality are:
if p, q <∞

Bsp,q (X)∗+ ' B
−s
p′,q′ (X

∗)+
isomorphically for the natural duality 〈f, g〉 =

∑
n≥0〈f̂(n), ĝ(n)〉. Moreover

for M > 0 and any |s| < M the constants in this isomorphism depend only
on M .

Proof. The boundedness of P formally implies that the dual of Bsp,q (X)+
is isomorphically identified with the set of formal series g(z) =

∑
k ĝ(k)zk

(ĝ(k) ∈ X∗) equipped with the norm coming from the embedding P ∗ : g 7→
(Vn ⊗ g)n ∈ `−sq′ (N;Lp′(T;X∗)). But the same argument as in the proof of
the boundedness of P shows that (up to constants depending only on M if
|s| < M)

‖(Vn ⊗ g)n‖`−s
q′

(N;Lp′ (T;X∗)) ≈ ‖(Wn ⊗ g)n‖`−s
q′

(N;Lp′ (T;X∗)) = ‖g‖B−s
q′

(X∗)+
.

�

For a real (or complex) number α and an integer n, we define the number
Dα
n by Dα

0 = 1 and for n ≥ 1,

Dα
n = (α+ 1)(α+ 2) . . . (α+ n)

n!
=

n∏
j=1

(
1 + α

j

)
.

For any t ∈ R, we define the maps It and Ĩt by

It(
∑
k≥0

akz
k) =

∑
k≥0

(1 + k)takzk.

Ĩt(
∑
k≥0

akz
k) =

∑
k≥0

Dt
kakz

k.

The boundedness properties of the maps It and Ĩt are described by the
following result:

Theorem 2.4. Let M > 0 be a real number. There is a constant C = CM
(depending only on M) such that for any 1 ≤ p, q ≤ ∞, any |t| ≤ M , any
s ∈ R, and any Banach space X,

‖It : Bsp,q (X)+ → Bs−tp,q (X)+ ‖, ‖I
−1
t : Bs−tp,q (X)+ → Bsp,q (X)+ ‖ ≤ C.

Moreover if −1/2 ≤ t ≤M ,

‖Ĩt : Bsp,q (X)+ → Bs−tp,q (X)+ ‖, ‖Ĩ
−1
t : Bs−tp,q (X)+ → Bsp,q (X)+ ‖ ≤ C.
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Proof. Fix M > 0 (and even M ≥ 1) and take |t| ≤M . Let us treat the case
of It. Let f =

∑
k≥0 akz

k ∈ Bsp,q (X)+. Since the maps f 7→ Wn ? f and
f 7→ Itf are both multipliers, they commute, and we have that

‖Itf‖Bs−tp,q (X)+
=
∥∥(2ns‖It/2nt(Wn ? f)‖p)n∈N

∥∥
q
.

To show that ‖It‖ ≤ C, it is therefore enough to show that the multiplier
It/2nt (the symbol of which is ((1 + k)/2n)t) is bounded by some constant C
on the subspace of Lp(T, X) consisting of functions whose Fourier transform
is supported in ]2n−1, 2n+1[. This follows from Lemma 2.2. We indeed have
((1 + k)/2n)t ≤ 2|t| for k ∈]2n−1, 2n+1[. To dominate the difference |((2 +
k)/2n)t− ((1+k)/2n)t| for 2n−1 < k < 2n+1−1, just dominate the derivative
of x 7→ (x/2n)t on the interval [2n−1, 2n+1] by |t|2|t−1|/2n ≤M2M+1/2n. The
multiplier It/2nt is thus bounded by 4

√
M2M .

This shows that

‖It : Bsp,q (X)+ → Bs−tp,q (X)+ ‖ ≤ 4
√
M2M

Since I−t = It
−1, the inequality for I−t follows.

By the same argument, to dominate the norms of Ĩt (resp. its inverse),
we have to get a uniform bound on supk |λk| and 2n supk |λk+1 − λk| where
λk = Dt

k/2nt (resp. λk = 2nt/Dt
k). This amounts to showing that there is

a constant C(M) (depending on M only) such that 1/C(M) ≤ |Dt
k/2nt| ≤

C(M) and |Dt
k+1/2nt − Dt

k/2nt| ≤ C(M)/2n for 2n−1 ≤ k < 2n+1 (the
inequality |2nt/Dt

k+1 − 2nt/Dt
k| ≤ C(M)3/2n will follow from the formula

|1/x− 1/y| = |y − x|/|xy|). The first inequality can be proved by taking the
logarithm, noting that log(1+t/j) = t/j+O(1/j2) up to constants depending
only on M if −1/2 ≤ t ≤M , and remembering that

∑N
1 1/j = logN +O(1).

The second inequality follows easily since Dt
k+1 −Dt

k = t/(k + 1)Dt
k. �

We also use the following characterization of Besov spaces of analytic
vector-valued functions. In this statement as well as in the rest of this section
we will identify a function (or distribution) f : T → X; f(z) =

∑
n≥0 z

nan
with its analytic extension to the disc.

Theorem 2.5. Let M > 0. Then there is a constant C = CM (depending only
on M) such that for all 0 < s < M , for all Banach spaces X, all 1 ≤ p ≤ ∞
and all f : T→ X,

C−1‖f‖B−sp,p(X)+
≤
∥∥∥(1− |z|)s−1/pf

∥∥∥
Lp(D,dz;X)

≤ C

s
‖f‖B−sp,p(X)+

.

Proof. The left-hand side inequality is easier. For any 0 < r < 1, let fr denote
the function fr(θ) = f(reiθ). Then∥∥∥(1− |z|)s−1/pf

∥∥∥
Lp(D,dz;X)

= (2π)1/p
(∫ 1

0
(1− r)ps−1‖fr‖pprdr

)1/p

.
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Let 1 − 2−n ≤ r ≤ 1 − 2−n−1 with n ≥ 1. Then ‖fr‖p ≥ ‖Wn ? fr‖p/2.
But f is the image of fr by the multiplier with symbol (r−k)k∈Z. Note that
for 2n−1 ≤ k ≤ 2n+1, r−k ≤ 24, and for 2n−1 ≤ k < 2n+1, r−k−1 − r−k =
(1− r)r−k−1 ≤ 2−n+124 = 2−n+5. Thus since multipliers commute and since
the Fourier transform of Wn ? f vanishes outside of ]2n−1, 2n+1[, Lemma 2.2
implies

‖Wn ? f‖p ≤ 2‖Wn ? fr‖p25 ≤ 27‖fr‖p.
Moreover (1− r)ps−1 ≥ 2−ps2−nsp+n. Integrating over r, we thus get that for
n ≥ 1:

2−nsp‖Wn ? f‖pp ≤ Cp
∫ 1−2−n−1

1−2−n
(1− r)ps−1‖fr‖pprdr

where C depends only on M . For n = 0 the same inequality is very easy.
Summing over n and taking the p-th root, we get the first inequality

‖f‖B−sp,p(X)+
≤ C

∥∥∥(1− |z|)s−1/pf
∥∥∥
Lp(D,dz;X)

.

For the right-hand side inequality, note that since
∑
n Ŵn(k) = 1 for all

k ≥ 0, we have that for any r > 0

‖fr‖p ≤
∑
n≥0
‖Wn ? fr‖p.

Then as above since Wn ? fr is the image of Wn ? f by the Fourier multiplier
of symbol rk, Lemma 2.2 again implies than

‖Wn ? fr‖p ≤ 2r2
n−1

max(1,
√

2n+1(1− r))‖Wn ? f‖p.
If m is such that 1− 2−m ≤ r ≤ 1− 2−m−1 then

r2
n−1
≤
(
(1− 2−m−1)2

m+1
)2n−m−2

≤ e−2n−m−2

and
max(1,

√
2n+1(1− r)) ≤ max(1,

√
2
n+1−m

).

If for k ∈ Z one denotes bk = 2e−2k−2 max(1,
√

2k+1)2ks one thus has
‖Wn ? fr‖p ≤ 2msbn−m2−ns‖Wn ? f‖p.

If an = 2−ns‖Wn ? f‖p for n ≥ 0 and an = 0 if n < 0, summing the previous
inequality over n we thus get

‖fr‖p ≤ 2ms
∑
n≥0

bn−man = 2ms(a ? b)m.

Let us raise this inequality to the power p, multiply by r(1 − r)ps−1 ≤
2−mps2m+1 and integrate on [1− 2−m, 1− 2−m−1]. One gets∫ 1−2−m−1

1−2−m
(1− r)ps−1‖fr‖pprdr ≤ (a ? b)pm.



OPERATOR SPACE VALUED HANKEL MATRICES 13

Summing over m this leads to

∥∥∥(1− |z|)s−1/pf
∥∥∥
Lp(D,dz;X)

≤

∑
m≥0

(a ? b)pm

1/p

≤ ‖a ? b‖`p(Z).

Now note that ‖a ? b‖`p(Z) ≤ ‖a‖p‖b‖1 = ‖f‖B−sp,p(X)+
‖b‖1. We are just left

to prove that b ∈ `1(Z) and ‖b‖1 ≤ C/s with some constant C depending
only on M . If k ≥ 0, we have |bk| ≤ 2

√
2e−2k−22k(M+1/2) which proves that∑

k≥0 bk ≤ C1 for some constant depending only on M . If k < 0, |bk| ≤ 2ks+1,
which proves that

∑
k<0 |bk| ≤ 2/(2s−1) ≤ C2/s for some universal constant.

This concludes the proof. �

When p = 2 and X is a Hilbert space, the preceding result can be made
more precise and more accurate (as s → 0). This will be used later and was
mentioned to the author by Quanhua Xu:

Theorem 2.6. Let M > 0 and X be a Hilbert space. Then for −M ≤ s ≤M
and for all f =

∑
k akz

k ∈ B−s2,2 (X)+,

‖f‖B−s2,2(X)+
≈

( ∞∑
k=0
‖ak‖2(1 + k)−2s

)1/2

≈
√
s
∥∥∥(1− |z|)s−1/2f

∥∥∥
L2(D,dz;X)

up to constants depending only on M .

Proof. The first inequality is obvious: indeed, since X is a Hilbert space, for
any integer n we have

‖Wn ? f‖2L2(T;X) =
∑
k

Ŵn(k)2‖ak‖2.

For the second inequality everything can be computed explicitly:∥∥∥(1− |z|)s−1/2f
∥∥∥2

L2(D,dz;H)
=

∫ 1

0
(1− r)2s−1

∑
k≥0
‖ak‖2r2k+1dr

=
∑
k≥0
‖ak‖2

∫ 1

0
(1− r)2s−1r2k+1dr.

Integrating by parts 2k + 1 times, one gets∫ 1

0
(1− r)2s−1r2k+1dr = (2k + 1)2k(2k − 1) . . . 1

2s(2s+ 1) . . . (2s+ 2k + 1)
= 1

2sD2s
2k+1

.

Note that D2s
2k+1 ≈ (1 + k)2s uniformly in k and s as long as |s| < M . This

implies ∥∥∥(1− |z|)s−1/2f
∥∥∥2

L2(D,dz;H)
≈ 1
s

∑
k

(1 + k)−2s‖ak‖2,

which concludes the proof. �
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The following also holds (here if f(z) =
∑
n≥0 z

nan, we denote f ′(z) =∑
n≥0 nz

n−1an) :

Theorem 2.7. Let M > 0. Then there is a constant C = CM (depending
only on M) such that for all −1 < s < M , for all Banach spaces X, all
1 ≤ p ≤ ∞ and all f : T→ X,

C−1‖f‖B−sp,p(X)+
≤ ‖f(0)‖X +

∥∥∥(1− |z|)1+s−1/pf ′
∥∥∥
Lp(D,dz;X)

≤ C

1 + s
‖f‖B−sp,p(X)+

.

Proof. By Theorem 2.5, it is enough to show that

‖f‖B−sp,p(X)+
≈ ‖f(0)‖X + ‖f ′‖B−s−1

p,p (X)+

up to constants depending only on M if |s| < M .
Since ‖f‖B−sp,p(X)+

≈ ‖f(0)‖X + ‖f − f(0)‖B−sp,p(X)+
, one can assume that

f(0) = 0.
But since I1g = (zg)′ for any g, Theorem 2.4 implies that ‖g‖B−sp,p(X)+

≈
‖(zg)′‖B−s−1

p,p (X)+
. Applied to g(z) = f(z)/z (recall that f(0) = 0) this in-

equality becomes ‖f ′‖B−s−1
p,p (X)+

≈ ‖z 7→ f(z)/z‖B−sp,p(X)+
. The inequality

‖z 7→ f(z)/z‖B−sp,p(X)+
≈ ‖f‖B−sp,p(X)+

is easy and concludes the proof. �

3. Operator space valued Hankel matrices

In this section we finally prove the main results stated in the Introduction,
Theorem 0.3. In the particular case when α = β = 0, we recover Theorem
0.1. We prove the two sides of (1) separately.

For the right-hand side, we first recall a proof for the cases when p = 1
or p = ∞ (this was contained in Peller’s proof since for non-commutative
L1 or L∞ spaces, regularity and complete boundedness coincide; we will still
provide a proof which is more precise as far as constants are concerned). Then
we derive the case of a general p by an interpolation argument.

The left-hand side inequality is then derived from the right-hand side for
α = β = 1 by duality.

We study the optimality of the bounds in Theorem 0.1, and finally derive
Theorem 0.2.

3.1. Right hand side of (1) for p = 1. We first prove that for a formal
series ϕ =

∑
k≥0 ϕ̂(k)zk with ϕ̂(k) ∈ E, it is sufficient that ϕ belongs to

B
1/p+α+β
p (E)+ to ensure that Γα,βϕ ∈ Sp[E]. We first treat the case when

p = 1.
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Let E be an arbitrary operator space. Since (formally) ϕ =
∑∞

0 Wn ? ϕ,
and ‖ϕ‖B1+α+β

1 (E)+
=
∑
n≥0 2n(1+α+β)‖Wn ? ϕ‖1, by the triangle inequality

replacing ϕ by Wn ? ϕ it is enough to prove that, if ϕ =
∑m
k=0 akz

k with
ak ∈ E, ∥∥Γα,βϕ ∥∥

S1[E] ≤ C
(1 +m)1+α+β√

(α+ 1/2)(β + 1/2)
‖ϕ‖L1(T;E).

But we can write

Γα,βϕ =
∫

T

(
ϕ(z)(1 + j)α(1 + k)βzj+k

)
0≤j,k≤m dz

and compute, for z ∈ T,∥∥∥(ϕ(z)(1 + j)α(1 + k)βzj+k
)
0≤j,k≤m

∥∥∥
S1[E]

= ‖ϕ(z)‖E
∥∥∥((1 + j)α(1 + k)βzj+k

)
0≤j,k≤m

∥∥∥
S1
,

with∥∥∥((1 + j)α(1 + k)βzj+k
)
0≤j,k≤m

∥∥∥
S1

=
∥∥∥((1 + j)α)j=0...m

∥∥∥
`2

∥∥((1 + k)β
)
k=0...m

∥∥
`2 .

Thus the lemma follows from the fact that∥∥∥((1 + j)α)j=0...m

∥∥∥2

`2
≤ C (1 +m)2α+1

2α+ 1
for a constant C which depends only on M = max{α, β} as long as α, β >
−1/2.

3.2. Right hand side of (1) for p =∞. The sufficiency for p =∞ is very
similar to the easy direction in the classical proof of Nehari’s Theorem that
uses the factorization H1 = H2 ·H2, which we first recall. Remember that Ne-
hari’s Theorem states that for any (polynomial function) ϕ(z) =

∑
n≥0 anz

n

with an ∈ C, ‖Γϕ‖B(`2) = ‖ϕ‖H1∗ for the duality 〈ϕ, f〉 =
∑
n anf̂(n) for

f ∈ H1(T). With the notation fξ(z) =
∑
n ξnz

n for ξ = (ξn) ∈ `2, the
inequality ‖Γϕ‖B(`2) ≤ ‖ϕ‖H1∗ easily follows from the following elementary
facts:
a. For any ξ = (ξn), η = (ηn) ∈ `2,

〈Γϕξ, η〉`2 =
∑
n≥0

ϕ̂(n)f̂ξfη(n) = 〈ϕ, fξfη〉.

b. The map ξ 7→ fξ is an isometry between `2 and H2(T).
c. For any f1, f2 ∈ H2(T), f1f2 ∈ H1(T) with norm less than ‖f1‖H2‖f2‖H2 .
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Let us now focus on the right-hand side of inequality (1) for p = ∞. We
fix α, β > 0 and assume that E ⊂ B(H) for a Hilbert space H. In this
proof we use the fact that H⊗̂H ' B(H)∗ isometrically through the duality
〈T, ξ ⊗ η〉 = 〈Tξ, η〉. For a sequence x = (ξn) with ξn in some vector space we
also use the notation fαξ (z) for the formal series

∑
n≥0(1 + n)αznξn.

Let ϕ ∈ Bα+β
∞ (E)+. We wish to prove that

‖Γα,βϕ ‖B(`2(H)) ≤ C/
√

min(α, β)‖ϕ‖Bα+β
∞ (E)+

.

Since Bα+β
∞ (E)+ is naturally isometrically contained in Bα+β

∞ (B(H))+ which
is (by Theorem 2.3 and the identification H⊗̂H ' B(H)∗) isomorphic to the
dual space of B−α−β1

(
H⊗̂H

)
+, we are are left to prove that

‖Γα,βϕ ‖B(`2(H)) ≤ C/
√

min(α, β)‖ϕ‖
B−α−β1 (H⊗̂H)∗+

.

As above this inequality follows immediately from the following three facts:
a’. For any ξ = (ξn) ∈ `2(H), η = (ηn) ∈ `2(H),

〈Γα,βϕ ξ, η〉`2(H) =
∑
n≥0
〈ϕ̂(n), ̂

fβξ ⊗ fαη (n)〉
B(H),H⊗̂H = 〈ϕ, fβξ ⊗ f

α
η 〉.

b’. The map ξ ∈ `2(H) 7→ fβξ (resp. η = (ηn) ∈ `2(H) 7→ fαη̄ ) is an
isomorphism between `2(H) and B−β2 (H)+ (resp. between `2(H) and
B−α2

(
H
)
+). Moreover the constants in these isomorphisms depend only

on M = max(α, β).
c’. For any f ∈ B−β2 (H)+ and g ∈ B−α2

(
H
)
+, the series f ⊗ g belongs to

B−α−β1
(
H⊗̂H

)
+ and moreover there is a constant C depending only on

M such that

‖f ⊗ g‖B−α−β1 (H⊗̂H)+
≤ C

min(
√
α,
√
β)
‖f‖B−β2 (H)+

‖g‖B−α2 (H)+
.

The facts (a’) and (b’) are again elementary while fact (c’) is not and
follows from the properties of Besov spaces stated in the previous section. Let
us prove it.

Remark. In fact the same holds with H and H replaced by arbitrary Banach
spaces, but in this case one has to replace C/min(

√
α,
√
β) by C/min(α, β).

Proof of (c’). From Theorem 2.7,
‖f ⊗ g‖B−α−β1 (H⊗̂H)+

≈ ‖f ⊗ g(0)‖+
∥∥(1− |z|)α+β(f ⊗ g)′

∥∥
L1(D,dz;H⊗̂H) .

Since (f ⊗ g)′ = f ′ ⊗ g + f ⊗ g′, (c’) will clearly follow from the existence of
a constant C depending on M only such that∥∥(1− |z|)α+βf ′ ⊗ g

∥∥
L1(D,dz;H⊗̂H) ≤

C√
α
‖f‖B−β2 (H)+

‖g‖B−α2 (H)+
.
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But by the Cauchy-Schwarz inequality, we get that∥∥(1− |z|)α+βf ′ ⊗ g
∥∥
L1(D,dz;H⊗̂H)

≤
∥∥∥(1− |z|)β+1/2f ′

∥∥∥
L2(D,dz;H)

∥∥∥(1− |z|)α−1/2g
∥∥∥
L2(D,dz;H)

For the first term, use again Theorem 2.7 to get

(4)
∥∥∥(1− |z|)β+1/2f ′

∥∥∥
L2(D,dz;H)

≈ ‖f‖B−β2 (H)+
,

whereas for the second term Theorem 2.6 implies∥∥∥(1− |z|)α−1/2g
∥∥∥
L2(D,dz;H)

≈ 1√
α
‖g‖B−α2 (H)+

.

�

3.3. Right hand side of (1) for a general p. Let us first reformulate the
right-hand side of (1).

Denote by D the infinite diagonal matrix Dj,j = 1/(1 + j) and Dj,k = 0
if j 6= k. Let p, α and β as in Theorem 0.3. Define α̃ = α + 1/2p and
β̃ = β + 1/2p. Then for any ϕ

Γα,βϕ = D
1/2pΓα̃,β̃ϕ D

1/2p,

and Theorem 2.4 implies that the map I
α̃+β̃ : Bα̃+β̃

p+ → B0
p+ is a regular

isomorphism (with regular norms of the map and its inverse depending only
on M if |α|, |β| ≤M).

The main result of this section is

Lemma 3.1. Let M > 0. Take 0 < α, β < M and 1 ≤ p ≤ ∞. The map
Tp : B0

p+ → Sp (or B(`2) if p =∞)

ϕ 7→ D
1/2p

(
ϕ̂(j + k) (1 + j)α(1 + k)β

(1 + j + k)α+β

)
j,k≥0

D
1/2p

is regular, with regular norm less that C/(min(α, β))1/2+1/2p for some con-
stant C depending only on M .

As explained above, this result is equivalent to the right-hand side inequal-
ity in (1). More precisely for α, β > 0 and 1 ≤ p ≤ ∞, we have the following
factorization of ϕ 7→ Γα−1/2p,β−1/2p

ϕ :

B0
p+

Tp

��
ϕ ∈ Bα+β

p+
� //

Iα+β

66mmmmmmmmmmmmmm

Γα−1/2p,β−1/2p
ϕ ∈ Sp,
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where Iα+β is a regular isomorphism. Thus the above Lemma for this value
of α, β and p is equivalent to the right-hand side inequality in (1) for the
same p but with α and β replaced by α − 1/2p, β − 1/2p. In the proof
below, Pisier’s Theorem 1.3 on interpolation of regular operators is used, but
the reader unfamiliar with regular operators can as well directly use Stein’s
complex interpolation method with vector-valued Besov spaces and Schatten
classes.

Proof of Lemma 3.1. We have already seen that the map Tp is regular when
p = 1 or p = ∞. Therefore up to the change of density given by D, Tp is
simultaneously completely bounded on B0

1+ and B0
∞+, which should imply

that Tp is regular.
To check this more rigorously, we use Pisier’s Theorem 1.3. Since the Besov

space B0
p+ is a complemented subspace of Lp(N×T) (where N×T is equipped

with the product of the counting measure on N and the Lebesgue measure on
T), and since the projection map P is regular and is the same for every p, Tp
naturally extends to a map Tp ◦P : Lp(N×T)→ Sp which is still completely
bounded for p = 1,∞.

We show that Tp ◦ P ∈
[
CB(L∞, B(`2)), CB(L1, S1)

]
θ

(where the first
L∞ and L1 spaces are L∞(N× T) and L1(N× T)). Since by the equivalence
theorem for complex interpolation [A0, A1]θ ⊂ [A0, A1]θ with constant 1 for
any compatible Banach spaces A0, A1 (Theorem 4.3.1 in [1]), Theorem 1.3
will imply that Tp ◦ P is regular and hence its restriction to B0

p+, Tp, too.
Consider the analytic map f(z) with values in CB(L1, S1)+CB(L∞, B(`2))

given by f(z) = LDz/2RDz/2 (T∞ ◦ P ), where L and R stand for left and
right multiplication maps (f takes in fact values in CB(L∞, B(`2))). Then
f(1/p) = Tp ◦ P . The left and right multiplication by a unitary are complete
isometries on bothB(`2) and S1. Therefore ifRe(z) = 0, ‖f(z)‖CB(L∞,B(`2)) =
‖T∞ ◦ P‖CB(L∞,B(`2)) ≤ C/

√
min(α, β) and if Re(z) = 1, ‖f(z)‖CB(L1,S1) =

‖T1 ◦ P‖CB(L1,S1) ≤ C/
√
αβ ≤ C/min(α, β). This proves that

‖Tp‖Br(Lp,Sp) ≤ C/(min(α, β))1/2+1/2p.

�

3.4. Left-hand side of (1). In this section we assume that the right-hand
side of (1) holds for α = β = 1, that is to say the operator

B
1/p+2
p+ → Sp

ϕ 7→ Γ1,1
ϕ

is regular for every 1 ≤ p ≤ ∞.
Fix now 1 ≤ p ≤ ∞ and α, β > −1/2p. We prove that the map Γα,βϕ 7→ ϕ is

regular from the subspace of Sp (or B(`2) if p =∞) formed of all the matrices
of the form Γα,βϕ to B1/p+α+β

p+ .
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For ψ ∈ B1/p′+2
p′+ define the matrix

Γ̃1,1
ψ =

(
Dα+1
j

(1 + j)α
Dβ+1
k

(1 + k)β
ψ̂(j + k)

)
j,k≥0

= diag

(
Dα+1
j

(1 + j)α+1

)
· Γ1,1

ψ · diag

(
Dβ+1
k

(1 + k)β+1

)
.

First note that since sup−1/2≤α≤M supj≥0D
α+1
j /(1+ j)α+1 <∞ the assump-

tion with p′ implies that the operator T : ψ 7→ Γ̃1,1
ψ is also regular from B

1/p′+2
p′+

to Sp′ with regular norm bounded by some constant depending only on M .
Recall that by Theorem 2.3, B−1/p′−2

p+ ' (B1/p′+2
p′+ )∗ if p > 1 (and B1/p′+2

p′+ '
(B−1/p′−2

p+ )∗ if p < ∞). Since B1/p−3
p+ is complemented in `

1/p−3
p (N;Lp) with

a regular complementation map, Theorem 1.4 implies that the dual map T ∗ :
Sp → B

−1/p′−2
p+ = B

1/p−3
p+ is also regular.

It is now enough to compute explicitly the restriction of T ∗ to the set of
matrices of the form Γα,βϕ to conclude. Indeed for any analytic ϕ : T → C
such that Γα,βϕ ∈ Sp (or B(`2)), and any ψ ∈ B1/p′+2

p′+ we have〈
T ∗Γα,βϕ , ψ

〉
=

〈
Γα,βϕ , Tψ

〉
=

∑
j,k≥0

Dα+1
j Dβ+1

k ϕ̂(j + k)ψ̂(j + k)

=
∑
n≥0

Dα+β+3
n ϕ̂(n)ψ̂(n)

= 〈Ĩα+β+3ϕ,ψ〉.

We used that for all α, β ∈ R, and all n ∈ N∑
j+k=n

Dα
j D

β
k = Dα+β+1

n ,

which follows from the equality
∑
n≥0D

α
nx

n = (1+x)−α−1 for |x| < 1. Indeed,
the Cauchy product

∑
j+k=nD

α
j D

β
k is the coefficient of xn in the power series

expansion of the product (1 + x)−α−1 · (1 + x)−β−1, and this product is equal
to (1 + x)−α−β−1−1 =

∑
n≥0D

α+β+1
n xn.

Thus we have that T ∗Γα,βϕ = Ĩα+β+3ϕ. By Theorem 2.4,
(
Ĩα+β+3

)−1
is

regular as a map from B
1/p−3
p+ to B

1/p+α+β
p+ . Hence the map Γα,βϕ 7→ ϕ is

regular from the subspace of Sp formed of all the matrices of the form Γα,βϕ
to B1/p+α+β

p+ . This concludes the proof (it is immediate from the proof that
the regular norm of this map only depends on M).
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3.5. Optimality of the constants. In this last part we first show that the
inequality

(5) C−1 ‖ϕ‖
B

1/p
p (E)+

≤ ‖Γϕ‖Sp[E] ≤ C
√
p ‖ϕ‖

B
1/p
p (E)+

in Theorem 0.1 is optimal even when E = C (up to constants not depending
on p). This observation is due to Éric Ricard who kindly allowed to reproduce
his proof here.

The fact that the left-hand side of (5) is optimal is obvious: indeed if
ϕ(z) = 1 then Γϕ is a rank one orthogonal projection and hence ‖Γϕ‖Sp =
1 = ‖ϕ‖

B
1/p
p+

for any p.
For the right-hand side inequality consider the positive integer n such that

n ≤ p < n+1. Let a1, . . . , an ∈ C and consider the function ϕa =
∑n
k=0 akz

2k .
We clearly have

‖ϕa‖B1/p
p+

= (
n∑
k=0

2k|ak|p)1/p ≤ 2n+1/p max
k
|ak| ≤ 4 max

k
|ak|,

and the following lemma therefore implies that the ratio ‖ϕa‖B1/p
p+

/ ‖Γϕa‖Sp
can be as small as 12/

√
n, which shows the optimality of the right-hand side

of (5).

Lemma 3.2. For any 1 ≤ p ≤ ∞ and any (finite) sequence a = (ak)k≥0 we
have

‖Γϕa‖Sp ≥
1
3
‖a‖`2 .

Proof. Since ‖ · ‖Sp ≥ ‖ · ‖B(`2) for any 1 ≤ p ≤ ∞, and since by Nehari’s
Theorem

‖Γϕa‖B(`2) = ‖ϕa‖H1∗ ,

the statement follows from the inequality ‖ϕa‖H1∗ ≥ ‖a‖`2/3, which is the
dual inequality of the classical Paley inequality∑

k≥0
|f̂(2k)|2

1/2

≤ 3‖f‖H1

which holds for any f ∈ H1(T). �

We now state the result mentioned in the introduction, that shows that the
statement of Theorem 0.1 is also optimal in the sense of (2) :

Proposition 3.3. Let T : Hankp → X be a regular isomorphism between
Hankp and a subspace X of a commutative Lp space. Then

‖T‖reg‖T−1‖reg ≥ c
√
p.
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Proof. Fix 1 ≤ p < ∞. It is enough to show that we can find two operator
space structures E1 and E2 on `2 and an element x ∈ Hankp ⊗ `2 such that

(6) ‖x‖Sp[E2] ≥ c
√
p and ‖x‖Sp[E1] ≤ 1.

Indeed, if T : Hankp → X ⊂ Lp(Ω, µ) is as above, we have that

‖x‖Sp[E2] ≤ ‖T−1‖reg‖T ⊗ id(x)‖Lp(Ω;E2)

= ‖T−1‖reg‖T ⊗ id(x)‖Lp(Ω;E1)

≤ ‖T−1‖reg‖T‖reg‖x‖Sp[E2].

If (6) holds we exactly get c√p ≤ ‖T‖reg‖T−1‖reg.
We claim that if N is the integer such that N ≤ p < N + 1, (6) holds for

E1 = OH, E2 = R and x = (
√
λi+jei+j)i,j≥0 where (en)n≥0 is an orthonormal

family in `2 and (λn)n≥0 is a sequence of nonnegative real numbers with the
following properties: (i) λn = 0 for all n ≥ 2N , (ii)

∑
n λn ≥ c2p and (iii)

there exists a function ϕ ∈ L∞(T) such that ‖ϕ‖∞ ≤ 1/4 and λn = ϕ̂(n) for
all n ≥ 0. Such a sequence can be obtained from the sequence

(
1/(n+1)

)
n≥0

using a smooth truncation (since 1/(n + 1) is the n-th Fourier coefficient of
the bounded function defined by eiθ 7→ −iθe−iθ for θ ∈ [0, 2π]).

Indeed since x ∈ M2N (E), Hölder’s inequality and [7, Theorem 1.5] imply
that

(7) ‖x‖S∞[Ei] ≤ ‖x‖Sp[Ei] ≤ (2N )1/p‖x‖S∞[Ei] ≤ 2‖x‖S∞[Ei].

Moreover remember that from the definition of the row Hilbert space R
and the operator Hilbert space OH ([8, Chapter 7]), for matrices xn,

‖
∑
n

xn ⊗ en‖2S∞[R] = ‖
∑
n

xnx
∗
n‖

and

‖
∑
n

xn ⊗ en‖2S∞[OH] = ‖
∑
n

xn ⊗ xn‖

= sup
a,b∈S2,‖a‖2‖b‖2<1

Tr

(∑
n

axnb
∗x∗n

)
.

Here we have x =
∑
n xn ⊗ en with (xn)i,j =

√
λn1i+j=n.

We thus have ‖x‖2S∞[R] =
∑
n≥0 λn, and the left-hand side of (7) together

with the assumption (ii) proves the first inequality in (6).
For the second inequality in (6), we prove that ‖x‖2S∞[OH] ≤ ‖ϕ‖L∞ (which

is enough by the right-hand side of (7) and assumption (iii)). Fix a, b in the
unit ball of S2. If we denote by f and g the functions in the unit ball of
L2(T2) defined by f(z, z′) =

∑
i,j≥0 ai,jz

iz′j and g(z, z′) =
∑
i,j≥0 bi,jz

iz′j ,
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we have that

Tr

(∑
n

axnb
∗x∗n

)
=
∫

T2
ϕ(zz′)fg(z, z′)dzdz′,

which implies that ‖x‖S∞[OH] ≤ ‖ϕ‖L∞ since ‖fg(z, z′)‖L1(T2) ≤ 1. This
concludes the proof. �

3.6. The projection. As in the introduction, PHank will denote the natural
projection from the space of infinite N×N matrices onto the space of Hankel
matrices. The boundedness properties of PHank stated in Theorem 0.2 are
formal consequences of Theorem 0.1.

Proof of Theorem 0.2. Let 1 < p, p′ < ∞, with 1/p+ 1/p′ = 1. Since for the
identification (Sp)∗ = Sp

′ , PHank∗ = PHank, we can restrict ourselves to the
case when 1 < p ≤ 2. We thus have to show that

(8) ‖PHank‖Sp→Sp ≈ ‖PHank‖Br(Sp,Sp) ≈
√
p′

up to constants not depending on p.
This follows from Theorem 0.1. More precisely let T : ψ 7→ Γψ defined

from B
1/p′
p′+ to Sp′ . Then by Theorem 0.1, we have that

‖T‖
B

1/p′
p′+ →S

p′ ≈ ‖T‖Br(B1/p′
p′+ ,Sp′ ) ≈

√
p′.

As in part 3.4 this implies (for the natural dualities) that

‖T ∗‖
Sp→B−1/p′

p+
≈ ‖T ∗‖

Br(Sp,B−1/p′
p+ ) ≈

√
p′.

But T ∗(aj,k)j,k≥0 =
∑
j,k≥0 aj,kz

j+k. Thus we have the following factor-
ization of PHank:

Sp
PHank //

T∗

��

Sp

B
−1/p′
p+

I−1 // B1/p
p+

T

OO .

This concludes the proof since I−1 (resp. T ) is a regular isomorphism between
B
−1/p′
p+ and B

1/p
p+ (resp. between B

1/p
p+ and the subspace of Hankel matrices

in Sp), and the regular norms of these isomorphisms as well as their inverses
can be dominated uniformly in p (recall that 1 < p ≤ 2). �
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rue d’Ulm, 75005 Paris

E-mail address: mikael.de.la.salle@ens.fr


