Master de Mathématiques / Master d'Informatique fondamentale Logique et Complexité, TD4 Natacha Portier Jeudi 23 février 2006

Exercice 1 Soit T une théorie qui a des modèles finis arbitrairement grands. Peut-elle avoir un modèle infini? Peut-elle ne pas en avoir?

Exercice 2 Existe t-il un ensemble $\Phi(x)$ de \mathcal{L}_{gp} -formules tel que dans tout groupe G un élément g satisfait $\Phi(x)$ si et seulement si l'ordre de g est fini ?

Exercice 3 Existe t-il un ensemble $\Phi(x)$ de \mathcal{L}_{ann} -formules tel que dans tout corps K un élément a satisfait $\Phi(x)$ si et seulement s'il est algébrique sur le corps premier (c'est-à-dire, satisfait une équation polynômiale non-triviale à coefficients entiers) ?

Exercice 4 Soit T un ensemble d'énoncés, et ϕ un énoncé tel que $T \vdash \phi$. Montrer qu'il existe une partie finie $T' \subseteq T$ telle que $T' \vdash \phi$.

Exercice 5 L'un des propriétés suivantes est fausse :

Soit T une théorie finie, T_1 et T_2 deux ensembles d'énoncés tels que $T_i \models T$ (pour i = 1, 2), et tout modèle de T est modèle de T_1 ou (exclusif) de T_2 . Montrer que T_1 et T_2 sont finiment axiomatisables.

Exercice 6 Peut-on axiomatiser les groupes de torsion?

Exercice 7 Soit T la théorie de $\mathfrak N$ dans le langage des anneaux. Montrer qu'il existe un modèle de T contenant $\mathfrak N$ et un élément a non nul divisible par tous les entiers non nuls.

Exercice 8,1 Existe t-il une théorie des relations d'équivalence n'ayant que des classes finies ?

Exercice 8,2 Existe t-il une théorie des relations d'équivalence n'ayant qu'un nombre fini de classes ?

Exercice 8,3 La théorie des relations d'équivalences ayant une infinité de classes infinies est-elle finiment axiomatisable ?

Exercice 9 Montrer le théorème de Vaught (appelé aussi Los Vaught) : Soit

T une théorie dans un langage dénombrable L et n'ayant que des modèles infinis. S'il existe un cardinal infini κ telle que T soit κ -catégorique alors T est complète.

Exercice 10 On admet que si un espace vectoriel sur un corps infini K est de cardinal strictement supérieur à celui de K alors son cardinal est égal à sa dimension.

Soit T la théorie des groupes abéliens indéfiniment divisibles sans torsion. Nous allons montrer que cette théorie est complète.

Exercice 10,1 Soit G un modèle de T (groupe noté multiplicativement) et θ_n la fonction de G dans G qui à x associe x^n . Montrer que θ_n est bijective.

Exercice 10,2 Montrer qu'on peut munir un modèle G de T d'une structure d'espace vectoriel sur \mathbb{Q} .

Exercice 10,3 Montrer que T est \aleph_1 catégorique.

Exercice 10,4 Montrer que T n'est pas \aleph_0 catégorique. Quels sont ses modèles dénombrables ?

Exercice 10,5 Conclure.