Measures of maximal entropy of SFT on lattices and trees

Irène Marcovici
LIAFA, Université Paris Diderot - Paris 7

Work in progress with Jean Mairesse and Vincent Delecroix

Workshop Dynamical Systems and Computability
Lyon, December 18, 2013
Motivation: understanding the combinatorics of multi-dimensional SFT, being able to generate patterns “uniformly”.
Motivation: understanding the combinatorics of multi-dimensional SFT, being able to generate patterns “uniformly”.

Example: two-dimensional Fibonacci SFT

Set of configurations without two consecutive black squares, vertically or horizontally.
Outline of the talk

1. One-dimensional SFT and the Parry measure
Outline of the talk

1. One-dimensional SFT and the Parry measure

2. SFT defined on trees and d-Parry measures
Outline of the talk

1. One-dimensional SFT and the Parry measure
2. SFT defined on trees and d-Parry measures
3. SFT and probabilistic cellular automata
Outline

1. One-dimensional SFT and the Parry measure
2. SFT defined on trees and d-Parry measures
3. SFT and probabilistic cellular automata
One-dimensional subshift of finite type

Let \mathcal{A} be an alphabet with n letters, and let $A \in M_n(\{0, 1\})$.
Let A be an alphabet with n letters, and let $A \in \mathcal{M}_n(\{0, 1\})$.

Subshift of finite type

The **subshift of finite type** associated to A is the set Σ_A of words $w \in \mathcal{A}^\mathbb{Z}$ such that if $A_{i,j} = 0$, w does not contain the pattern ij.

\[A_{i,j} = \begin{cases} 1 & \text{if } ij \text{ is an allowed pattern}, \\ 0 & \text{if } ij \text{ is a forbidden pattern}. \end{cases} \]

\[\Sigma_A = \{ w \in \mathcal{A}^\mathbb{Z}; \forall k \in \mathbb{Z}, A_{w_k,w_{k+1}} = 1 \}. \]

In what follows, we assume that the matrix A irreducible and aperiodic.
Let Σ_A be a SFT, and let W_k be the set of allowed words of length k.
Let Σ_A be a SFT, and let \mathcal{W}_k be the set of allowed words of length k.

Questions:

1. What is the growth rate of $|\mathcal{W}_k|$?
 Precisely, we would like to be able to compute the topological entropy of the SFT:

 $$h(\Sigma_A) = \lim_{k \to \infty} \frac{\log |\mathcal{W}_k|}{k}.$$
Let Σ_A be a SFT, and let \mathcal{W}_k be the set of allowed words of length k.

Questions:

1. What is the growth rate of $|\mathcal{W}_k|$? Precisely, we would like to be able to compute the topological entropy of the SFT:

$$h(\Sigma_A) = \lim_{k \to \infty} \frac{\log |\mathcal{W}_k|}{k}.$$

2. What do “typical” configurations look like? How to generate “uniformly” patterns of Σ_A?
Topological entropy

From Perron-Frobenius theorem, the matrix A has an eigenvalue $\lambda > 0$ such that $|\mu| \leq \lambda$ for any other eigenvalue μ.

Proposition

$$h(\Sigma_A) = \lim_{k \to \infty} \frac{\log |\mathcal{W}_k|}{k} = \log \lambda.$$
Furthermore, there is a unique choice of $r_1, \ldots, r_n \geq 0$ such that

$$\sum_{i=1}^{n} r_i = 1$$

and

$$A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}.$$
Furthermore, there is a unique choice of \(r_1, \ldots, r_n \geq 0 \) such that \(\sum_{i=1}^n r_i = 1 \) and
\[
A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}.
\]

Definition of the Parry measure

The **Parry measure** is the Markov measure \(\pi \) of transition matrix \(P \) defined, for any \(i, j \in A \), by
\[
P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}.
\]
Furthermore, there is a unique choice of \(r_1, \ldots, r_n \geq 0 \) such that \(\sum_{i=1}^{n} r_i = 1 \) and

\[
A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}.
\]

Definition of the Parry measure

The **Parry measure** is the Markov measure \(\pi \) of transition matrix \(P \) defined, for any \(i, j \in \mathcal{A} \), by

\[
P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}.
\]

Remark.

\[
P_{i,j} = A_{i,j} \frac{r_j}{\sum_{k \in \mathcal{A}} A_{i,k} r_k} = A_{i,j} \frac{r_j}{\sum_{k \in S(i)} r_k},
\]

where \(S(i) = \{ k \in \mathcal{A}; A_{i,k} = 1 \} \).
Markov-uniform property of the Parry measure

Proposition

The Parry measure is **Markov-uniform**: for given $k \geq 1$ and $a, b \in \mathcal{A}$, the value

$$\pi(awb)$$

does not depend on the word $w \in \mathcal{A}^k$ such that awb is allowed.
Markov-uniform property of the Parry measure

Proposition

The Parry measure is **Markov-uniform**: for given $k \geq 1$ and $a, b \in \mathcal{A}$, the value

$$\pi(awb)$$

does not depend on the word $w \in \mathcal{A}^k$ such that awb is allowed.

Proof. By definition, $P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}$. If $awb \in \mathcal{W}_{k+2}$, then:

$$\pi(awb) = \pi_a P_{a,w_1} P_{w_1,w_2} \ldots P_{w_{k-1},w_k} P_{w_k,b}$$
Markov-uniform property of the Parry measure

Proposition

The Parry measure is **Markov-uniform**: for given $k \geq 1$ and $a, b \in \mathcal{A}$, the value

$$\pi(awb)$$

does not depend on the word $w \in \mathcal{A}^k$ such that awb is allowed.

Proof. By definition, $P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}$. If $awb \in \mathcal{W}_{k+2}$, then:

$$\pi(awb) = \pi_a P_{a,w_1} P_{w_1,w_2} \ldots P_{w_{k-1},w_k} P_{w_k,b}$$

$$= \pi_a \frac{r_{w_1}}{\lambda r_a} \frac{r_{w_2}}{\lambda r_{w_1}} \ldots \frac{r_{w_k}}{\lambda r_{w_{k-1}}} \frac{r_b}{\lambda r_{w_k}}$$
Markov-uniform property of the Parry measure

Proposition

The Parry measure is **Markov-uniform**: for given \(k \geq 1 \) and \(a, b \in \mathcal{A} \), the value

\[
\pi(awb)
\]

does not depend on the word \(w \in \mathcal{A}^k \) such that \(awb \) is allowed.

Proof. By definition, \(P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i} \). If \(awb \in \mathcal{W}_{k+2} \), then:

\[
\pi(awb) = \pi_a P_{a,w_1} P_{w_1,w_2} \ldots P_{w_{k-1},w_k} P_{w_k,b}
\]

\[
= \pi_a \frac{r_{w_1}}{\lambda r_a} \frac{r_{w_2}}{\lambda r_{w_1}} \ldots \frac{r_{w_k}}{\lambda r_{w_{k-1}}} \frac{r_b}{\lambda r_{w_k}}
\]

\[
= \frac{\pi_a r_b}{\lambda^{k+1} r_a}.
\]
Theorem

Let \mathcal{M}_{Σ_A} be the set of translation invariant measures on the SFT Σ_A, and let $\pi \in \mathcal{M}_{\Sigma_A}$. The following properties are equivalent.

(i) π is the Parry measure associated to Σ_A,
(ii) π is a Markov-uniform measure on Σ_A,
(iii) π is the measure of maximal entropy of Σ_A,
(iv) the entropy of π is equal to the topological entropy $h(\Sigma_A)$.

Remark. On \mathbb{Z}^d, $d \geq 2$, there can be several measures of maximal entropy. But the equivalence between (ii), (iii), and (iv) can be extended to some multi-dimensional SFT.
Measure of maximal entropy

Theorem

Let \mathcal{M}_{Σ_A} be the set of translation invariant measures on the SFT Σ_A, and let $\pi \in \mathcal{M}_{\Sigma_A}$. The following properties are equivalent.

(i) π is the **Parry measure** associated to Σ_A,
(ii) π is a **Markov-uniform** measure on Σ_A,
(iii) π is the measure of **maximal entropy** of Σ_A,
(iv) the entropy of π is equal to the **topological entropy** $h(\Sigma_A)$.

Remark. On \mathbb{Z}^d, $d \geq 2$, there can be several measures of maximal entropy. But the equivalence between (ii), (iii), and (iv) can be extended to some multi-dimensional SFT.
Example: one-dimensional Fibonacci SFT

Let $A = \{0, 1\}$. The one-dimensional Fibonacci SFT is the set of words that do not contain two consecutive 1’s. It is given by:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Its topological entropy is equal to $\log \varphi$, where $\varphi = \frac{1+\sqrt{5}}{2}$.

The Parry measure is the Markov measure given by

$$\pi_0 = \frac{\varphi^2}{1+\varphi^2} \quad \text{and} \quad \pi_1 = \frac{1}{1+\varphi^2}.$$
First way to generate the Parry measure

The Parry measure of the Fibonacci SFT can be generated by:
- choosing independently to write a 0 with probability \(r_0 = \frac{1}{\varphi} \)
 and a 1 with probability \(r_1 = \frac{1}{\varphi^2} \),
- rejecting the 1's creating forbidden patterns.
First way to generate the Parry measure

The Parry measure of the Fibonacci SFT can be generated by:
- choosing independently to write a 0 with probability \(r_0 = \frac{1}{\varphi} \)
- and a 1 with probability \(r_1 = \frac{1}{\varphi^2} \),
- rejecting the 1’s creating forbidden patterns.

Lemma

For any SFT, the Parry measure can be generated by independent draws of letters with probability \((r_i)_{i \in A} \), with reject of a letter if it creates a forbidden pattern.
First way to generate the Parry measure

The Parry measure of the Fibonacci SFT can be generated by:

- choosing independently to write a 0 with probability \(r_0 = \frac{1}{\varphi} \) and a 1 with probability \(r_1 = \frac{1}{\varphi^2} \),
- rejecting the 1’s creating forbidden patterns.

Lemma

For any SFT, the Parry measure can be generated by independent draws of letters with probability \((r_i)_{i \in A} \), with reject of a letter if it creates a forbidden pattern.

Proof.

\[
P_{i,j} = A_{i,j} \frac{r_j}{\sum_{k \in S(i)} r_k}.
\]
Second way to generate the Parry measure

The Parry measure of the Fibonacci SFT can be generated by:

- choosing independently to write a 0 with probability \(\tilde{r}_0 = \frac{1}{\varphi^2} \)
- and a 1 with probability \(\tilde{r}_1 = \frac{1}{\varphi} \),
- deleting pairs of consecutive 1’s.
Second way to generate the Parry measure

The Parry measure of the Fibonacci SFT can be generated by:
- choosing independently to write a 0 with probability $\tilde{r}_0 = \frac{1}{\varphi^2}$
- and a 1 with probability $\tilde{r}_1 = \frac{1}{\varphi}$,
- deleting pairs of consecutive 1’s.

Confluent SFT

A SFT is **confluent** if for any $i, j, k \in \mathcal{A}$ such that both ij and jk are forbidden, then $i = k$.

Irène Marcovici
Measures of maximal entropy of SFT on lattices and trees
Second way to generate the Parry measure

The Parry measure of the Fibonacci SFT can be generated by:
- choosing independently to write a 0 with probability $\tilde{r}_0 = \frac{1}{\varphi^2}$ and a 1 with probability $\tilde{r}_1 = \frac{1}{\varphi}$,
- deleting pairs of consecutive 1’s.

Confluent SFT

A SFT is **confluent** if for any $i, j, k \in \mathcal{A}$ such that both ij and jk are forbidden, then $i = k$.

Proposition

For **confluent** SFT, the Parry measure can be generated by independent draws of letters and deletion of forbidden patterns.
Outline

1. One-dimensional SFT and the Parry measure
2. SFT defined on trees and d-Parry measures
3. SFT and probabilistic cellular automata
Let A be a (symmetric) matrix defining allowed and forbidden patterns, and consider the corresponding SFT Σ^d_A on the infinite regular tree of degree $d + 1$.

Question: how to construct Markov-uniform measures on Σ^d_A?
Let \(A \) be a (symmetric) matrix defining allowed and forbidden patterns, and consider the corresponding SFT \(\Sigma^d_A \) on the infinite regular tree of degree \(d + 1 \).

Question: how to construct Markov-uniform measures on \(\Sigma^d_A \)?
Let A be a (symmetric) matrix defining allowed and forbidden patterns, and consider the corresponding SFT Σ^d_A on the infinite regular tree of degree $d + 1$.

Question: how to construct Markov-uniform measures on Σ^d_A?
Idea 1: consider a (reversible) Markov chain P on the alphabet \mathcal{A}, of stationary distribution π.
Choose the letter at one given vertex according to π and then label the other vertices using P.
Idea 1: consider a (reversible) Markov chain P on the alphabet A, of stationary distribution π. Choose the letter at one given vertex according to π and then label the other vertices using P.

Example:

Probability of this pattern: $\pi(i)P_{i,j}P_{j,k}P_{j,l}$
Idea 1: consider a (reversible) Markov chain P on the alphabet A, of stationary distribution π.
Choose the letter at one given vertex according to π and then label the other vertices using P.

Example:

![Diagram of a tree with labels i, j, k, and l.]

Probability of this pattern:

$$\pi(i)P_{i,j}P_{j,k}P_{j,l} = \pi(j)P_{j,i}P_{j,k}P_{j,l} = \ldots$$
Idea 1: consider a (reversible) Markov chain P on the alphabet \mathcal{A}, of stationary distribution π. Choose the letter at one given vertex according to π and then label the other vertices using P.

Example:

For given i, k, l, we want this value to be independent of the letter j such that the pattern is allowed.

Probability of this pattern:

$$\pi(i) P_{i,j} P_{j,k} P_{j,l} = \pi(j) P_{j,i} P_{j,k} P_{j,l} = \ldots$$
Idea 2: like for the Parry measure, choose P under the form:

$$P_{i,j} = A_{i,j} \frac{r_j}{\sum_{s \in \mathcal{A}} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\sum_{s \in S(i)} r_s},$$

for some probability vector $(r_i)_{i \in \mathcal{A}}$.
Idea 2: like for the Parry measure, choose P under the form:

$$P_{i,j} = A_{i,j} \frac{r_j}{\sum_{s \in A} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\sum_{s \in S(i)} r_s},$$

for some probability vector $(r_i)_{i \in A}$.

Then,

$$\pi(i) P_{ij} P_{jk} P_{kl} = \pi(i) \frac{r_j}{\sum_{s \in A} A_{i,s} r_s} \frac{r_k}{\sum_{s \in A} A_{j,s} r_s} \frac{r_l}{\sum_{s \in A} A_{j,s} r_s}.$$
Idea 2: like for the Parry measure, choose \(P \) under the form:

\[
P_{i,j} = A_{i,j} \frac{r_j}{\sum_{s \in \mathcal{A}} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\sum_{s \in S(i)} r_s},
\]

for some probability vector \((r_i)_{i \in \mathcal{A}}\).

Then,

\[
\pi(i) P_{ij} P_{j,k} P_{j,l} = \pi(i) \frac{r_j}{\sum_{s \in \mathcal{A}} A_{i,s} r_s} \frac{r_k}{\sum_{s \in \mathcal{A}} A_{j,s} r_s} \frac{r_l}{\sum_{s \in \mathcal{A}} A_{j,s} r_s}
\]

Let us try to choose \((r_i)_{i \in \mathcal{A}}\) such that:

\[
\sum_{s \in \mathcal{A}} A_{j,s} r_s = \lambda r_j^{1/2},
\]

for any \(j \in \mathcal{A} \)!
For a tree of degree $d + 1$, the problem is to find a probability distribution $(r_i)_{i \in A}$ such that for some $\lambda > 0$,

$$A \begin{pmatrix} r_1 \\
... \\
\vdots \\
r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d} \\
... \\
r_n^{1/d} \end{pmatrix}.$$
For a tree of degree $d + 1$, the problem is to find a probability distribution $(r_i)_{i \in A}$ such that for some $\lambda > 0$,

$$A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d} \\ \vdots \\ r_n^{1/d} \end{pmatrix}.$$

Proposition

Let A be an irreducible non-negative matrix, and let $d \geq 1$. There exist $\lambda > 0$ and $r_1, \ldots, r_n > 0$ satisfying $\sum_{i=1}^{n} r_i = 1$ and:

$$A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d} \\ \vdots \\ r_n^{1/d} \end{pmatrix}.$$
For a tree of degree $d + 1$, the problem is to find a probability distribution $(r_i)_{i \in A}$ such that for some $\lambda > 0$,

$$A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d} \\ \vdots \\ r_n^{1/d} \end{pmatrix}.$$

Proposition

Let A be an irreducible non-negative matrix, and let $d \geq 1$. There exist $\lambda > 0$ and $r_1, \ldots, r_n > 0$ satisfying $\sum_{i=1}^n r_i = 1$ and:

$$A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d} \\ \vdots \\ r_n^{1/d} \end{pmatrix}.$$

Proof. Fixed point theorem.
For a tree of degree $d + 1$, the problem is to find a probability distribution $(r_i)_{i \in A}$ such that for some $\lambda > 0$,

$$A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d} \\ \vdots \\ r_n^{1/d} \end{pmatrix}.$$

Proposition

Let A be an irreducible non-negative matrix, and let $d \geq 1$. There exist $\lambda > 0$ and $r_1, \ldots, r_n > 0$ satisfying $\sum_{i=1}^n r_i = 1$ and:

$$A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d} \\ \vdots \\ r_n^{1/d} \end{pmatrix}.$$

Proof. Fixed point theorem.

Remark. λ and $(r_i)_{i \in A}$ may not be unique.
Proposition

If the distribution of probability \((r_i)_{i \in A}\) satisfies

\[
A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d} \\ \vdots \\ r_n^{1/d} \end{pmatrix}
\]

for some \(\lambda > 0\), then the Markov chain given by:

\[
P_{i,j} = A_{i,j} \frac{r_j}{\sum_{s \in A} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\lambda r_i^{1/d}},
\]

defines a **Markov-uniform** measure on the SFT \(\Sigma_A\).
Proposition

If the distribution of probability \((r_i)_{i \in A}\) satisfies

\[
\begin{pmatrix}
 r_1 \\
 \vdots \\
 r_n
\end{pmatrix} = \lambda
\begin{pmatrix}
 r_1^{1/d} \\
 \vdots \\
 r_n^{1/d}
\end{pmatrix}
\]

for some \(\lambda > 0\), then the Markov chain given by:

\[
P_{i,j} = A_{i,j} \frac{r_j}{\sum_{s \in A} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\lambda r_i^{1/d}},
\]

defines a **Markov-uniform** measure on the SFT \(\Sigma_A\). We call such a measure a **d-Parry measure**.
Proposition

If the distribution of probability \((r_i)_{i \in A}\) satisfies

\[
A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \lambda \begin{pmatrix} r_1^{1/d} \\ \vdots \\ r_n^{1/d} \end{pmatrix}
\]

for some \(\lambda > 0\), then the Markov chain given by:

\[
P_{i,j} \propto A_{i,j} \frac{r_j}{\sum_{s \in A} A_{i,s} r_s} = A_{i,j} \frac{r_j}{\lambda r_i^{1/d}},
\]

defines a **Markov-uniform** measure on the SFT \(\Sigma_A\).
We call such a measure a \(d\)-**Parry measure**.

Remark. The reversible invariant measure is given by \(\pi_i = \gamma r_i^{1+1/d}\).
Example: Fibonacci SFT on trees

We search $P = \begin{pmatrix} \alpha & 1 - \alpha \\ 1 & 0 \end{pmatrix}$, such that

$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ 1 - \alpha \end{pmatrix} = \lambda \begin{pmatrix} \alpha^{1/d} \\ (1 - \alpha)^{1/d} \end{pmatrix}$.

For any $d \geq 1$, there exists a unique d-Parry measure, which is given by $r_0 = \alpha$ and $r_1 = 1 - \alpha$, where α is the unique positive solution of the equation

$\alpha^{d+1} = 1 - \alpha$.

For $d = 1$, we recover $r_0 = \frac{1}{\phi}$ and $r_1 = \frac{1}{\phi^2}$.
Example: Fibonacci SFT on trees

We search \(P = \begin{pmatrix} \alpha & 1 - \alpha \\ 1 & 0 \end{pmatrix} \), such that

\[
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ 1 - \alpha \end{pmatrix} = \lambda \begin{pmatrix} \alpha^{1/d} \\ \left(1 - \alpha\right)^{1/d} \end{pmatrix}.
\]

For any \(d \geq 1 \), there exists a unique \(d \)-Parry measure, which is given by \(r_0 = \alpha \) and \(r_1 = 1 - \alpha \), where \(\alpha \) is the unique positive solution of the equation

\[
\alpha^{d+1} = 1 - \alpha.
\]

For \(d = 1 \), we recover \(r_0 = \frac{1}{\varphi} \) and \(r_1 = \frac{1}{\varphi^2} \).
But we also have examples of SFT having several \(d \)-Parry measures...
Question: is there a relation between these d-Parry measures and some analogue of entropy on trees?
Question: is there a relation between these \(d \)-Parry measures and some analogue of entropy on trees?

\(f \)-invariant of Bowen

The \textbf{\(f \)-invariant} is a measure-conjugacy invariant, introduced by L. Bowen to generalize the theory of entropy to free group actions.

For a Markov measure, its value is given by:

\[
d_n \sum_{i=1}^{\pi(i)} \log(\pi(i)) - \frac{d+1}{2} n \sum_{i=1}^{\pi(i)} \sum_{j=1}^{\pi(i)} \pi(i) P_{i,j} \log(\pi(i)) P_{i,j} = d - 1 \frac{1}{2} n \sum_{i=1}^{\pi(i)} \log(\pi(i)) - \frac{d+1}{2} n \sum_{i=1}^{\pi(i)} \sum_{j=1}^{\pi(i)} \pi(i) P_{i,j} \log(\pi(i)) P_{i,j}.
\]

Markov measures maximize the \(f \)-invariant.
Question: is there a relation between these d-Parry measures and some analogue of entropy on trees?

f-invariant of Bowen

The f-invariant is a measure-conjugacy invariant, introduced by L. Bowen to generalize the theory of entropy to free group actions. For a Markov measure, its value is given by:

$$d \sum_{i=1}^{n} \pi(i) \log(\pi(i)) - \frac{d + 1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \pi(i)P_{i,j} \log P_{i,j}$$

$$= \frac{d - 1}{2} \sum_{i=1}^{n} \pi(i) \log(\pi(i)) - \frac{d + 1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \pi(i)P_{i,j} \log P_{i,j}.$$
Question: is there a relation between these d-Parry measures and some analogue of entropy on trees?

f-invariant of Bowen

The **f-invariant** is a measure-conjugacy invariant, introduced by L. Bowen to generalize the theory of entropy to free group actions. For a Markov measure, its value is given by:

$$
\begin{align*}
& d \sum_{i=1}^{n} \pi(i) \log(\pi(i)) - \frac{d + 1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \pi(i) P_{i,j} \log \pi(i) P_{i,j} \\
= & \frac{d - 1}{2} \sum_{i=1}^{n} \pi(i) \log(\pi(i)) - \frac{d + 1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \pi(i) P_{i,j} \log P_{i,j}.
\end{align*}
$$

Markov measures maximise the f-invariant.
Proposition

If a measure on Σ_A^d maximises the f-invariant, then it is a d-Parry measure.
 Proposition

If a measure on Σ^d_A maximises the f-invariant, then it is a d-Parry measure.

Questions:

- If there are several d-Parry measures, how to guess which ones maximise the f-invariant?
Proposition

If a measure on Σ^d_A maximises the f-invariant, then it is a d-Parry measure.

Questions:

- If there are several d-Parry measures, how to guess which ones maximise the f-invariant?
- Is there a relation between all this and some growth rate of the number of allowed patterns?
Outline

1. One-dimensional SFT and the Parry measure
2. SFT defined on trees and d-Parry measures
3. SFT and probabilistic cellular automata
Example: one-dimensional Fibonacci SFT

Consider a configuration distributed according to the Parry measure π of the Fibonacci SFT.

$$X_{-2} \rightarrow X_{-1} \rightarrow X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow X_5 \rightarrow X_6$$
Example: one-dimensional Fibonacci SFT

Consider a configuration distributed according to the Parry measure π of the Fibonacci SFT.

For all $i \in \mathbb{Z}$, if $X_{2i} = X_{2i+2} = 0$, we flip the value of X_{2i+1} with probability $1/2$.
By the Markov-uniform property, the new sequence is still distributed according to π.
Consider a configuration distributed according to the Parry measure π of the Fibonacci SFT.

For all $i \in \mathbb{Z}$, if $X_{2i} = X_{2i+2} = 0$, we flip the value of X_{2i+1} with probability $1/2$.

By the Markov-uniform property, the new sequence is still distributed according to π.
Example: one-dimensional Fibonacci SFT

\[
\begin{array}{c|c|c}
1 & \text{with probability} & 1/2 \\
0 & \text{with probability} & 1/2 \\
0 & \text{(with probability} & 1 \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[\begin{array}{c}
Y - 1 \\
Z - 1 \\
Y_0 \\
Z_0 \\
Y_1 \\
Z_1 \\
Y_2 \\
Z_2 \\
Y_3 \\
\end{array} \]

The projection \(\pi_2 \) of the Parry measure on odd (resp. even) sites is an invariant measure of the probabilistic cellular automaton.
General one-dimensional SFT

For a general one-dimensional SFT Σ_A, let us consider the PCA F_A defined by:

\[
k \text{ with proba } \frac{1}{|\{s \in A; isj \in W_3\}|} \text{ if } ikj \in W_3
\]

(and with proba 0 otherwise)

Proposition

The projection π_2 of the Parry measure on odd (resp. even) sites is an invariant measure of the PCA F_A.

From π_2, we recover π by one application of the PCA.
General one-dimensional SFT

For a general one-dimensional SFT Σ_A, let us consider the PCA F_A defined by:

$$k \text{ with proba } \frac{1}{|\{s \in A; isj \in W_3\}|} \text{ if } ikj \in W_3$$

(and with proba 0 otherwise)

Proposition

The projection π_2 of the Parry measure on odd (resp. even) sites is an invariant measure of the PCA F_A.

From π_2, we recover π by one application of the PCA.
The same result holds on \mathbb{Z}^d, $d \geq 2$ and on infinite trees (bipartite graphs).
The same result holds on \mathbb{Z}^d, $d \geq 2$ and on infinite trees (bipartite graphs).

Two-dimensional case.
Back to the two-dimensional Fibonacci SFT
Back to the two-dimensional Fibonacci SFT

- Using PCA, new ideas for **perfect sampling** of patterns according to the measure of maximal entropy of the SFT.
Back to the two-dimensional Fibonacci SFT

- Using PCA, new ideas for **perfect sampling** of patterns according to the measure of maximal entropy of the SFT.
- And an interesting detour through SFT defined on trees...
Back to the two-dimensional Fibonacci SFT

- Using PCA, new ideas for **perfect sampling** of patterns according to the measure of maximal entropy of the SFT.
- And an interesting detour through SFT defined on trees...
- Extension to sofic SFT?