A few words on percolation properties of freezing monotone CA

Guillaume Theyssier Ville Salo Ilkka Törmä (Eric Goles Nicolas Ollinger?)

TUCS – Turku Centre for Computer Science
University of Turku, Finland

Dynamical Systems and Complexity 2013
Definition

Let S be a finite set. A cellular automaton $f : S^\mathbb{Z}^2 \to S^\mathbb{Z}^2$ is a map defined by a finite neighborhood $N \subset \mathbb{Z}^2$ and a local rule $F : S^N \to S$ such that $f(x)_\vec{n} = F(x_\vec{n} + N)$ for all $x \in S^\mathbb{Z}^2$.

Definition

Let P be a finite poset. A cellular automaton f on $P^\mathbb{Z}^2$ is freezing, if $x_\vec{n} \leq f(x)_\vec{n}$. It is monotone, if $x \leq y$ implies $f(x) \leq f(y)$ in the cellwise ordering.
Lemma

A cellular automaton f on $\{0, 1\}^{\mathbb{Z}^2}$ (with poset structure $0 < 1$) is freezing and monotone if and only if there exists a finite family E of finite triggering subsets of $\mathbb{Z}^2 \setminus \{\vec{0}\}$ such that

$$f(x)_{\vec{0}} = 1 \iff x_{\vec{0}} = 1 \lor \exists N \in E : x_N = 1^N.$$
A few words on percolation properties of freezing monotone CA

Guillaume Theyssier, Ville Salo, Ilkka Törmä, (Eric Goles, Nicolas Ollinger?)

Percolation problems

Freezing alone

Definition

Let μ be a measure on \mathbb{Z}^2. The μ-limit set of a cellular automaton f on \mathbb{Z}^2 is

$$\Omega_f^{\mu} = \bigcup_{\nu \in M} \text{Supp}(\nu),$$

where M is the set of limit points of the sequence $\left(f^n(\mu)\right)_{n \in \mathbb{N}}$.

More concretely, Ω_f^{μ} is the set of configurations x such that no pattern w occurring in x satisfies $\lim_{n} \mu(f^{-n}([w]_0)) = 0$.

Definition

Let μ be a measure on \mathbb{Z}^2 and let f be a cellular automaton on \mathbb{Z}^2. We say f trivializes μ, if $|\Omega_f^{\mu}| = 1$.
A few words on percolation properties of freezing monotone CA

Guillaume Theyssier, Ville Salo, Ilkka Törmä, (Eric Goles, Nicolas Ollinger?)

Lemma

Let μ be a measure on $S^\mathbb{Z}^2$ and let f be a cellular automaton on $S^\mathbb{Z}^2$. The following conditions are equivalent:

- f trivializes μ
- $\lim_n f^n(\mu) = \delta_x$ for some (unary) $x \in S^\mathbb{Z}^2$
- for some $s \in S$ and μ-almost every x, we have $f^n(x_0) = s$ for all large enough n.

Percolation problems
Freezing alone
Bootstrap percolation studies the question of whether a given cellular automaton trivializes a given Bernoulli measure, and how fast the convergence happens.
Bootstrap percolation studies the question of whether a given cellular automaton trivializes a given Bernoulli measure, and how fast the convergence happens.

Usually the goal is to find the exact speed of convergence for specific threshold rules.
Bootstrap percolation studies the question of whether a given cellular automaton trivializes a given Bernoulli measure, and how fast the convergence happens.

Usually the goal is to find the exact speed of convergence for specific threshold rules.

The freezing monotone binary CA generalize most bootstrap percolation models; all threshold models are special cases.
Bootstrap percolation studies the question of whether a given cellular automaton trivializes a given Bernoulli measure, and how fast the convergence happens.

Usually the goal is to find the exact speed of convergence for specific threshold rules.

The freezing monotone binary CA generalize most bootstrap percolation models; all threshold models are special cases.

This class is also discussed in ‘Neighborhood Family Percolation’ by Bollobas, Smith and Uzzell.
Theorem (Bollobas, Smith, Uzzell, Balister, Przykucki)

It is decidable whether a freezing monotone binary CA trivializes every nontrivial Bernoulli measure.
A few words on percolation properties of freezing monotone CA

Guillaume Theyssier, Ville Salo, Ilkka Törmä, (Eric Goles, Nicolas Ollinger?)

Theorem (Bollobas, Smith, Uzzell, Balister, Przykucki)

It is decidable whether a freezing monotone binary CA trivializes every nontrivial Bernoulli measure.

Theorem (us)

It is decidable whether a freezing monotone binary CA trivializes some nontrivial Bernoulli measure.
Definition

For a freezing monotone cellular automaton f on $\{0, 1\}^\mathbb{Z}^2$, we write $E(f)$ for its triggering sets E. We denote

$$F(f) = \{ N \in E(f) \mid \vec{0} \notin \text{CHull}(N) \},$$

and $G(f) = E(f) \setminus F(f)$. For a finite family E of incomparable subsets of $\mathbb{Z}^2 \setminus \{\vec{0}\}$, we denote by f_E the cellular automaton defined by $E(f_E) = E$.

Theorem

Let f be a freezing monotone cellular automaton on $\{0, 1\}^\mathbb{Z}^2$. Then f trivializes a nontrivial Bernoulli measure if and only if $F(f)$ is nonempty.
Definition

For a freezing monotone cellular automaton f on $\{0, 1\}^{\mathbb{Z}^2}$, we write $E(f)$ for its triggering sets E. We denote

$$F(f) = \{ N \in E(f) | \vec{0} \notin \text{CHull}(N) \},$$

and $G(f) = E(f) \setminus F(f)$. For a finite family E of incomparable subsets of $\mathbb{Z}^2 \setminus \{\vec{0}\}$, we denote by f_E the cellular automaton defined by $E(f_E) = E$.

Theorem

Let f be a freezing monotone cellular automaton on $\{0, 1\}^{\mathbb{Z}^2}$. Then f trivializes a nontrivial Bernoulli measure if and only if $F(f)$ is nonempty.
Lemma

Let \(g : \{0, 1\}^{\mathbb{Z}^2} \rightarrow \{0, 1\}^{\mathbb{Z}^2} \) be the CA where

\[
g(x)_{\vec{v}} = 1 \iff x_{\vec{v}} = 1 \lor (x_{\vec{v}+(0,1)} = 1 \land x_{\vec{v}+(1,1)} = 1).
\]

Then \(g \) trivializes some Bernoulli measure \(\mu_p \).
A few words on percolation properties of freezing monotone CA

Guillaume Theyssier, Ville Salo, Ilkka Törnä, (Eric Goles, Nicolas Ollinger?)

Lemma

Let $g : \{0, 1\}^{\mathbb{Z}^2} \rightarrow \{0, 1\}^{\mathbb{Z}^2}$ be the CA where

$$g(x)\vec{v} = 1 \Leftrightarrow x\vec{v} = 1 \lor (x\vec{v}+(0,1) = 1 \land x\vec{v}+(1,1) = 1).$$

Then g trivializes some Bernoulli measure μ_p.

Theorem

Let f be a freezing monotone cellular automaton on $\{0, 1\}^{\mathbb{Z}^2}$. Then f trivializes a nontrivial Bernoulli measure if

\ldots $F(f)$ is nonempty.

If $F(f)$ contains N, then $0 \notin \text{CHull}(N)$, and we show that even $f_{\{N\}}$ trivializes a nontrivial Bernoulli measure.
Theorem

Let f be a freezing monotone cellular automaton on $\{0, 1\}^{\mathbb{Z}^2}$. Then f trivializes a nontrivial Bernoulli measure ... only if $F(f)$ is nonempty.

If $F(f)$ is empty, then $\vec{0} \in \text{CHull}(N)$ for all $N \in E(f)$. If we take a nice enough polygon B (or, say, a big enough ball), then a configuration with 0 in B and 1 outside it is fixed.
Theorem

Let f be a freezing monotone cellular automaton on $\{0, 1\} \times \mathbb{Z}^2$. Then f trivializes a nontrivial Bernoulli measure ... only if $F(f)$ is nonempty.

If $F(f)$ is empty, then $\vec{0} \in \text{CHull}(N)$ for all $N \in E(f)$. If we take a nice enough polygon B (or, say, a big enough ball), then a configuration with 0 in B and 1 outside it is fixed. Then f is actually subcritical, in the sense that there exists a finite obstruction.
Conjecture

For freezing monotone CA on a general poset alphabet, it is decidable whether some nontrivial Bernoulli measure is trivialized.
Conjecture

For freezing monotone CA on a general poset alphabet, it is decidable whether some nontrivial Bernoulli measure is trivialized.

Conjecture

For binary monotone CA, it is decidable whether some nontrivial Bernoulli measure is trivialized.
Conjecture

For freezing binary CA, it is undecidable whether some nontrivial Bernoulli measure is trivialized.
Conjecture

For freezing binary CA, it is undecidable whether some nontrivial Bernoulli measure is trivialized.

Theorem

There exists a freezing CA f on $\{0, 1\}^{\mathbb{Z}^2}$ and two nontrivial Bernoulli measures μ_1 and μ_2 such that $\mu_1(1) < \mu_2(1)$, and f trivializes μ_1 but not μ_2.

Proof.

$F = G \circ H$ where

- H flips an $n \times n$ square with 0s in the corners to all 1s if the density is roughly $\mu_1(1)$.
- G applies the CA g to $n \times n$ blocks of all 1s.
- $F^n = G^n \circ H$.

□
Thank you for listening!