Lecture 3: Domino problem and (a)periodicity.
CANT 2016, CIRM (Marseille)

Nathalie Aubrun
LIP, ENS de Lyon, CNRS

2nd December 2016
Outline of the talk.

1. Domino problem and periodicity
2. Block gluing SFTs on \mathbb{Z}^2
3. Strongly aperiodic subshifts
4. Lovász Local Lemma in Symbolic Dynamics
We can define two notions of periodic configuration:

- A configuration \(x \in A^{\mathbb{Z}^2} \) is **weakly periodic** if its stabilizer is infinite.

 \(\Leftrightarrow \) \(x \) admits a non-trivial direction \(\vec{u} \) of periodicity.

- A configuration \(x \in A^{\mathbb{Z}^2} \) is **strongly periodic** if its stabilizer is of finite index in \(\mathbb{Z}^2 \): \([\mathbb{Z}^2 : \text{Stab}(x)] < \infty \).

 \(\Leftrightarrow \) \(x \) admits two non-collinear directions \(\vec{u}, \vec{v} \) of periodicity.
We can define two notions of periodic configuration:

- A configuration \(x \in A^{\mathbb{Z}^2} \) is **weakly periodic** if its stabilizer is infinite.
 \[\Leftrightarrow \text{ } x \text{ admits a non-trivial direction } \overrightarrow{u} \text{ of periodicity}. \]

- A configuration \(x \in A^{\mathbb{Z}^2} \) is **strongly periodic** if its stabilizer is of finite index in \(\mathbb{Z}^2 \): \([\mathbb{Z}^2 : \text{Stab}(x)] < \infty \).
 \[\Leftrightarrow \text{ } x \text{ admits two non-collinear directions } \overrightarrow{u}, \overrightarrow{v} \text{ of periodicity}. \]

Proposition

On \(\mathbb{Z}^2 \), if an SFT contains a weakly periodic configuration, then it contains a strongly periodic one.

Proof: on the blackboard.
Wang’s conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged to do so periodically.
Domino problem and periodicity on \mathbb{Z}^2 (II)

Wang’s conjecture (1961)

A non-empty SFT contains a periodic configuration.
Wang’s conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang’s conjecture is true. Then you can decide DP!

Semi-algorithm 1:

1. gives a finite periodic pattern, if it exists
2. loops otherwise

Semi-algorithm 2:

1. gives an integer \(n \) so that there is no \([1; n] \times [1; n]\) locally admissible pattern, if it exists
2. loops otherwise
Wang’s conjecture (1961)

A non-empty SFT contains a periodic configuration.

Suppose Wang’s conjecture is true. Then you can decide DP!

Semi-algorithm 1:
1. gives a finite periodic pattern, if it exists
2. loops otherwise

Semi-algorithm 2:
1. gives an integer n so that there is no $[1; n] \times [1; n]$ locally admissible pattern, if it exists
2. loops otherwise

Consequence

The undecidability of DP implies existence of an aperiodic SFT.
Outline of the talk.

1. Domino problem and periodicity
2. Block gluing SFTs on \mathbb{Z}^2
3. Strongly aperiodic subshifts
4. Lovász Local Lemma in Symbolic Dynamics
Block gluing subshifts on \mathbb{Z}^2 (I)

A subshift $X \subset A^{\mathbb{Z}^2}$ is **block-gluing** with gap $g \in \mathbb{N}$ if for any two finite supports $S_1, S_2 \subset \mathbb{Z}^2$ at distance at least g, and for any $x, y \in X$

there exists $z \in X$ s.t. $z|_{S_1} = x|_{S_1}$ and $z|_{S_2} = y|_{S_2}$.

Remark: this is a **uniform** mixing condition.
Proposition (Folklore, written in Pavlov & Schraudner 2015)

A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.
Proposition (Folklore, written in Pavlov & Schraudner 2015)

A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.

Consequence

The Domino problem is decidable for block-gluing SFTs.
Block gluing subshifts on \mathbb{Z}^2 (II)

Proposition (Folklore, written in Pavlov & Schraudner 2015)
A non-empty block-gluing SFT has a periodic configuration.

Proof: on the blackboard.

Consequence
The Domino problem is decidable for block-gluing SFTs.

Remark: Actually we prove something stronger: we can decide whether a locally admissible pattern is globally admissible (the language is decidable).
Outline of the talk.

1. Domino problem and periodicity
2. Block gluing SFTs on \mathbb{Z}^2
3. Strongly aperiodic subshifts
4. Lovász Local Lemma in Symbolic Dynamics
Strongly aperiodic subshifts (I)

A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \sigma^g(x) = x \Rightarrow g = 1_G.$$
A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \sigma^g(x) = x \Rightarrow g = 1_G.$$

Example: Robinson’s SFT is strongly aperiodic
Strongly aperiodic subshifts (II)

Question

Which f.g. groups admit strongly aperiodic SFTs?
Strongly aperiodic subshifts (II)

Question

Which f.g. groups admit strongly aperiodic SFTs?

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
Question

Which f.g. groups admit strongly aperiodic SFTs?

- If \(G \) is r.p. with a strongly aperiodic SFT, then \(G \) has decidable WP (Jeandel, 2015).
- If \(G \) has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
Strongly aperiodic subshifts (II)

Question

Which f.g. groups admit strongly aperiodic SFTs?

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- Generalization of Kari’s construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
Strongly aperiodic subshifts (II)

Question

Which f.g. groups admit strongly aperiodic SFTs?

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- Generalization of Kari’s construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- \mathbb{Z}^n, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
Strongly aperiodic subshifts (II)

Question
Which f.g. groups admit strongly aperiodic SFTs?

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- Generalization of Kari’s construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- \mathbb{Z}^n, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- Surface groups (Cohen & Goodman-Strauss, 2015).
Strongly aperiodic subshifts (II)

Question

Which f.g. groups admit strongly aperiodic SFTs?

- If G is r.p. with a strongly aperiodic SFT, then G has decidable \textbf{WP} (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015).
- Generalization of Kari’s construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- \mathbb{Z}^n, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- Surface groups (Cohen & Goodman-Strauss, 2015).
- groups $\mathbb{Z}^2 \rtimes H$ where H has decidable \textbf{WP} (Barbieri & Sablik, 2016).
Strongly aperiodic subshifts (II)

Question

Which f.g. groups admit strongly aperiodic SFTs?

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015).
- Generalization of Kari’s construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- \mathbb{Z}^n, Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- Surface groups (Cohen & Goodman-Strauss, 2015).
- Groups $\mathbb{Z}^2 \rtimes H$ where H has decidable WP (Barbieri & Sablik, 2016).

Question (simpler)

Does every f.g. group admit strongly aperiodic subshifts?
Strongly aperiodic subshifts (III)

Theorem (Gao, Jackson & Seward, 2009)
Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0, 1\}$.
Strongly aperiodic subshifts (III)

Theorem (Gao, Jackson & Seward, 2009)
Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0, 1\}$.

Proof: ???
Strongly aperiodic subshifts (III)

Theorem (Gao, Jackson & Seward, 2009)
Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0, 1\}$.

Proof: ???

Theorem (A. Barbieri & Thomassé, 2015)
Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0, 1\}$.
Outline of the talk.

1. Domino problem and periodicity
2. Block gluing SFTs on \mathbb{Z}^2
3. Strongly aperiodic subshifts
4. Lovász Local Lemma in Symbolic Dynamics
Lovász Local Lemma

(see Anton Chaplygin’s talk yesterday)

\((A_i)_{i=1}^{n} \text{ mutually independent}\)

Each \(A_i\) can be avoided \[\implies A_1, \ldots, A_n\] can be avoided.

Proposition

If events \(A_1, \ldots, A_n\) are mutually independent, then

\[
Pr \left(\bigcap_{i=1}^{n} \bar{A}_i \right) = \prod_{i=1}^{n} (1 - Pr(A_i))
\]

What about the dependent case?
Lovász Local Lemma

(see Anton Chaplygin’s talk yesterday)

\((A_i)_{i=1}^{n} \text{ not very dependent} \)
Each \(A_i \) can be avoided \(\Rightarrow A_1, \ldots, A_n \) can be avoided.

Lovász Local Lemma (1975)

Let \(\mathcal{A} = \{A_1, A_2, \ldots, A_n\} \). For \(A_i \in \mathcal{A} \), let \(\Gamma(A_i) \) be the subset of \(\mathcal{A} \) such that \(A_i \) is independent of the collection \(\mathcal{A} \setminus (\{A_i\} \cup \Gamma(A_i)) \). Suppose there are \(x_1, \ldots, x_n \) such that \(0 \leq x_i < 1 \) and:

\[
\forall A_i \in \mathcal{A} : Pr(A_i) \leq x_i \prod_{A_j \in \Gamma(A)} (1 - x_j)
\]

then the probability of avoiding \(A_1, A_2, \ldots, A_n \) is positive.
How to use LLL in Symbolic Dynamics?

Suppose you want to prove that the subshift X is non-empty.

- Uniform Bernoulli measure on configurations space.
- Bad events \approx forbidden patterns.
- Compactness $+$ LLL (if applicable) show the non-emptiness of the subshift.
Lovász Local Lemma in Symbolic Dynamics (II)

Let G be a f.g. group, A a finite alphabet and μ the uniform Bernoulli probability measure on A^G.

A sufficient condition for being non-empty

Let $X \subset A^G$ be a subshift defined by $\mathcal{F} = \bigcup_{n \geq 1} \mathcal{F}_n$, where $\mathcal{F}_n \subset A^{B_n}$. Suppose that there exists a function $x : \mathbb{N} \times G \rightarrow (0, 1)$ such that:

$$\forall n \in \mathbb{N}, g \in G, \mu(A_{n,g}) \leq x(n, g) \prod_{gS_n \cap hS_k \neq \emptyset} (1 - x(k, h)),$$

where $A_{n,g} = \{ x \in A^G : x|_{gS_n} \in \mathcal{F}_n \}$. Then the subshift X is non-empty.
Strong aperiodicity vs. the distinct neighborhood property

A subshift $X \subset A^G$ is **strongly aperiodic** if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \sigma^g(x) = x \Rightarrow g = 1_G.$$

Fix $A = \{0, 1\}$.

A configuration $x \in \{0, 1\}^G$ has the **distinct neighborhood property** if for every $h \in G \setminus \{1_G\}$, there exists a finite $T \subset G$ s.t.

$$\forall g \in G, x|_{ghT} \neq x|_{gT}.$$
Strong aperiodicity vs. the distinct neighborhood property

A subshift $X \subset A^G$ is strongly aperiodic if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \sigma^g(x) = x \Rightarrow g = 1_G.$$

Fix $A = \{0, 1\}$.

A configuration $x \in \{0, 1\}^G$ has the distinct neighborhood property if for every $h \in G \setminus \{1_G\}$, there exists a finite $T \subset G$ s.t.

$$\forall g \in G, x|_{ghT} \neq x|_{gT}.$$

Proposition

If $x \in \{0, 1\}^G$ has the distinct neighborhood property, then the subshift $\text{Orb}_\sigma(x)$ is strongly aperiodic.

Proof: on the blackboard.
Distinct neighborhood property with LL

Proposition

Every infinite f.g. group G has a configuration $x \in \{0, 1\}^G$ with the distinct neighborhood property.

Proof:

- Take $(s_i)_{i \in \mathbb{N}}$ an enumeration of G with $s_0 = 1_G$.
- Choose $(T_i)_{i \in \mathbb{N}}$ a sequence of finite sets of G s.t.
 $$T_i \cap s_i T_i = \emptyset$$
 and $|T_i| = C i$ for some constant C.

- $A_{n,g} = \{ x \in \{0, 1\}^G \mid x|_{gT_n} = x|_{gs_n T_n} \}$.
- $x(n, g) = 2^{-\frac{Cn}{2}}$.

Theorem

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0, 1\}$.

The Lovász Local Lemma in Symbolic Dynamics
Proposition

Every infinite f.g. group G has a configuration $x \in \{0, 1\}^G$ with the distinct neighborhood property.

Proof:

- Take $(s_i)_{i \in \mathbb{N}}$ an enumeration of G with $s_0 = 1_G$.
- Choose $(T_i)_{i \in \mathbb{N}}$ a sequence of finite sets of G s.t.
 \[T_i \cap s_i T_i = \emptyset \text{ and } |T_i| = Ci \text{ for some constant } C. \]
- Let $A_{n,g} = \{ x \in \{0, 1\}^G \mid x|_{gT_n} = x|_{gs_n T_n} \}$.
- Let $x(n,g) = 2^{\frac{-Cn}{2}}$.

Theorem

Every f.g. group G has a strongly aperiodic subshift on alphabet $\{0, 1\}$.

\[x(n,g) = 2^{\frac{-Cn}{2}}. \]
An effectively closed strongly aperiodic subshift (I)

A subshift is G-effectively closed if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle $\text{WP}(G)$.
A subshift is G-effectively closed if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle $\text{WP}(G)$.

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree $\leq \Delta$ has a square-free coloring with $2e^{16} \Delta^2$ colors.
A subshift is **G-effectively closed** if it can be defined by a set of forbidden patterns recognizable by a Turing machine with oracle $\text{WP}(G)$.

Theorem (Alon, Grytczuk, Haluszczak & Riordan, 2002)

Every finite graph with degree $\leq \Delta$ has a square-free coloring with $2e^{16}\Delta^2$ colors.

Proposition

Let G a f.g. group and S a generating set. Then $\Gamma(G, S)$ has a square-free coloring with $2^{19}|S|^2$ colors.
An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G-effectively closed strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and $|w|$ minimal (as a word on $(S \cup S^{-1})^*$). If $|w| = 0$, then $g = 1_G$.
An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G-effectively closed strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uvw with $u = v^{-1}$ and $|w|$ minimal (as a word on $(S \cup S^{-1})^*$). If $|w| = 0$, then $g = 1_G$.
- If not, let $w = w_1 \ldots w_n$ and consider the odd length walk $\pi = v_0 v_1 \ldots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_i = \begin{cases} 1_G & \text{if } i = 0 \\ w_1 \ldots w_i & \text{if } i \in \{1, \ldots, n\} \\ ww_1 \ldots w_{i-n} & \text{if } i \in \{n+1, \ldots, 2n-1\} \end{cases}$$
An effectively closed strongly aperiodic subshift (II)

Theorem (A. Barbieri & Thomassé, 2015)

Every f.g. group G has a G-effectively closed strongly aperiodic subshift.

Sketch of the proof:

- Fix S and take $X \subset A^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.
- Let $g \in G$ such that $\sigma^g(x) = x$ for some $x \in X$.
- Factorize g as uvw with $u = v^{-1}$ and $|w|$ minimal (as a word on $(S \cup S^{-1})^*$). If $|w| = 0$, then $g = 1_G$.
- If not, let $w = w_1 \ldots w_n$ and consider the odd length walk $\pi = v_0 v_1 \ldots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_i = \begin{cases} 1_G & \text{if } i = 0 \\ w_1 \ldots w_i & \text{if } i \in \{1, \ldots, n\} \\ w w_1 \ldots w_{i-n} & \text{if } i \in \{n+1, \ldots, 2n-1\} \end{cases}$$

- π is a path, and $x_{v_i} = x_{v_{i+n}} \Rightarrow g = 1_G$.

Conclusion

- Every one-ended f.g. group with decidable WP has strongly aperiodic SFTs?
- Does there exist G with decidable DP and strongly aperiodic SFTs?
Conclusion

- Every one-ended f.g. group with decidable WP has strongly aperiodic SFTs?
- Does there exist G with decidable DP and strongly aperiodic SFTs?

Thank you for your attention!!