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A New Range-Reduction Algorithm

N. Brisebarre, D. Defour, P. Kornerup, J.-M Muller and N. Revol

Abstract— Range-reduction is a key point for getting 2* is —2.14758367--- x 1072, and the corresponding
accurate elemgntary funf:tion routines. We introd.uceanew value of k& is 5251. Directly computingz — lm/z on
algorithm that is fast for input arguments belonging to the 5 calculator with10-digit decimal arithmetic (assuming
most common domains, yet accurate over the full double- rounding to the nearest, and replacing by the nearest
precision range. exactly-representable number), then one gefis0 x

Index Terms—Range-reduction, elementary function 10~%. Hence, such a poor range-reduction would lead

evaluation, floating-point arithmetic. to a computed value ofos(z) equal to—1.0 x 1075,
whereas the correct value is2.14758367 - - - x 10712,
|. INTRODUCTION A first solution to overcome the problem consists of

using arbitrary-precision arithmetic, but this may make

A LGO.RITHMS for the evaluation .Of elementarythe computation much slower. Moreover, it is not that
functions give correct results only if the argume

R . . asy to predict on the fly the precision with which the
is within a given small interval, usually centered at zer

T | I ; . ; _ %‘omputation should be performed.

To evaluate an elementary functigfix) for any =, it \ios common input arguments to the trigonometric
is necessary to find some “transformation” that makesfﬂnctions are small (say, less tha), or sometimes
possible to deducg(xz) from some valug(z*), where | iim (say, betweed and approximatel26). They

« 2”, called thereduced argumentis deduced from are rarely huge (say, greater thzfid). We want to design

x; _ methods that are fast for the frequent cases, and accurate
« 2" belongs to the convergence domain of the alggsr all cases. A rough estimate, based on SUN fdlibm
rithm implemented for the evaluation of library, is that the cost of trigonometric range-reduction

In practice, range-reduction needs care for the trigone-when reduction is necessary — is approximately one

metric functions. With these functions;* is equal to third of the total function evaluation cost.

x—kC, wherek is an integer and’ an integer multiple  First we describe Payne and Hanek’s method [11]

of w/4. Also of potential interest is the cagé= In(2), which provides an accurate range-reduction, but has the

for implementation of the exponential function. drawback of being fairly expensive in term of operations;
A poor range-reduction method may lead to cat#his method is very commonly implemented, it is used

strophic accuracy problems when the input argumentirs SUN fdlibm library in particular.

large or close to an integer multiple @f. It is easy  To know with which precision the intermediate calcu-

to understand why a poor range-reduction algorithfations must be carried on to get an accurate result, one

gives inaccurate results. The naive method consistsmfist know theworst casesthat is, the input arguments

performing the computations that are hardest to reduce. Also, to estimate the average
2 performance of the algorithms (and to tune them so that
k= LgJ these performances are good), one must have at least

= w— kO a rough estimate of the statistical distribution of the

reduced arguments. These two problems are dealt with
using the machine precision. WhefiC' is close to at the end of this sec_t|on. .
; . In the second section we present our algorithm ded-
xz, almost all the accuracy, if not all, is lost when . . .
. : . .. Icated to the reduction of small and medium size argu-
performing the subtractiom: — kC. For instance, if : . .
ments. In the third section we compare our method with
C = 7/2 and z = 8248.251512 the correct value of . o
some other available methods, which justifies the use of
Manuscript received 2?2, revised 2?7 our algorithm for small and medium size arguments.
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bits of Lefte,p) bits of Middlege,p) bits of Righte,p)

’ Qp.&0—1 - Op—e+2 H On—et+1 """ A_p—e—1-p H On—e—2-pQ&—n—e—3—p- " ‘

Fig. 1. The splitting of digits oft/7 in Payne and Hanek’s reduction method.

C = =/4, and that the convergence domain of the The basic idea of the Payne-Hanek reduction method

algorithm used for evaluating the functions contaihs= is to notice that, ifp is large enough, Middle, p)

[0, 7/4]. An adaptation to other cases is straightforwardontains the only bits ofvr = 4/7 that matter for the
From an input argument, we want to find the reducedrange-reduction. Since

argumentz* and an integek, that satisfy: 4
—x = Left(e,p) x X x 8

4 . T (4 m
k= L;"EJ T =7 (ﬁ - k) (1) + Middle(e, p) x X x 27207

; —2n—p
Once z* is known, it suffices to knowk mod$ to + Right(e, p) x X x 2 ’

calculatesin(x) or cos(z) from z*. If = is large, or if the number Lefte,p) x X x 8 is a multiple of8, so
x is very close to a multiple ofr/4, the direct use of that once multiplied byr/4 (see Eq. (1)), it will have
(1) to determiner™ may require the knowledge af/m  no influence on the trigonometric functions. Rightp) x
with very large precision, and a cost-expensive multipley , 9-2n-» is |ess thar2—"": therefore it can be made
precision computation if we wish the range-reduction 19 small as desired by adequately chooging

be accurate. ~ How p is chosen will be explained in Section II-C.
Now let us present Payne and Hanek’s reduction

method [11], [12]. Assume an-bit mantissa, radix 2

floating-point format (the number of bits includes the

possible hidden bit; for instance, with an IEEE double- Assume we want the reduced argument to belong to

precision formatp = 53). Let z be the positive floating- [-C/2,C/2). Define x mod® C' as the number <

point argument to be reduced and tebe its unbiased [—C'/2, C/2) such thayy = z—kC, wherek is an integer.

exponent, so There are two important points that must be con-
r =X x2¢nt! sidered when trying to design accurate yet fast range-

reduction algorithms.

« First, what is the “worst case”? That is, what will be
the smallest possible absolute value of the reduced
argument for all possible inputs in a given format.
That value will allow us to immediately deduce the
precision with which the reduction must be carried

be the infinite binary expansion of = 4/7, and define on to make sure that, even for the most difficult

an integer parametep, used to specify the required cases, the returned result will be accurate enough.
accuracy of the range-reduction. Then rewrite= 4 /7 o What is the statistical distribution of the smallest
as absolute values of the reduced arguments? That is,
et given a small value, what is the probability that

Left(e, p) x 2 the reduced argument will have an absolute value
+ (Middle(e, p) + Right(e, p)) x 27"~¢~ 177, less thanc? This point is important if we want to

design algorithms that are fast for the most frequent

cases, and remain accurate on all cases.

B. Worst Cases

where X is ann-bit integer satisfyin2"~! < X < 27,
We can assume > —1 (since ife < —1, no reduction
is necessary). Let

Qp.X_ 120X 3405 ...

where Leffe,p) =0 if e <n + 2, else

Left(e,p) = Q01 Op_et2, Computing the worst case is rather easy, us-
Middle(e,p) = an—ect10m—c @ n_e-1-p, ing an algorithm due to Kahan [4] (a C pro-
Rightle,p) = 0.0_p—c—2-p@p_c3-p---. gram that implements the method can be found at

http://http.cs.berkeley.edu/"wkahan/. A Maple program is

given in [9]). The algorithm uses the continued-fraction
Un practice, we can reduce to an interval of size slightly largdP€Ory. FOr instance, a few minutes of calculation suffice

than C, to facilitate the reduction. to find the double-precision number betwe&nand

Fig. 1 shows the splitting of the binary expansioncof
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263 _1 that is closest to a multiple of/4. This number has solutions irk € Z. Suchk necessarily satisfy

is .
1 1 J E) ( J E)
==+ 27 <k< 5| =+ 27]. (4
T.q = 6411027962775774 x 27 C ( 2r  2n—l C\2r 2n1 “)
22.776546738526000979. We note that, ap + E > 0 and j > 2"!, the left
The distance betweeR, ,, and the closest multiple of Nand-side of (4) is positive. Hence,

w/4is E
/ e [o () re[e o 21)
€x/4 & 3.094903 x 10719 & 0.71 x 2701, CA\ 2 C\2 2

meg ]\/[E

So if we apply a range-reduction from a double-precision (5)
argument in(8, 263 —1] to [~ /4, w/4), and if we wish to since2"~! < j < 2"—1, and these inequalities are sharp
get a reduced argument with relative accuracy better thsince the upper bound in (4) is irrational, and the lower
27#, we must perform the range reduction with absoluteound is either zero or an irrational number. The number
error better tharg—+#61, of possiblek is exactly

Also, the double-precision number greater tigaand

less than710 which is closest to a multiple di(2) is: Np =Mg—mg+1. (6)
I = 7804143460206699 x 9—49 Inequality (3) is equivalent to
~ 13.8629436111989061. |[kC2n1E — j| < oniorE (7)

Irz;:‘)d_istance betweel, ;) and the closest multiple of e for every: satisfying (5), there are exactly
n(2) is
. n n—1-F n—1-p—F
inz) ~ 1.972015 x 10717 > 2796, min (2" — 1, [kC2 +2"T PR ]) -

n—1 n—1-F _ on—1-p—F
In that case, we considered only numbers less fHan max (2 ) [KC2 2 D +1 (8)

since exponentials of numbers larger than that are mgfgegers j solutions since the numbersC2m—1-5 —
overflows in double-precision arithmetic. on=1-p=E gndkC2n—1-F 4 9n—1-p—F gre jrrational (we

saw before that # 0).
C. Statistical distribution of the reduced arguments As 27PtL < O, if K > mg + 1, we have

Now, let us turn to the statistical distribution of on-1 < [koon—1-E _ gn-1-p=E
reduced arguments.

We assume thaf’ is a positive fractional multiple of and, if ¥ < Mg — 1, we have
m or In(2). Let e;nin, @anden,q, be two rational integers
such th(agzemi" < C/2 < 297+ and epmin < €mas- 2" —1> [kC2" 1P 4 2n

Let p € N such that27?t! < (C, our aim is to
estimate the number of floating-point numberswith
n-bit mantissas and exponents betwegn,, and e, First case: 2"~ ?=F > 1/2i.e.,n — E > p.
such that This case is the easy one, and equation (7) yields the

|x mod" C| < 27P. (2) conclusion. For every;, mg +1 < k < Mg — 1, there

are exactly2” P~ ¥ integer solutiong since the numbers
kCanle _ 2n717p7E' and kCanle' 4 2n717p7E
are irrational. Wherk € {mpg, Mg}, we can only say
that there are at least and at most2”?~F integer
solutions j. Notice that these solutions can easily
be enumerated by a program. Therefore, the number
n?f floating-point numbersz with n-bit mantissas
and exponentE that satisfy (2) is upper bounded by
Ng2"~P=F and lower bounded byNz —2)2" P~ F 4.2,

Now, to analyse (8), we have to distinguish two cases.

wherez mod" C' is defined as the unique numbegre
[-C/2,4+C/2) such thaty = = — kC, wherek is an
integer.

Let £ be a rational integer such that,;, < E <
emaz- AS 27PTL < C, we have2 P < 2¢mintl < 9E+1
Therefore2™? < 2F ie.,p+ E > 0.

We start by estimating the number of floating-poi
numbersxz with n-bit mantissas and exponeti that
satisfy (2). Hence, we search for thes N, 271 < j <
2" — 1 such that the inequality Second case2” ' P~F < 1/2ie.n— F < p.

j We need results about uniform distribution of se-
on— guences [8] that we briefly recall now.

E
(e

<27P 3)
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For a real number, {z} denotes the fractional part exponentF that satisfy (2) is upper bounded by
of z i.e. {z} = z — |z] and||z|| denotes the distance 2" P~ F(Ng 4+ O(N5BO1/35D+)) for everye > 0.

from z to the nearest integer, namely From this theorem, we can deduce the following result.
||z|| = min |z — n| = min({z},1 — {z}). Proposition 1: LetC be a positive fractional multiple
nez of w or In(2). Lete,,;, ande,,q, be two rational integers
Let us recall the following definitions from [8]. such that2¢» S_C/Q < 2t and emin < emag- Let
Definition 1: Let (z,,)n>1 be a given sequence of reaP € N such tha™? < C'/2. The number; of floating-
numbers. LetV be a positive integer. point numbersz with n-bit mantissas and exponert
For a subsetf of [0,1), the counting function PEWEeNEm, and enq, such that
A(E; N; (zy,)) is the number of termg,, 1 <n < N, |z mod* C| < 277 (9)
for which {z,} € €. -
Let y1,...,yxn be a finite sequence of real numbersatisfies
The number o 2P E(Ng—2)4+2<wvp <2" P ENpifn—
E > p. In that caseyy is easily computable by a

A([a,b); N; (yn))

Dn((yn)) = sup ~ —(b—a) program;
0<a<b<1 o vp = 2P E(Np+ ONg'™)) if n—FE > p,

is called thediscrepancyof the sequencey, ..., yn. for everye > 0, with 6 < 19/29 for ' nonzero
For an infinite sequencer,,) of real numbers (or for a fractional multiple ofin(2), and § < 301/351 for
finite sequence containing at leastterms), Dy ((x,)) C nonzero fractional multiple of.
is meant to be the discrepancy of the initial segmerhere
formed by the firstV terms of (z,,). Np = F (L 1 9B+1 _ 2E1>J

Thus, in particular, the number of values, with A 2
1 < n < N satisfying {z,,} € [a,b), for any 0 < - [ (-5 +25)]+1.

a < b < 1, is bounded from above by |[(b — a) + _ N _
Dy ((zn))]. Hence, the number of valugsC'2m—1-7 From this proposition, numerous experiments, and a

with mg < k < Mg, that satisfy equation (7) i’.e well-known result by Khintchine [5], [6] that states that

that satisfy0 < {kC2"~1-F} < 2n-1-p=F or | — "almost all real numbers are of type we can assume
9n—1-p=F _ [}c9"=1-F) < 1 is bounded from above that for anyZ, we have
by Ng (2" P~F 4 2Dy, ((kC2"—17E))). vg ~ |27 P ENg]| . (10)

Definition 2: Let © be a positive real number or , i
infinity. The irrational numbera is said to be of We have checked this result by computing all reduced

type p if 4 is the supremum of ally for which arguments for some values of e,,;, and e, such
that this exhaustive computation remains possible in a

lim inf o—-. q"||qel| = 0. ble delav. S btained | . .
Theorem 3.2 from [8, Chap 2.] states the foIIowinée_asona e delay. Some obtained results are given in
result. ig. 2, 3 and 4. These results show that the estimate

provided by (10) is a good one. These estimates will be

Theorem 1: Letv be of finite typeu. Then, for every used at the end of Section [1-C

e > 0, the discrepancyDy (u) of u = (n«) satisfies

Dy (u) = O(N/m+e), [I. ANEW HIGH-RADIX REDUCTION METHOD
Let us apply this theorem to values of interest for this In this section, we assume that we perform range-
paper, namelyC' = ¢In(2) andC' = g7 with ¢ € Q*. reduction for the trigonometric functions, with = /2.
« If C is a nonzero fractional multiple dfi(2). Extension to other values of' (such as a fractional

We know from [2] that any nonzero fractional mulnultiple of = — still for the trigonometric functions —
tiple of In(2) has a type< 2.9. Thus, the number of OF @ fractional multiple ofln(2) — for the exponential
floating-point numbers: with n-bit mantissas and function) is straightforward.
exponentE that satisfy (2) is upper bounded by AS stated before, our general philosophy is that we
=P~ E(Np + O(Ng(19/2942)) for everye > 0. must give results that are:

« If C is a nonzero fractional multiple of. We 1) always correct, even for rare cases;
know from [3] that any nonzero fractional multiple 2) computed as quickly as possible for frequent cases.
of = has a type< 7.02. Hence, the number of A way to deal with these requirements is to build a fast
floating-point numbers: with n-bit mantissas and algorithm for input arguments with a small exponent,
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| e [ actual numbef expected number
actual number
o—14 7485 7552 € e _ 5 expected number
2_5 14 14 min — CYmaxr —
570 ?;72 ?;72 24 20992 20992
270 10496 10496
7
2 936 936 26 5248 5248
g
2 168 168 27 2624 2624
279 235 234
278 1312 1312
2-10 118 117
279 656 656
2~ 60 57
2-10 328 328
2-12 31 27
2~ 164 164
2-13 16 12
2-12 82 82
2~ 14 10 5
2-13 41 41
2-15 5 0
2~ 14 0 20
216 3 0
2-15 0 10
2-17 2 0
216 0 5
2-18 1 0
2-17 0 2
- 2-18 0 1
Fig. 2. Actual number of reduced arguments of absolute value less
than ¢, and expected number using (10), for various values, @ 2-19 0 0

the caseC = In(2), n = 14, emin = 2 and emq. = 6. Notice that
the estimation obtained from (10) is adequate.

Fig. 3. Actual number of reduced arguments of absolute value less

than ¢, and expected number using (10), for various values, d
the caseC = 7/4, n = 18, With emin = €mas = 5. The estimation
given by (10) is adequate.

and to use a slower yet still accurate algorithm for input
argument with a large exponent.

A. Medium-size arguments (|8, 2% — 1])

To do so, in the following we focus on input arguments
with a “reasonably small” exponent. More precisely, we
assume that the double-precision input argumetias
absolute value less tha?¥® — 1. For larger arguments,
we assume that Payne and Hanek’s method will be used,
or that x mod* C' will be computed using multiple-
precision arithmetic. For straightforward symmetry rea-
sons, we can assume thais positive. We also assume
that z is larger than or equal t8. We then proceed as
follows:

1) We definel(x) asx rounded to the nearest integer.
x is split into its residual pant(z) = z—I(z) and
I(x), which is split into eightr-bit parts;(xz) for

0 <1 <7 as follows:

Ir(x) = I1(27x),
Ig(z)=1(27% (z — (2°°I7(2)))),
L) =1 (270 (z — (25 L(z) + 28 1))
Lﬂxy:1(2*m<x——§:z52&l()))
Lﬂx%z[(?44<x— 7, 28 x»)
5@@::1(246<x—» 132&1 x»)
Iﬂx)::l(2_8(x—— ST 28 )))
Iow) =1 (v = XL, 291i() ),
p(r) =z =325 (),

so that

x = 250 L7 (2) 428 g (2)+. . 42811 () +Io(x)+p(z).

Note thatp(z) is exactly representable in double-
precision, and that for > 252, we havep(z) = 0
andI(x) = z. Also, sincexr > 8, the last mantissa
bit of p(x) has a weight greater than or equal to
2749,

Important remark: One could get a very sim-
ilar algorithm, certainly easier to understand, by
replacing the valuedy(z) by the valuesJy(z)
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actual number
€ i e =7 expected number
2—1 20844 20992
2P 10421 10432
26 5216 5216
27 2608 2608
28 1304 1304
279 652 652
2-10 326 326
2-11 163 163
2~ 12 80 81
2-13 41 40
2- 1 20 20
2-15 9 10
216 5 5
2-17 2 2
218 1 1
2-19 0 0

Fig. 4. Actual number of reduced arguments of absolute value less
than ¢, and expected number using (10), for various values, d

the caseC' = 7/4, n = 18, with emin = emax = 7. Again, the
estimation given by (10) is adequate.

defined as

Jo(x

contains bitsO to 7 of
contains bits8 to 15 of
contains bits16 to 23 of

)
@
) contains bits24 to 31 of
)
)
)

8 8

contains bits32 to 39 of
contains bits40 to 47 of I(x),
contains bits48 to 55 of I(x),
J7(x) contains bits56 to 63 of I(z),

SEEESE
&

8

J1(
(
(
(
(
Jo(

8

but that would lead to tables twice as large as the
ones required by our algorithm. Indeed, the values
Iy up toI7 are stored on 8 bits each, but the sign bit
will not be used and thus only 7 bits are necessary
to index the tables.

The general idea behind our algorithm is to com-

reduction step will be necessary. In practice, the
various possible values df2%1;(z))| mod* 7 /2
are stored in tables as a sum of two or three
floating-point numbers.

As mentioned above, our goal is to always provide
correct results even for the worst case for which
we lose61 bits of accuracy. Then we need to store
(I;(x) mod" 7/2) with at least

61 (leading zeros)
+53 (non-zero significant bits)
+g (extra guard bits)
= 114 + g bits.

To reach that precision (with a value gfequal

to 39, which will be deduced in the following), all
the numberg|2%7;(x)| mod* /2), which belong

to [—1, 1], are stored in tables as the sum of three
double-precision humbers:

Thi(i,w) is the multiple of2=9 that is
closest to((2%w) mod* 7/2)
Trnea(i, w) is the multiple of2~% that is
closest to((2%w) mod* 7/2)
—Thi(i,w)
Tio(i,w) is the double-precision humber
that is closest to
((2%w) mod* 7/2) — Ty (i, w)
_Tmed(iaw)
wherew is a 7-bit nonnegative integer.
Note thatT;u(i w) = Thea(t,w) = Tio(i,w) =
0 for w = 0. The three tablesl},;, T;,.q and
T, need 10 address bits. The total amount of
memory required by these tables3is2!? .8 = 24
Kbytes. From the definitions, one can easily de-
duce|T}eq(i, w)| < 2750 and| T, (4, w)| < 27199,
Thi(i,w) + Thea(i, w) + Tio(i,w) approximates
(2%w) mod" /2 with 153 bits of precision, which
corresponds tg = 39. ComputingTy;, T)neq and
T, for the 1024 different possible values df, w)
allows to get slightly sharper bounds, given in
Table 1.

pute first TABLE |
S(2) MAXIMUM VALUES OF Thi, Timeqd AND Tio.
xTr) =
(Io(x)) mod* 7/2 + (2811 (x)) mod* 7/2 _ ‘ _
+(21612(x)) mod* 7r/2 maxXi,w |Thi (1, w)| | Mmaxs w|Tmea(d, w)| | maxsw|Tio(7, w)]
0.784696 - - - 0.997607 - -- x 2750 | 0.998214 ... x 27100

;(25617(95)) mod" /2
+p(z).

2) Define

It holds thatr—S(x) is a multiple ofr /2 and.S(x)
will be smaller thane, but in generalS(x) will not
be the desired reduced argument: a second, simpler

(Z Slgn Thz( a|IZ($)|)> +,0($)-
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Its absolute value is bounded &y + % which andC,(k) as the double-precision number that is closest
is less than 8. SinceS,;(z) is a multiple of to kw/2 — Cpi(k) — Cpea(k).

274 and has absolute value less thanit is We now proceed as follows:

exactly representable in double-precision floating- , |f |,.(z)| < r/4 then we define

point arithmetic (it is even representable wiih

bits only). Therefore, with a correctly rounded Rpi(z) = Shi(),
arithmetic (such as the one provided on any system Rped(r) = Smea(),
that follows the IEEE-754 standard for floating- Rio(z) = Spo(z).

point arithmetic), it will be exactly computed

without any rounding error. Also, consider » Else, letk, be such thatCy;(k.) is closest to

|Shi(z)]. We successively compute:

{Smed(x) = le:() Sign(Ii(x))Tmed(iu ’IZ(:U)D7 — If Shl(x) >0
Sio(z)  =>_i_gsign(Li(2))Tio(i, |L;(x)])-
. . Rpi(x) = Shi(x) — Chi(kz),
The numbersS,,.q(x) is a multiple of27%° and Roea(z) = Smea(®) — Cmea(ka),
its absolute value is less thaT®’. Hence, itis Ri(x) = Si(x) — Clolky).
exactly representable, and exactly computed, in
double-precision floating-point arithmetigS;,| is — Else,
(o-neatest arihmetic 55 a balanced binary e o Ri@) = @) + ko)
additions: y Rined(r) = Smed(r) + Crmea(kz),
[( ' Rlo(ﬂf) = Slo(x) + Clo(k:z:)-
sign(Zo(2))Tio(0, [ 1o(x)|) :
+ sign(11 (2))Tio(1, | 11 (2)]) Again, Rpi(r) and Rycq(z) are exactly repre-
+(SigN(I2(2)) T1o (2, | I()]) sentable (hence, they are exactly computed) in
+ sign(I3(2)) Tio (3, | I3(2)])) ] 1) double-precision arithmetic:
+ [(sign(14(z))T10(4, | 14(z)]) — Ryi(z) has an absolute value less thaht and
+ sign(I5(x))Tio (5, | I5(2)])) is a multiple of2=4;
+ (sign(Zs(z))T10(6, |16(z)|) — Rueq(z) has an absolute value less thian” +
+ sign(I7(2)) 110 (7, | I7(2)|)) ] 27%Y and is a multiple of27%.

|Rio(z)| is less tharz=974-27100 ' and it is computed
with error less than or equal @149 4 2-150 1
27150 = 49 x 27154

then the rounding error is less than 2-151, For
each of the valuedj,(i, I;(z)), the fact that is it
rounded to the nearest yields an accumulated error

—149 ; .
(for these eight values) less thanx 27194, Thus B 2_154 is the error bound otf,; . .
the absolute error 09;,(z) is less than or equal -2 bOU”O_'S the error due to the floating-point
{08 x 2-154 | 3 5 9151 _ 9—149. representation o€, (k. );

—150 H
Since Sii(z) + Simea(x) is exactly computed, the -2 bounds the rounding error that occurs

numberS(z) = Shi()+Smea(x)+Si(z) is equal when computingSo () & Cio (k) in round-to-
to 2 minus an integer multiple aof /2 plus an error nearest mode.
bounded by2~149. Therefore, the numbeR(z) = Rp;i(z) + Rmea(z) +

And yet, S(z) may not be the final reduced argumentio(¥) i €qual tox minus an i7r11t5e49er Tﬂgiple ofr /2
since its absolute value may be significantly larger th&H!S @n error bounded by x 27% < 275

7 /4. We therefore may have to add or subtract a multiple ThiS step is also used (alone, without the previous
of /2 from S(z) to get the final result, and straightfor-StePs) to reduce small input arguments, less tarhis

ward calculations show that this multiple can only pallows our algorithm to perform range-reduction for both
kr /2 with k = 1,2,3 or 4. kind of arguments, small and medium size. The reduced

argument is now stored as the sum of three double-
precision numbersRy;(x), Rmned(x), and Ri,(z). We
B. Small arguments (smaller than 8) want to return the reduced argument as the sum of two
Define Cy;(k), for k = 1,2,3,4, as the multiple of double-precision numbers (one double-precision number
2749 that is closest takw/2. Cyi(k) is exactly repre- may not suffice if we wish to compute trigonometric
sentable as a double-precision number. Defihg,(k) functions with very good accuracy). To do that, we will
as the multiple o2~ that is closest tdn/2 — Cy;(k) use the Fast2sum algorithm presented hereafter.
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C. Final step

We will get the final result of the range-reduction

as follows. Letp be an integer parameter, < p <

44, used to specify the required accuracy. This choice
comes from the fact that we work in double precision
arithmetic, and that in the most frequent cases, the final

relative error will be bounded bg—1%°+7: to allow an

accurate double precision function result even in the very
worst case, we must have a relative error significantly
less than2—°3. The problem here is only to propagate

the possible carry when summing the three components

Rpi(z), Rpeq(r) and Ry,(x). This is performed using
floating-point addition and the following result.
Theorem 2 (Fast2sum algorithm): [7, page 221,

Thm. C] Let a and b be floating-point numbers, with
la| > |b]. Assume the used floating-point arithmetic
provides correctly rounded results with rounding to the

nearest. The following algorithm
fast2zsum(a,b):

s =a+b
Z =S -a
r =b -z

computes two floating-point numbeks and » that
satisfy:
e r+5s=a+bexactly;

« s is the floating-point number which is closest to

a+b.

We now consider the different possibles cases:

o If |Rpi(x)| > 1/2P, then, SinceR,,.q(x)| < 2747+
2750 the reduced argument will be closeRy;(x).
In that case, we first compute

tmed(l‘) = Rmed(x) + Rlo(x).

two floating-point numbersyy;, vi,) represent the
reduced argument with a relative error smaller than

49 x 27184 oo
0Tlx2 0 <2

If 0 < |Rpi(x)| < 27P, then, since the absolute
value of the reduced argument is always larger than
0.71 x 271 and since|R;,(x)| < 2797 + 27190,
most of the information on the reduced argument is
iN Rp;(x) and R,,cq(x). We first perform

(Yhis tmea) = fast2sUniRy; (), Riea(z)).
Let k& be the integer satisfying
27F <yl < 27
We easily find
tmeal < 275753,
After that, we compute
Yio = tmed + Rio().

The rounding error due to this addition is bounded
by 2-%-107_ Hence, the two floating-point numbers
(yni, y10) represent the reduced argument with an
absolute error smaller than

49 x 27151 4 max{27F7107 27190}

Therefore(yn;, y10) represent the reduced argument
with a relative error better than

49 x 2—154+1c + max{2—107 2—15O+k}'

which is less thar 2787 since the absolute value
of the reduced argument is less thaml x 2761,
which implies2—* < 2761,

A first solution is to try to make the various error bounds

_ equal. This is done by choosing= 14. By doing that,
The error ont,,.q(x) is bounded by the former;, ihe worst case, the bound on the relative error will be
€ITor on Ry,(y) plus the rounding error due to the,-s6 \yhich is quite good. We should notice that in this

addition. Assuming rounding to nearest, this Ia%tase, assuming (10) with = 7 /2, the probability that
error is less than or equal 5 '%°, Hence, the error |Rpi(x)| be less tharz—7 is around7.8 x 1072,

0N tyeq() is less than or equal @100 4 2148,

. : A possibly better solution is to make the most frequent
Then, we perform (without rounding error)

case (i.e.|Rp;(z)| > 27P) more accurate, and to assume
(Yhis Yio) = FASt2SUMR; (), tmea (). that a more accurate yet s_Iow_er algorithm is u_sed in _the
other cases (an easy solution is to split the variables into
After that, the two floating-point numbe(gy;, vio) 4 floating-point values, instead of as we did here).
represent the reduced argument with an absolutgis is done by using a somewhat smaller valuepof
error bounded by 1% + 2714% ~ 27190 Hence, For instance, withp = 10 and C' = /2, still assuming
the relative error on the reduced argument will be(10), the probability that|R,;(z)| < 277 is around
bounded by a value very close 20107 1.25x 1073, In the most frequent caseH,; (z)| > 277),
If Rpi(z) = 0, then we perform the error bound on the computed reduced argument
B will be 2799, Due to its low probability, the other
(Yni> Yi0) = fast2suntiRyea(z), Rio()). case can be processed with an algorithm hundred times
After that, since the absolute value of the reducedower without significantly changing the average time
argument is always larger tham71 x 276!, the of computation, cf. Amdahl’s law.
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D. The algorithm Hanek’s methods (see Section (I-A)) and the Modular
We can now sketch the complete algorithm: range-reduction method described in [1]. ancerning
Algorithm Range-Reduction: Payne and Hanek’s method we used the version of the

algorithm used by Sun Microsystems [10]. We chose as

Input: A double-precision floating-point number> 0 criteria for the evaluation of the algorithms the table size,
and an integep > 0 specifying the required precisionthe number of table accesses and the number of floating-
in bits. point multiplications, divisions and additions.

Output: The reduced argument given as the sum of
two double-precision floating-point numbegg; and
Yo, SUCh that —7m/4 < y < m/4 andy = x — k%
within an error given in the analysis of Section II-C,
for some integek.

TABLE Il
COMPARISON OF OUR ALGORITHM WITHPAYNE AND HANEK’S
ALGORITHM AND THE MODULAR RANGE-REDUCTION
ALGORITHM.

Method: # Elementary| # Table | Table size
if > 263 _1 then operations accesses In Kbytes
{Apply the method of Payne and Hangk. Our algorithm 3/33 3/27 24(20)
elsega: =8 tr;an N Payne & Hanek|  55/103 1 0.14
e o 0 0
else e Pmed $oe ’ rang/leo-(rjéjcli%rction 150 53 2
I «— round(z); p «— z — I;
Shi < P; Smed — 0; Sjp + 0; Table Il shows the potential advantages of our al-
1 T; gorithm for small and medium-sized input argument.
j < 56; Payne and Hanek’s method over that range doesn’t need
while 7 > 0 do much memory, but roughly requires three times as many
w «— round(I >> j); operations. The Modular range-reduction has the same
Shi < Shi + sign(w)Th; (i, |w)|); characteristics as Payne and Hanek’s method concerning
Simed “— Smed + sign(w) Tineq(, Jw)|); the table size needed and the number of elementary
I —I—(w<<j)i—i—1,j—75—8 operations involved, but requires more table accesses.
Sio — o1 sign(w)Tio (i, [w|) (cf. 11); Our algorithm is then a good compromise between table
if |Spi| > /4 then size and number of operations for range-reduction of
k — Reduce(|Shi|) medium size argument.
Shi < Shi + sign(Sh; ) Chi(k); To get more accurate figures than by just counting
Sied — Smed + 8180(Shi)Crmed(k); the operations, we have implemented this algorithm
Sio — Sio + sign(Sp; ) Cio(k); in ANSI-C. The program can be downloaded from
if [Spi| > 277 then http://gala.univ-perp.fr/ /ddefour/higtadix.tgz. This im-
temp < Sped + Sio; plementation shows that our algorithm is 4 to 5 times
(Ynis Yio) < fast2sum(Sy;, temp); faster, depending on the required final precision, than
else if Sp; = 0 then the Sun implementation of Payne and Hanek’s algorithm,
(Ynis Yio) < fast2sum(Syued, Sio); provided that the tables are in main memory (which will
else be true when the trigonometric functions are frequently
(yni, temp) «— fast2sum(Sh;, Smed); called in a numerical program. And when they are not
Yo — temp + Sj,. frequently called, the speed of range-reduction is no

Where: The function Redud@Sy|) chooses the aploro_Ionger an issue). Our algorithm is then a good compro-
priate multiple & of 7/2, represented as the triplemise between table size and delay for range-reduction of

(Chi(k), Coea(k), Cio(k)). small and medium-sized arguments.
’ ’ A variant of our algorithm would consist in first
[1l. COST OF THE ALGORITHM computingSh;, Smeq and Ryi, Ryneq Only. Then, during

In this section we compare our method to othdhe fourth step of the algorithm, if the accuracy does not
algorithms on the same input range253—1]: Payne and suffice, computel}, and R;,. This slight modification
can reduce the number of elementary operations in the
2In fact, the absolute value of the reduced argument is less t ;
’ , hﬂ?lost frequent) cases where no extra accuracy is needed.
/4 plus the largest possible value |,..a + Sio|, hence, less than . .
/4424742797 In practice, this has no influence on the elementa’ijVe can also re_dUC.e the tabl? _S|Ze43KbY_teS by Stonng
function algorithms. the T}, values in single-precision only, instead of using
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double-precision.

Another variant (that can be useful depending on the
processor and compiler), would be to replace the loop
“while ¢« > 0" with “while I <> 0 and: > 0". In
that case (for a medium-sized argumet the number
N of double-precision floating-point operations becomes
N = 17 + 2[logyss 2], i.€., 13 < N < 34. Also, the
number of table accesses becomes 3[logysg ].

IV. CONCLUSIONS

We have presented an algorithm for accurate range-
reduction of input arguments with absolute value less
than 263 — 1. This table-based algorithm gives accurate
results for the most frequent cases. In order to cover
the whole double-precision domain for input arguments,
we suggest using Payne and Hanek’s algorithm for huge
arguments. A major drawback of our method lies in the
table size needed, thus a future effort will be to reduce
the table size, while keeping a good tradeoff between
speed and accuracy.
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