
IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 1

A New Range-Reduction Algorithm
N. Brisebarre, D. Defour, P. Kornerup, J.-M Muller and N. Revol

Abstract— Range-reduction is a key point for getting
accurate elementary function routines. We introduce a new
algorithm that is fast for input arguments belonging to the
most common domains, yet accurate over the full double-
precision range.

Index Terms— Range-reduction, elementary function
evaluation, floating-point arithmetic.

I. I NTRODUCTION

A LGORITHMS for the evaluation of elementary
functions give correct results only if the argument

is within a given small interval, usually centered at zero.
To evaluate an elementary functionf(x) for any x, it
is necessary to find some “transformation” that makes it
possible to deducef(x) from some valueg(x∗), where

• x∗, called thereduced argument, is deduced from
x;

• x∗ belongs to the convergence domain of the algo-
rithm implemented for the evaluation ofg.

In practice, range-reduction needs care for the trigono-
metric functions. With these functions,x∗ is equal to
x−kC, wherek is an integer andC an integer multiple
of π/4. Also of potential interest is the caseC = ln(2),
for implementation of the exponential function.

A poor range-reduction method may lead to cata-
strophic accuracy problems when the input argument is
large or close to an integer multiple ofC. It is easy
to understand why a poor range-reduction algorithm
gives inaccurate results. The naive method consists of
performing the computations

k =
⌊ x

C

⌋
x∗ = x− kC

using the machine precision. WhenkC is close to
x, almost all the accuracy, if not all, is lost when
performing the subtractionx − kC. For instance, if
C = π/2 and x = 8248.251512 the correct value of

Manuscript received ???, revised ???
David Defour is with Universit́e de Perpignan, Perpignan, France;

Nicolas Brisebarre, Jean-Michel Muller and Nathalie Revol are
with Laboratoire LIP, CNRS/ENS Lyon/INRIA/Univ. Lyon 1, Lyon,
France; Nicolas Brisebarre is also with Université Jean Monnet, Saint-
Étienne, France; Peter Kornerup is with SDU, Odense, Denmark.

x∗ is −2.14758367 · · · × 10−12, and the corresponding
value of k is 5251. Directly computingx − kπ/2 on
a calculator with10-digit decimal arithmetic (assuming
rounding to the nearest, and replacingπ/2 by the nearest
exactly-representable number), then one gets−1.0 ×
10−6. Hence, such a poor range-reduction would lead
to a computed value ofcos(x) equal to−1.0 × 10−6,
whereas the correct value is−2.14758367 · · · × 10−12.

A first solution to overcome the problem consists of
using arbitrary-precision arithmetic, but this may make
the computation much slower. Moreover, it is not that
easy to predict on the fly the precision with which the
computation should be performed.

Most common input arguments to the trigonometric
functions are small (say, less than8), or sometimes
medium (say, between8 and approximately260). They
are rarely huge (say, greater than260). We want to design
methods that are fast for the frequent cases, and accurate
for all cases. A rough estimate, based on SUN fdlibm
library, is that the cost of trigonometric range-reduction
– when reduction is necessary – is approximately one
third of the total function evaluation cost.

First we describe Payne and Hanek’s method [11]
which provides an accurate range-reduction, but has the
drawback of being fairly expensive in term of operations;
this method is very commonly implemented, it is used
in SUN fdlibm library in particular.

To know with which precision the intermediate calcu-
lations must be carried on to get an accurate result, one
must know theworst cases, that is, the input arguments
that are hardest to reduce. Also, to estimate the average
performance of the algorithms (and to tune them so that
these performances are good), one must have at least
a rough estimate of the statistical distribution of the
reduced arguments. These two problems are dealt with
at the end of this section.

In the second section we present our algorithm ded-
icated to the reduction of small and medium size argu-
ments. In the third section we compare our method with
some other available methods, which justifies the use of
our algorithm for small and medium size arguments.

A. The Payne and Hanek Reduction Algorithm

We assume in this subsection that we want to perform
range-reduction for the trigonometric functions, with

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 2

bits of Left(e,p)︷ ︸︸ ︷
α0.α−1 · · ·αn−e+2

bits of Middle(e,p)︷ ︸︸ ︷
αn−e+1 · · ·α−n−e−1−p

bits of Right(e,p)︷ ︸︸ ︷
α−n−e−2−pα−n−e−3−p · · ·

Fig. 1. The splitting of digits of4/π in Payne and Hanek’s reduction method.

C = π/4, and that the convergence domain of the
algorithm used for evaluating the functions contains1 I =
[0, π/4]. An adaptation to other cases is straightforward.

From an input argumentx, we want to find the reduced
argumentx∗ and an integerk, that satisfy:

k =
⌊

4
π

x

⌋
x∗ =

π

4

(
4
π

x− k

)
(1)

Once x∗ is known, it suffices to knowk mod 8 to
calculatesin(x) or cos(x) from x∗. If x is large, or if
x is very close to a multiple ofπ/4, the direct use of
(1) to determinex∗ may require the knowledge of4/π
with very large precision, and a cost-expensive multiple-
precision computation if we wish the range-reduction to
be accurate.

Now let us present Payne and Hanek’s reduction
method [11], [12]. Assume ann-bit mantissa, radix 2
floating-point format (the number of bitsn includes the
possible hidden bit; for instance, with an IEEE double-
precision format,n = 53). Let x be the positive floating-
point argument to be reduced and lete be its unbiased
exponent, so

x = X × 2e−n+1

whereX is ann-bit integer satisfying2n−1 ≤ X < 2n.
We can assumee ≥ −1 (since if e < −1, no reduction
is necessary). Let

α0.α−1α−2α−3α−4α−5 . . .

be the infinite binary expansion ofα = 4/π, and define
an integer parameterp, used to specify the required
accuracy of the range-reduction. Then rewriteα = 4/π
as

Left(e, p)× 2n−e+2

+(Middle(e, p) + Right(e, p))× 2−n−e−1−p,

where Left(e, p) = 0 if e < n + 2, else
Left(e, p) = α0α−1 · · ·αn−e+2,
Middle(e, p) = αn−e+1αn−e · · ·α−n−e−1−p,
Right(e, p) = 0.α−n−e−2−pα−n−e−3−p · · · .

Fig. 1 shows the splitting of the binary expansion ofα.

1In practice, we can reduce to an interval of size slightly larger
thanC, to facilitate the reduction.

The basic idea of the Payne-Hanek reduction method
is to notice that, if p is large enough, Middle(e, p)
contains the only bits ofα = 4/π that matter for the
range-reduction. Since

4
π

x = Left(e, p)×X × 8

+ Middle(e, p)×X × 2−2n−p

+ Right(e, p)×X × 2−2n−p,

the number Left(e, p) × X × 8 is a multiple of 8, so
that once multiplied byπ/4 (see Eq. (1)), it will have
no influence on the trigonometric functions. Right(e, p)×
X×2−2n−p is less than2−n−p; therefore it can be made
as small as desired by adequately choosingp.

How p is chosen will be explained in Section II-C.

B. Worst Cases

Assume we want the reduced argument to belong to
[−C/2, C/2). Define x mod∗ C as the numbery ∈
[−C/2, C/2) such thaty = x−kC, wherek is an integer.

There are two important points that must be con-
sidered when trying to design accurate yet fast range-
reduction algorithms.

• First, what is the “worst case”? That is, what will be
the smallest possible absolute value of the reduced
argument for all possible inputs in a given format.
That value will allow us to immediately deduce the
precision with which the reduction must be carried
on to make sure that, even for the most difficult
cases, the returned result will be accurate enough.

• What is the statistical distribution of the smallest
absolute values of the reduced arguments? That is,
given a small valueε, what is the probability that
the reduced argument will have an absolute value
less thanε? This point is important if we want to
design algorithms that are fast for the most frequent
cases, and remain accurate on all cases.

Computing the worst case is rather easy, us-
ing an algorithm due to Kahan [4] (a C pro-
gram that implements the method can be found at
http://http.cs.berkeley.edu/˜wkahan/. A Maple program is
given in [9]). The algorithm uses the continued-fraction
theory. For instance, a few minutes of calculation suffice
to find the double-precision number between8 and

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 3

263−1 that is closest to a multiple ofπ/4. This number
is:

Γπ/4 = 6411027962775774× 2−48

≈ 22.776546738526000979.

The distance betweenΓπ/4 and the closest multiple of
π/4 is

επ/4 ≈ 3.094903× 10−19 ≈ 0.71× 2−61.

So if we apply a range-reduction from a double-precision
argument in[8, 263−1] to [−π/4, π/4), and if we wish to
get a reduced argument with relative accuracy better than
2−µ, we must perform the range reduction with absolute
error better than2−µ−61.

Also, the double-precision number greater than8 and
less than710 which is closest to a multiple ofln(2) is:

Γln(2) = 7804143460206699× 2−49

≈ 13.8629436111989061.

The distance betweenΓln(2) and the closest multiple of
ln(2) is

εln(2) ≈ 1.972015× 10−17 > 2−56.

In that case, we considered only numbers less than710,
since exponentials of numbers larger than that are mere
overflows in double-precision arithmetic.

C. Statistical distribution of the reduced arguments

Now, let us turn to the statistical distribution of
reduced arguments.

We assume thatC is a positive fractional multiple of
π or ln(2). Let emin and emax be two rational integers
such that2emin ≤ C/2 < 2emin+1 andemin ≤ emax.

Let p ∈ N such that2−p+1 ≤ C, our aim is to
estimate the number of floating-point numbersx with
n-bit mantissas and exponents betweenemin and emax

such that
|x mod∗ C| < 2−p. (2)

wherex mod∗ C is defined as the unique numbery ∈
[−C/2,+C/2) such thaty = x − kC, wherek is an
integer.

Let E be a rational integer such thatemin ≤ E ≤
emax. As 2−p+1 ≤ C, we have2−p < 2emin+1 ≤ 2E+1.
Therefore,2−p ≤ 2E i.e., p + E ≥ 0.

We start by estimating the number of floating-point
numbersx with n-bit mantissas and exponentE that
satisfy (2). Hence, we search for thej ∈ N, 2n−1 ≤ j ≤
2n − 1 such that the inequality∣∣∣∣kC − j

2n−1
2E

∣∣∣∣ < 2−p (3)

has solutions ink ∈ Z. Suchk necessarily satisfy

1
C

(
− 1

2p
+

j

2n−1
2E

)
< k <

1
C

(
1
2p

+
j

2n−1
2E

)
. (4)

We note that, asp + E ≥ 0 and j ≥ 2n−1, the left
hand-side of (4) is positive. Hence,

max
{

1,

⌈
1
C

(
− 1

2p
+ 2E

)⌉}
︸ ︷︷ ︸

mE

≤ k ≤
⌊

1
C

(
1
2p

+ 2E+1 − 2E

2n−1

)⌋
︸ ︷︷ ︸

ME

(5)
since2n−1 ≤ j ≤ 2n−1, and these inequalities are sharp
since the upper bound in (4) is irrational, and the lower
bound is either zero or an irrational number. The number
of possiblek is exactly

NE = ME −mE + 1. (6)

Inequality (3) is equivalent to∣∣kC2n−1−E − j
∣∣ < 2n−1−p−E . (7)

Hence, for everyk satisfying (5), there are exactly

min
(
2n − 1, bkC2n−1−E + 2n−1−p−Ec

)
−

max
(
2n−1, dkC2n−1−E − 2n−1−p−Ee

)
+ 1 (8)

integers j solutions since the numberskC2n−1−E −
2n−1−p−E andkC2n−1−E+2n−1−p−E are irrational (we
saw before thatk 6= 0).

As 2−p+1 ≤ C, if k ≥ mE + 1, we have

2n−1 ≤ dkC2n−1−E − 2n−1−p−Ee

and, if k ≤ME − 1, we have

2n − 1 ≥ bkC2n−1−E + 2n−1−p−Ec.

Now, to analyse (8), we have to distinguish two cases.

First case: 2n−1−p−E ≥ 1/2 i.e., n− E ≥ p.
This case is the easy one, and equation (7) yields the
conclusion. For everyk, mE + 1 ≤ k ≤ ME − 1, there
are exactly2n−p−E integer solutionsj since the numbers
kC2n−1−E − 2n−1−p−E and kC2n−1−E + 2n−1−p−E

are irrational. Whenk ∈ {mE ,ME}, we can only say
that there are at least1 and at most2n−p−E integer
solutions j. Notice that these solutions can easily
be enumerated by a program. Therefore, the number
of floating-point numbersx with n-bit mantissas
and exponentE that satisfy (2) is upper bounded by
NE2n−p−E , and lower bounded by(NE−2)2n−p−E +2.

Second case:2n−1−p−E < 1/2 i.e. n− E < p.
We need results about uniform distribution of se-

quences [8] that we briefly recall now.

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 4

For a real numberx, {x} denotes the fractional part
of x i.e. {x} = x − bxc and ||x|| denotes the distance
from x to the nearest integer, namely

||x|| = min
n∈Z
|x− n| = min({x}, 1− {x}).

Let us recall the following definitions from [8].
Definition 1: Let (xn)n≥1 be a given sequence of real

numbers. LetN be a positive integer.
For a subsetE of [0, 1), the counting function

A(E ;N ; (xn)) is the number of termsxn, 1 ≤ n ≤ N ,
for which {xn} ∈ E .

Let y1, . . . , yN be a finite sequence of real numbers.
The number

DN ((yn)) = sup
0≤a<b≤1

∣∣∣∣A([a, b);N ; (yn))
N

− (b− a)
∣∣∣∣

is called thediscrepancyof the sequencey1, . . . , yN .
For an infinite sequence(xn) of real numbers (or for a
finite sequence containing at leastN terms),DN ((xn))
is meant to be the discrepancy of the initial segment
formed by the firstN terms of(xn).

Thus, in particular, the number of valuesxn with
1 ≤ n ≤ N satisfying {xn} ∈ [a, b), for any 0 ≤
a < b ≤ 1, is bounded from above byN

[
(b − a) +

DN ((xn))
]
. Hence, the number of valueskC2n−1−E ,

with mE ≤ k ≤ ME , that satisfy equation (7), i.e.
that satisfy0 ≤ {kC2n−1−E} < 2n−1−p−E or 1 −
2n−1−p−E < {kC2n−1−E} < 1 is bounded from above
by NE

(
2n−p−E + 2DNE

((kC2n−1−E))).
Definition 2: Let µ be a positive real number or

infinity. The irrational numberα is said to be of
type µ if µ is the supremum of allγ for which
lim inf q→∞,

q∈N
qγ ||qα|| = 0.

Theorem 3.2 from [8, Chap 2.] states the following
result.

Theorem 1: Letα be of finite typeµ. Then, for every
ε > 0, the discrepancyDN (u) of u = (nα) satisfies

DN (u) = O(N (−1/µ)+ε).
Let us apply this theorem to values of interest for this

paper, namelyC = q ln(2) andC = qπ with q ∈ Q∗.

• If C is a nonzero fractional multiple ofln(2).
We know from [2] that any nonzero fractional mul-
tiple of ln(2) has a type≤ 2.9. Thus, the number of
floating-point numbersx with n-bit mantissas and
exponentE that satisfy (2) is upper bounded by
2n−p−E(NE + O(NE

(19/29)+ε)) for everyε > 0.
• If C is a nonzero fractional multiple ofπ. We

know from [3] that any nonzero fractional multiple
of π has a type≤ 7.02. Hence, the number of
floating-point numbersx with n-bit mantissas and

exponentE that satisfy (2) is upper bounded by
2n−p−E(NE + O(NE

(301/351)+ε)) for everyε > 0.
From this theorem, we can deduce the following result.

Proposition 1: LetC be a positive fractional multiple
of π or ln(2). Letemin andemax be two rational integers
such that2emin ≤ C/2 < 2emin+1 andemin ≤ emax. Let
p ∈ N such that2−p ≤ C/2. The numberνE of floating-
point numbersx with n-bit mantissas and exponentE
betweenemin and emax such that

|x mod∗ C| < 2−p (9)

satisfies
• 2n−p−E(NE − 2) + 2 ≤ νE ≤ 2n−p−ENE if n −

E ≥ p. In that case,νE is easily computable by a
program;

• νE = 2n−p−E(NE + O(NE
δ+ε)) if n − E ≥ p,

for every ε > 0, with δ ≤ 19/29 for C nonzero
fractional multiple ofln(2), and δ ≤ 301/351 for
C nonzero fractional multiple ofπ.

where

NE =
⌊

1
C

(
1
2p + 2E+1 − 2E

2n−1

)⌋
−

⌈
1
C

(
− 1

2p + 2E
)⌉

+ 1.

From this proposition, numerous experiments, and a
well-known result by Khintchine [5], [6] that states that
almost all real numbers are of type1, we can assume
that for anyE, we have

νE ≈
⌊
2n−p−ENE

⌋
. (10)

We have checked this result by computing all reduced
arguments for some values ofn, emin and emax such
that this exhaustive computation remains possible in a
reasonable delay. Some obtained results are given in
Fig. 2, 3 and 4. These results show that the estimate
provided by (10) is a good one. These estimates will be
used at the end of Section II-C.

II. A N EW HIGH-RADIX REDUCTION METHOD

In this section, we assume that we perform range-
reduction for the trigonometric functions, withC = π/2.
Extension to other values ofC (such as a fractional
multiple of π – still for the trigonometric functions –
or a fractional multiple ofln(2) – for the exponential
function) is straightforward.

As stated before, our general philosophy is that we
must give results that are:

1) always correct, even for rare cases;
2) computed as quickly as possible for frequent cases.

A way to deal with these requirements is to build a fast
algorithm for input arguments with a small exponent,

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 5

ε actual number expected number

2−4 7485 7552
2−5 3744 3744
2−6 1872 1872
2−7 936 936
2−8 468 468
2−9 235 234
2−10 118 117
2−11 60 57
2−12 31 27
2−13 16 12
2−14 10 5
2−15 5 0
2−16 3 0
2−17 2 0
2−18 1 0

Fig. 2. Actual number of reduced arguments of absolute value less
than ε, and expected number using (10), for various values ofε, in
the caseC = ln(2), n = 14, emin = 2 and emax = 6. Notice that
the estimation obtained from (10) is adequate.

and to use a slower yet still accurate algorithm for input
argument with a large exponent.

A. Medium-size arguments (in[8, 263 − 1])

To do so, in the following we focus on input arguments
with a “reasonably small” exponent. More precisely, we
assume that the double-precision input argumentx has
absolute value less than263 − 1. For larger arguments,
we assume that Payne and Hanek’s method will be used,
or that x mod∗ C will be computed using multiple-
precision arithmetic. For straightforward symmetry rea-
sons, we can assume thatx is positive. We also assume
that x is larger than or equal to8. We then proceed as
follows:

1) We defineI(x) asx rounded to the nearest integer.
x is split into its residual partρ(x) = x−I(x) and
I(x), which is split into eight7-bit partsIi(x) for

ε
actual number

emin = emax = 5 expected number

2−4 20992 20992
2−5 10496 10496
2−6 5248 5248
2−7 2624 2624
2−8 1312 1312
2−9 656 656
2−10 328 328
2−11 164 164
2−12 82 82
2−13 41 41
2−14 0 20
2−15 0 10
2−16 0 5
2−17 0 2
2−18 0 1
2−19 0 0

Fig. 3. Actual number of reduced arguments of absolute value less
than ε, and expected number using (10), for various values ofε, in
the caseC = π/4, n = 18, with emin = emax = 5. The estimation
given by (10) is adequate.

0 ≤ i ≤ 7 as follows:

I7(x) = I(2−56x),

I6(x) = I
(
2−48

(
x−

(
256I7(x)

)))
,

I5(x) = I
(
2−40

(
x−

(
256I7(x) + 248I6(x)

)))
,

I4(x) = I
(
2−32

(
x−

∑7
i=5 28iIi(x)

))
,

I3(x) = I
(
2−24

(
x−

∑7
i=4 28iIi(x)

))
,

I2(x) = I
(
2−16

(
x−

∑7
i=3 28iIi(x)

))
,

I1(x) = I
(
2−8

(
x−

∑7
i=2 28iIi(x)

))
,

I0(x) = I
(
x−

∑7
i=1 28iIi(x)

)
,

ρ(x) = x−
∑7

i=0 28iIi(x),

so that

x = 256I7(x)+248I6(x)+. . .+28I1(x)+I0(x)+ρ(x).

Note thatρ(x) is exactly representable in double-
precision, and that forx ≥ 252, we haveρ(x) = 0
andI(x) = x. Also, sincex ≥ 8, the last mantissa
bit of ρ(x) has a weight greater than or equal to
2−49.
Important remark: One could get a very sim-
ilar algorithm, certainly easier to understand, by
replacing the valuesIk(x) by the valuesJk(x)

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 6

ε
actual number

emin = emax = 7 expected number

2−4 20844 20992
2−5 10421 10432
2−6 5216 5216
2−7 2608 2608
2−8 1304 1304
2−9 652 652
2−10 326 326
2−11 163 163
2−12 80 81
2−13 41 40
2−14 20 20
2−15 9 10
2−16 5 5
2−17 2 2
2−18 1 1
2−19 0 0

Fig. 4. Actual number of reduced arguments of absolute value less
than ε, and expected number using (10), for various values ofε, in
the caseC = π/4, n = 18, with emin = emax = 7. Again, the
estimation given by (10) is adequate.

defined as

J0(x) contains bits0 to 7 of I(x),
J1(x) contains bits8 to 15 of I(x),
J2(x) contains bits16 to 23 of I(x),
J3(x) contains bits24 to 31 of I(x),
J4(x) contains bits32 to 39 of I(x),
J5(x) contains bits40 to 47 of I(x),
J6(x) contains bits48 to 55 of I(x),
J7(x) contains bits56 to 63 of I(x),

but that would lead to tables twice as large as the
ones required by our algorithm. Indeed, the values
I0 up toI7 are stored on 8 bits each, but the sign bit
will not be used and thus only 7 bits are necessary
to index the tables.
The general idea behind our algorithm is to com-
pute first

S(x) =
(I0(x)) mod∗ π/2 + (28I1(x)) mod∗ π/2
+(216I2(x)) mod∗ π/2
...
+(256I7(x)) mod∗ π/2
+ρ(x).

It holds thatx−S(x) is a multiple ofπ/2 andS(x)
will be smaller thanx, but in generalS(x) will not
be the desired reduced argument: a second, simpler

reduction step will be necessary. In practice, the
various possible values of|(28iIi(x))| mod∗ π/2
are stored in tables as a sum of two or three
floating-point numbers.
As mentioned above, our goal is to always provide
correct results even for the worst case for which
we lose61 bits of accuracy. Then we need to store
(Ii(x) mod∗ π/2) with at least

61 (leading zeros)
+53 (non-zero significant bits)
+g (extra guard bits)
= 114 + g bits.

To reach that precision (with a value ofg equal
to 39, which will be deduced in the following), all
the numbers(|28iIi(x)| mod∗ π/2), which belong
to [−1, 1], are stored in tables as the sum of three
double-precision numbers:

Thi(i, w) is the multiple of2−49 that is
closest to((28iw) mod∗ π/2)

Tmed(i, w) is the multiple of2−99 that is
closest to((28iw) mod∗ π/2)

−Thi(i, w)
Tlo(i, w) is the double-precision number

that is closest to
((28iw) mod∗ π/2)− Thi(i, w)

−Tmed(i, w)

wherew is a 7-bit nonnegative integer.
Note thatThi(i, w) = Tmed(i, w) = Tlo(i, w) =
0 for w = 0. The three tablesThi, Tmed and
Tlo need 10 address bits. The total amount of
memory required by these tables is3 · 210 · 8 = 24
Kbytes. From the definitions, one can easily de-
duce|Tmed(i, w)| ≤ 2−50 and |Tlo(i, w)| ≤ 2−100.
Thi(i, w) + Tmed(i, w) + Tlo(i, w) approximates
(28iw) mod∗ π/2 with 153 bits of precision, which
corresponds tog = 39. ComputingThi, Tmed and
Tlo for the1024 different possible values of(i, w)
allows to get slightly sharper bounds, given in
Table 1.

TABLE I

MAXIMUM VALUES OF Thi, Tmed AND Tlo.

maxi,w |Thi(i, w)| maxi,w |Tmed(i, w)| maxi,w |Tlo(i, w)|

0.784696 · · · 0.997607 · · · × 2−50 0.998214 · · · × 2−100

2) Define

Shi(x) =

(
7∑

i=0

sign(Ii(x))Thi(i, |Ii(x)|)

)
+ ρ(x).

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 7

Its absolute value is bounded by2π + 1
2 , which

is less than 8. SinceShi(x) is a multiple of
2−49 and has absolute value less than8, it is
exactly representable in double-precision floating-
point arithmetic (it is even representable with52
bits only). Therefore, with a correctly rounded
arithmetic (such as the one provided on any system
that follows the IEEE-754 standard for floating-
point arithmetic), it will be exactly computed,
without any rounding error. Also, consider{

Smed(x) =
∑7

i=0 sign(Ii(x))Tmed(i, |Ii(x)|),
Slo(x) =

∑7
i=0 sign(Ii(x))Tlo(i, |Ii(x)|).

The numberSmed(x) is a multiple of 2−99 and
its absolute value is less than2−47. Hence, it is
exactly representable, and exactly computed, in
double-precision floating-point arithmetic.|Slo| is
less than2−97, and if Slo is computed with round-
to-nearest arithmetic as a balanced binary tree of
additions:[(

sign(I0(x))Tlo(0, |I0(x)|)
+ sign(I1(x))Tlo(1, |I1(x)|)

)
+
(
sign(I2(x))Tlo(2, |I2(x)|)

+ sign(I3(x))Tlo(3, |I3(x)|)
)]

+
[(

sign(I4(x))Tlo(4, |I4(x)|)
+ sign(I5(x))Tlo(5, |I5(x)|)

)
+
(
sign(I6(x))Tlo(6, |I6(x)|)
+ sign(I7(x))Tlo(7, |I7(x)|)

)]
(11)

then the rounding error is less than3× 2−151. For
each of the valuesTlo(i, Ii(x)), the fact that is it
rounded to the nearest yields an accumulated error
(for these eight values) less than8× 2−154. Thus
the absolute error onSlo(x) is less than or equal
to 8× 2−154 + 3× 2−151 = 2−149.
SinceShi(x) + Smed(x) is exactly computed, the
numberS(x) = Shi(x)+Smed(x)+Slo(x) is equal
to x minus an integer multiple ofπ/2 plus an error
bounded by2−149.

And yet,S(x) may not be the final reduced argument,
since its absolute value may be significantly larger than
π/4. We therefore may have to add or subtract a multiple
of π/2 from S(x) to get the final result, and straightfor-
ward calculations show that this multiple can only be
kπ/2 with k = 1, 2, 3 or 4.

B. Small arguments (smaller than 8)

Define Chi(k), for k = 1, 2, 3, 4, as the multiple of
2−49 that is closest tokπ/2. Chi(k) is exactly repre-
sentable as a double-precision number. DefineCmed(k)
as the multiple of2−99 that is closest tokπ/2−Chi(k)

andClo(k) as the double-precision number that is closest
to kπ/2− Chi(k)− Cmed(k).

We now proceed as follows:

• If |Shi(x)| ≤ π/4 then we define

Rhi(x) = Shi(x),
Rmed(x) = Smed(x),
Rlo(x) = Slo(x).

• Else, let kx be such thatChi(kx) is closest to
|Shi(x)|. We successively compute:

– If Shi(x) > 0

Rhi(x) = Shi(x)− Chi(kx),
Rmed(x) = Smed(x)− Cmed(kx),
Rlo(x) = Slo(x)− Clo(kx).

– Else,

Rhi(x) = Shi(x) + Chi(kx),
Rmed(x) = Smed(x) + Cmed(kx),
Rlo(x) = Slo(x) + Clo(kx).

Again, Rhi(x) and Rmed(x) are exactly repre-
sentable (hence, they are exactly computed) in
double-precision arithmetic:

– Rhi(x) has an absolute value less thanπ/4 and
is a multiple of2−49;

– Rmed(x) has an absolute value less than2−47+
2−50 and is a multiple of2−99.

|Rlo(x)| is less than2−97+2−100, and it is computed
with error less than or equal to2−149 + 2−150 +
2−154 = 49× 2−154:

– 2−149 is the error bound onSlo;
– 2−154 bounds the error due to the floating-point

representation ofClo(kx);
– 2−150 bounds the rounding error that occurs

when computingSlo(x)±Clo(kx) in round-to-
nearest mode.

Therefore, the numberR(x) = Rhi(x) + Rmed(x) +
Rlo(x) is equal tox minus an integer multiple ofπ/2
plus an error bounded by49× 2−154 < 2−148.

This step is also used (alone, without the previous
steps) to reduce small input arguments, less than8. This
allows our algorithm to perform range-reduction for both
kind of arguments, small and medium size. The reduced
argument is now stored as the sum of three double-
precision numbers,Rhi(x), Rmed(x), and Rlo(x). We
want to return the reduced argument as the sum of two
double-precision numbers (one double-precision number
may not suffice if we wish to compute trigonometric
functions with very good accuracy). To do that, we will
use the Fast2sum algorithm presented hereafter.

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 8

C. Final step

We will get the final result of the range-reduction
as follows. Letp be an integer parameter,1 ≤ p ≤
44, used to specify the required accuracy. This choice
comes from the fact that we work in double precision
arithmetic, and that in the most frequent cases, the final
relative error will be bounded by2−100+p: to allow an
accurate double precision function result even in the very
worst case, we must have a relative error significantly
less than2−53. The problem here is only to propagate
the possible carry when summing the three components
Rhi(x), Rmed(x) and Rlo(x). This is performed using
floating-point addition and the following result.

Theorem 2 (Fast2sum algorithm): [7, page 221,
Thm. C] Let a and b be floating-point numbers, with
|a| ≥ |b|. Assume the used floating-point arithmetic
provides correctly rounded results with rounding to the
nearest. The following algorithm

fast2sum(a,b):
s := a + b
z := s - a
r := b - z

computes two floating-point numberss and r that
satisfy:

• r + s = a + b exactly;
• s is the floating-point number which is closest to

a + b.
We now consider the different possibles cases:

• If |Rhi(x)| > 1/2p, then, since|Rmed(x)| < 2−47+
2−50, the reduced argument will be close toRhi(x).
In that case, we first compute

tmed(x) = Rmed(x) + Rlo(x).

The error ontmed(x) is bounded by the former
error onRlo(x) plus the rounding error due to the
addition. Assuming rounding to nearest, this last
error is less than or equal to2−100. Hence, the error
on tmed(x) is less than or equal to2−100 + 2−148.
Then, we perform (without rounding error)

(yhi, ylo) = fast2sum(Rhi(x), tmed(x)).

After that, the two floating-point numbers(yhi, ylo)
represent the reduced argument with an absolute
error bounded by2−100 + 2−148 ≈ 2−100. Hence,
the relative error on the reduced argument will be
bounded by a value very close to2−100+p.

• If Rhi(x) = 0, then we perform

(yhi, ylo) = fast2sum(Rmed(x), Rlo(x)).

After that, since the absolute value of the reduced
argument is always larger than0.71 × 2−61, the

two floating-point numbers(yhi, ylo) represent the
reduced argument with a relative error smaller than

49× 2−154

0.71× 2−61
< 2−86.

• If 0 < |Rhi(x)| ≤ 2−p, then, since the absolute
value of the reduced argument is always larger than
0.71 × 2−61, and since|Rlo(x)| < 2−97 + 2−100,
most of the information on the reduced argument is
in Rhi(x) andRmed(x). We first perform

(yhi, tmed) = fast2sum(Rhi(x), Rmed(x)).

Let k be the integer satisfying

2−k ≤ |yhi| < 2−k+1.

We easily find

|tmed| ≤ 2−k−53.

After that, we compute

ylo = tmed + Rlo(x).

The rounding error due to this addition is bounded
by 2−k−107. Hence, the two floating-point numbers
(yhi, ylo) represent the reduced argument with an
absolute error smaller than

49× 2−154 + max{2−k−107, 2−150}.
Therefore,(yhi, ylo) represent the reduced argument
with a relative error better than

49× 2−154+k + max{2−107, 2−150+k}.
which is less than≤ 2−87 since the absolute value
of the reduced argument is less than0.71× 2−61,
which implies2−k ≤ 2−61.

A first solution is to try to make the various error bounds
equal. This is done by choosingp = 14. By doing that,
in the worst case, the bound on the relative error will be
2−86, which is quite good. We should notice that in this
case, assuming (10) withC = π/2, the probability that
|Rhi(x)| be less than2−p is around7.8× 10−5.

A possibly better solution is to make the most frequent
case (i.e.,|Rhi(x)| > 2−p) more accurate, and to assume
that a more accurate yet slower algorithm is used in the
other cases (an easy solution is to split the variables into
4 floating-point values, instead of3 as we did here).
This is done by using a somewhat smaller value ofp.
For instance, withp = 10 andC = π/2, still assuming
(10), the probability that|Rhi(x)| < 2−p is around
1.25×10−3. In the most frequent case (|Rhi(x)| ≥ 2−p),
the error bound on the computed reduced argument
will be 2−90. Due to its low probability, the other
case can be processed with an algorithm hundred times
slower without significantly changing the average time
of computation, cf. Amdahl’s law.

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 9

D. The algorithm

We can now sketch the complete algorithm:

Algorithm Range-Reduction:

Input: A double-precision floating-point numberx > 0
and an integerp > 0 specifying the required precision
in bits.

Output: The reduced argumenty given as the sum of
two double-precision floating-point numbersyhi and
ylo, such that2 −π/4 ≤ y < π/4 and y = x − k π

2
within an error given in the analysis of Section II-C,
for some integerk.

Method:
if x ≥ 263 − 1 then
{Apply the method of Payne and Hanek.}

else if x ≤ 8 then
Shi ← x; Smed ← 0; Slo ← 0;

else
I ← round(x); ρ← x− I;
Shi ← ρ; Smed ← 0; Slo ← 0;
i← 7;
j ← 56;
while i ≥ 0 do

w ← round(I >> j);
Shi ← Shi + sign(w)Thi(i, |w|);
Smed ← Smed + sign(w)Tmed(i, |w|);
I ← I − (w << j); i← i− 1; j ← j − 8

Slo ←
∑7

i=0 sign(w)Tlo(i, |w|) (cf. 11);
if |Shi| ≥ π/4 then

k ← Reduce(|Shi|)
Shi ← Shi + sign(Shi)Chi(k);
Smed ← Smed + sign(Shi)Cmed(k);
Slo ← Slo + sign(Shi)Clo(k);

if |Shi| > 2−p then
temp← Smed + Slo;
(yhi, ylo)← fast2sum(Shi, temp);

else if Shi = 0 then
(yhi, ylo)← fast2sum(Smed, Slo);

else
(yhi, temp)← fast2sum(Shi, Smed);
ylo ← temp + Slo.

Where: The function Reduce(|Shi|) chooses the appro-
priate multiple k of π/2, represented as the triple
(Chi(k), Cmed(k), Clo(k)).

III. C OST OF THE ALGORITHM

In this section we compare our method to other
algorithms on the same input range[8, 263−1]: Payne and

2In fact, the absolute value of the reduced argument is less than
π/4 plus the largest possible value of|Smed + Slo|, hence, less than
π/4+2−47+2−97. In practice, this has no influence on the elementary
function algorithms.

Hanek’s methods (see Section (I-A)) and the Modular
range-reduction method described in [1]. Concerning
Payne and Hanek’s method we used the version of the
algorithm used by Sun Microsystems [10]. We chose as
criteria for the evaluation of the algorithms the table size,
the number of table accesses and the number of floating-
point multiplications, divisions and additions.

TABLE II

COMPARISON OF OUR ALGORITHM WITHPAYNE AND HANEK ’ S

ALGORITHM AND THE MODULAR RANGE-REDUCTION

ALGORITHM .

Elementary
operations

Table
accesses

Table size
in Kbytes

Our algorithm 3/33 3/27 24(20)

Payne & Hanek 55/103 1 0.14

Modular
range-reduction 150 53 2

Table II shows the potential advantages of our al-
gorithm for small and medium-sized input argument.
Payne and Hanek’s method over that range doesn’t need
much memory, but roughly requires three times as many
operations. The Modular range-reduction has the same
characteristics as Payne and Hanek’s method concerning
the table size needed and the number of elementary
operations involved, but requires more table accesses.
Our algorithm is then a good compromise between table
size and number of operations for range-reduction of
medium size argument.

To get more accurate figures than by just counting
the operations, we have implemented this algorithm
in ANSI-C. The program can be downloaded from
http://gala.univ-perp.fr/˜ddefour/highradix.tgz. This im-
plementation shows that our algorithm is 4 to 5 times
faster, depending on the required final precision, than
the Sun implementation of Payne and Hanek’s algorithm,
provided that the tables are in main memory (which will
be true when the trigonometric functions are frequently
called in a numerical program. And when they are not
frequently called, the speed of range-reduction is no
longer an issue). Our algorithm is then a good compro-
mise between table size and delay for range-reduction of
small and medium-sized arguments.

A variant of our algorithm would consist in first
computingShi, Smed andRhi, Rmed only. Then, during
the fourth step of the algorithm, if the accuracy does not
suffice, computeTlo and Rlo. This slight modification
can reduce the number of elementary operations in the
(most frequent) cases where no extra accuracy is needed.
We can also reduce the table size by4 Kbytes by storing
the Tlo values in single-precision only, instead of using

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, ??? 2004 10

double-precision.
Another variant (that can be useful depending on the

processor and compiler), would be to replace the loop
“while i ≥ 0” with “while I <> 0 and i ≥ 0”. In
that case (for a medium-sized argumentx), the number
N of double-precision floating-point operations becomes
N = 17 + 2dlog256 xe, i.e., 13 ≤ N ≤ 34. Also, the
number of table accesses becomes4 + 3dlog256 xe.

IV. CONCLUSIONS

We have presented an algorithm for accurate range-
reduction of input arguments with absolute value less
than 263 − 1. This table-based algorithm gives accurate
results for the most frequent cases. In order to cover
the whole double-precision domain for input arguments,
we suggest using Payne and Hanek’s algorithm for huge
arguments. A major drawback of our method lies in the
table size needed, thus a future effort will be to reduce
the table size, while keeping a good tradeoff between
speed and accuracy.

REFERENCES

[1] M. Daumas, C. Mazenc, X. Merrheim, and J. M. Muller. “Mo-
dular range-reduction: A new algorithm for fast and accurate
computation of the elementary functions,”Journal of Universal
Computer Science, 1(3):162–175, March 1995.

[2] M. Hata, “Legendre type polynomials and irrationality mea-
sures,”J. reine angew. Math.407 (1990), 99–125.

[3] M. Hata, “Rational approximations toπ and some other num-
bers,” Acta Arith. 63 (1993), n◦4, 335–349.

[4] W. Kahan. Minimizing q*m-n, text accessible electronically at
http://http.cs.berkeley.edu/∼wkahan/. At the beginning of the file
”nearpi.c”, 1983.

[5] A. Ya. Khintchine, “Einige S̈atzeüber Kettenbr̈uche, mit Anwen-
dungen auf die Theorie der diophantischen Approximationen”,
Math. Ann.92 (1924), 115–125.

[6] A. Ya. Khintchine, Continued Fractions. The University of
Chicago Press, Chicago Ill., London, 1964.

[7] D. Knuth. The Art of Computer Programming, volume 2.
Addison Wesley, Reading, MA, 1973.

[8] L. Kuipers and H. Niederreiter,Uniform distribution of se-
quences, Pure and Applied Mathematics. Wiley-Interscience
[John Wiley & Sons], New York-London-Sydney, 1974.

[9] J.-M. Muller. Elementary Functions, Algorithms and Implemen-
tation, Birkhäuser, Boston, 1997.

[10] K. C. Ng. “Argument reduction for huge arguments:
Good to the last bit.” Technical report, SunPro, 1992.
http://www.validlab.com/arg.pdf

[11] M. Payne and R. Hanek. “Radian reduction for trigonometric
functions,” SIGNUM Newsletter, 18:19–24, 1983.

[12] R. A. Smith. “A continued-fraction analysis of trigonome-
tric argument reduction,” IEEE Transactions on Computers,
44(11):1348–1351, November 1995.

