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Abstract

Some aspects of what a standard for the implementation of the
mathematical functions could be are presented. Firstly, the need for
such a standard is motivated. Then the proposed standard is given.
The question of roundings constitutes an important part of this paper:
three levels are proposed, ranging from a level relatively easy to attain
(with fixed maximal relative error) up to the best quality one, with
correct rounding on the whole range of every function.

We do not claim that we always suggest the right choices, or that
we have thought about all relevant issues. The mere goal of this paper
is to raise questions and to launch the discussion towards a standard.

1 Introductory discussion

We take the opportunity of the current discussion on the revision of the
IEEE-754 Standard for Floating-Point Arithmetic to discuss the possibil-
ity of standardizing (some of) the elementary functions. “Elementary” or
“mathematical” functions are the functions usually available in a mathemat-
ical library. The IEEE-754 Standard [1] does not deal with these functions.
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This is due to several reasons, the most serious one being the problem of
providing correctly rounded transcendentals, known as the Table Maker’s
Dilemma problem. Indeed, “ultimate” accuracy is expected from standard-
ized functions, and seems hard to obtain at a reasonable cost in practice, at
least in hardware. To quote Valerio [8, guest lecture no 13],

Committing an approximation function to hardware is unlikely
to be an unqualified success. Delivering any result other than
the mathematically correct result rounded to the destination for-
mat is open to criticism. Delivering a result more slowly than
a software implementation can raise questions of why the func-
tion is in hardware. Dedicating significant amounts of chip area
to support transcendental functions is usually better spent im-
proving the speed of vector multiplication. In short, the silicon
implementation should be fast, accurate, and cost nothing.

An unfortunate consequence of that current lack of standardization is that
extremely poor libraries are still in use (see [17] or [16] for some examples).
Nevertheless, the quality of most elementary function libraries has greatly
improved during the last decade.

This paper proposes a standard for elementary functions, detailed in
§2. After a list of concerned functions (§2.1) and features (relative error
bound in §2.2, options in §2.3), the question of roundings is addressed
(§2.4): it constitutes the core of this proposal. We suggest three levels of
quality, the lowest one (level 0) being regarded as the minimum acceptable
level for a library, and the highest one representing the best quality
that can be reached (on the whole, correct rounding in all the input
range). This hierarchy of levels is suggested because what is currently
achievable is still far from the best. The end of this proposal contains
two lists, the “exceptional” values (§2.5) and the cases of exact results (§2.6).

Our suggestions are based on the reading of some of the works of Kahan [7,
8, 9, 10], the draft of the current revision of the IEEE-754 standard [6],
drafts of other current standardization efforts [14, 2], our own experience on
studying elementary function implementation and recent progress of some of
the authors of this paper concerning the Table Maker’s Dilemma [13, 12, 18].
In the following, text defining the proposed standard is set off from comments
by indentation from both margins and by a different font, as in [3].
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Desirable properties and incompatibilities

High expectations are put on standardized functions and several properties
would be desirable. Among them:

1. Correct rounding (for all rounding modes).
2. Preservation of the output range: e.g., one would like a sine to be be-

tween −1 and 1, an arctangent to be between −π/2 and +π/2, etc.
Not satisfying this preservation could have nonnegligible consequences.
If the output range of function f is [a, b], a programmer might suc-
cessively compute: y = f(x), z = g(y), with g defined on [a, b] only.
Hence, if the implementation for f returns a value of y out of that
interval (even slightly), important errors might occur. For instance, let
f(x) be equal to 2 arctan x/π and g(x) = arcsin x. For any value of x,
the sequence y = f(x), z = g(y) is mathematically well defined. If a
value out of [−1, 1] is returned for f evaluated on some x (see the end
of this §), then an error will occur during computation.

3. Bounded error on every result, with a known bound. This bound should
be explicitly given by the constructor for every function of a mathe-
matical library. Except in the case of a subnormal result, a relative
error, in ulps, should be given.

4. Preservation of monotonicity.
5. Preservation of symmetries (e.g. sin(−x) = − sin x).
6. Preservation of the direction of rounding when a directed rounding

mode is selected, even if correct rounding cannot be satisfied.
7. Correct handling of exceptions and subnormal numbers.
8. Each time a function cannot be uniquely defined using continuity, a

NaN should be returned: examples are 1±∞ or sin∞. A possible ex-
ception is 00: it is not uniquely defined, but the convention “00 = 1”
has the advantage of preserving some mathematical formulas, hence
many authors suggest to keep it.

9. Compatibility with other standardization efforts, such as ISO/IEC
10967 (LIA and in particular LIA-2, the second part of LIA, which
seems to still be under discussion [14]) and language standardization,
e.g. ISO/IEC 9899 for the C programming language [2].

It is worth being noticed that these desirable properties are sometimes
not compatible. For instance, in single precision and round-to-nearest mode,
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a correctly rounded routine for arctangent would return values larger than
π/2 for input values large enough. The single precision number which is
closest to arctan(230) is

13176795

8388608
= 1.57079637050628662109375 >

π

2
.

Therefore, if the arctangent function is implemented in round-to-nearest
mode, we get an arctangent larger1 than π/2. A consequence of this is that
in such a system,

tan
(
arctan

(
230

))
= −2.2877 · · · × 107.

The same incompatibility exists between the range requirement and a di-
rected rounding, should that be correct or not.

A more obvious example is the fact that with rounding modes towards
±∞, correct rounding and preservation of symmetries are not compatible;
the same incompatibility occurs with the weaker requirement of preservation
of the direction of rounding and of symmetries.

As to the compatibility with other norms, our proposal may differ in the
following points:

• floating-point values: our proposal considers only floating-point argu-
ments, whereas the LIA-2 standard also discusses irrational inputs;

• bounded relative errors: our first level (level 0 in §2.4) is close to the
requirements of the LIA-2 standard; the ISO/IEC 9899 standard for
the C programming language does not mention this point;

• mathematical properties (monotonicity, symmetry): our proposal is
more demanding than the LIA-2 standard, for which only the mono-
tonicity must be preserved, and than the ISO/IEC 9899 standard for
C, which does not address this issue;

• exceptions: most standards agree on exceptions handling, at the pos-
sible exception of some choices discussed in §2.5. Our choices may be
significantly different from those of other standards, such as ISO/IEC
9899, where pow(−1, ∞) returns 1 (instead of NaN).

1But equal to the machine representation of π/2.
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2 What could be included in a standard

A first point which deserves to be noticed is that it should apply to any

available precision, even if for the time being we are mostly interested in

the single, double and extended double floating-point precisions.

2.1 Functions being considered here

The functions concerned by this standardization proposal are functions for
which the proposed standard (or at least some levels) are reachable, or func-
tions listed in the LIA-2 standard (for compatibility with other standards):

log, log2, log10, logb x (even if for this function it is not yet known how
to satisfy the standard’s requirements), log(1 + x), exp, exp(x)− 1, 2x,
10x, sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arctan x

y , arccot,
arcsec, arccsc, xy, sinh, cosh, tanh, coth, sech, csch, arcsinh, arccosh,
arctanh, arccoth, arcsech, arccsch.

But most of what is said here could apply to special functions (gamma,

erf, erfc, Bessel functions, etc.) and some algebraic functions such as

reciprocal square root x−1/2, cube root or hypotenuse
√

x2 + y2.

2.2 Bounded relative error

Every computed value must have a fixed maximal relative error, i.e. every

result has a guaranteed quality (see §2.4 for more details). This error is

an absolute one in the case of subnormal results.

This would be extremely useful for automatic forward error computation
[11] and for interval arithmetic [15, 5].

2.3 Choice of range, monotonicity, symmetry: op-
tional modes

Since the various desirable properties of rounding (correct or not), preser-

vation of the output range and symmetry can be mutually incompatible,

the preferred property can be chosen as an option. The possible options

are denoted in the following by preserve-rounding, preserve-range

or preserve-symmetry, the default choice being preserve-range.
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2.4 Roundings

We suggest to allow three levels of quality. Which level is actually provided
should appear clearly in the documentation of the elementary function library
(or hardware). It is of course allowable to provide all levels, the programmer
being then able to select a tradeoff between quality and speed. In such a
case, the default must be the highest available level.

Level 0: Faithful Rounding and Guaranteed Relative Error.
In round-to-nearest mode denoted by ◦, the returned result must always
be one of the two floating-point numbers that surround the exact result
(if the exact result is a floating-point value – which is rare with the
transcendental functions: see §2.6 – the system must return that value).
In the round towards −∞ mode, denoted by 5, the returned result
must always be less than or equal to the exact result. No error greater
than 1.5 ulps is allowed. In the round towards +∞ mode denoted by
4, the returned result must always be larger than or equal to the exact
result. No error more than 1.5 ulps is allowed. The round towards
zero mode, denoted by Z, behaves as the round towards −∞ mode
for positive values and the round towards +∞ mode for negative values.
In all cases where the exact function is monotonic, the implementation
must be monotonic too. In round-to-nearest and round towards zero
modes, the symmetries of the function around 0 (properties of the kind
f(−x) = ±f(x)) must be preserved2.

Level 1: Correct Rounding on a Restricted Range. There is a
domain (usually around 0) where the implemented function is correctly
rounded. Outside this domain, the implementation must satisfy the crite-
ria of level 0. We suggest the domain should at least contain [−2π,+2π]
for sin, cos and tan; and [−1, 1] for exp, cosh, sinh, 2x and 10x (other
functions: to be discussed, to reach a compromise involving the facility
of implementation and the usefulness of requirement).

Level 2: Correct Rounding. Correct rounding in the whole do-
main where the function is mathematically defined. We might suggest
the use of the preserve-range mode when output range has priority,
which is not to be considered higher or lower in quality. In this case,
correct rounding is provided unless this prevents preservation of output

2In practice this requirement is not a problem: function implementers will use these
symmetries for simplifying their programs.
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range: the closest floating-point number belonging to the output range
is returned. Correct rounding cannot be incompatible with monotonic-
ity. In case of correct directed rounding (4 or 5), it is assumed that
the user is well aware of the incompatibility with symmetry, thus the
preserve-symmetry mode is not available.

We consider level 0 as the minimum acceptable level.

The error thresholds given for level 0 can be replaced in a more general
framework: the relative error must be upper bounded and the bound is
(1/2 + τ) ulp for the round to nearest mode and (1 + τ) ulp for the other
rounding modes. For level 0, the “tolerance” τ cannot exceed 1/2 whereas
for the more demanding level 2, τ is fixed to 0.

Level 2 is attainable at reasonable cost for at least some functions, in
single and double precisions. To be correctly rounded, a result has to be
computed using a higher precision than the precision of the returned value.
The arguments for which this intermediate computing precision is maximal
among all possible arguments are called “hardest-to-round cases”. Tables
giving the hardest-to-round cases for double precision exponentials and
logarithms can be found in [12]. The hardest-to-round cases for the full
double precision range are also already known for 2x and log2 x. When the
hardest-to-round cases are known, then it is possible to optimize the code
for this function, in particular the size of memory needed is known.

Finding the hardest-to-round cases for the trigonometric functions in
double, extended and quadruple precisions might be difficult. In particular,
it might be tricky to determine the hardest-to-round cases for functions
with two arguments, typically xy and logb x. Moreover, it is expected that
arguments outside the prescribed range are expensive to deal with in terms
of computing time, table’s size (for table-based methods). . . , because a
range reduction is involved; this price may be consider as too high to pay.
This is the reason for level 1.

Indeed, level 1 is proposed in order to provide a better level than the
basic level 0, as long as level 2 remains out of reach (at an acceptable time
overhead). However, it is not very satisfactory since it requires the highest
quality only on an arbitrarily restricted range.
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2.5 Exceptions

2.5.1 Values that cannot be defined using continuity

Sometimes, different choices are legitimate. What is important is consis-
tency. Consider three examples.

The case of 00 is important. On the one hand, as said above, there is no
way of defining 00 using continuity, but on the other hand, many important
properties remain satisfied if we choose 00 = 1 (which is frequently adopted,
as a convention, by mathematicians). Kahan [9] suggests to choose 00 = 1.
A consequence of that (also mentioned by Kahan) is that it implies that

NaN0 = 1 whereas 0NaN = NaN, since x0 is 1 for any x, whereas 0y is 1
if y = 0 and 0 if y > 0. If we happen to choose that 00 is NaN (which is
perfectly legitimate), then NaN0 is NaN.

Another example is log(−0). On the one hand, as suggested by
Goldberg [4], −0 may be thought as a small negative number that has
underflowed to zero. This would favor the choice log(−0) = NaN. On
the other hand, such a choice would imply that we can have x = y and
log x 6= log y, with x = +0 and y = −0, since the IEEE-754 Standard
requires that the comparison −0 = +0 returns true.

1±∞ is similar to 00. One can build un → 1 and vn → +∞ such that uvn
n

goes to anything you desire (or nothing at all). Kahan [9] suggests 1±∞ =

NaN, which implies (for reasons of consistency) 1NaN = NaN.

2.5.2 NaNs (as input or output values)

All functions having at least one NaN as input value must return a NaN,
with the possible exception NaN0 = 1 (if 00 is defined as 1, cf. discussion
above).

sin(±∞), cos(±∞), tan(±∞) are NaNs. log, log2, log10 of a negative

number, logb x with x or b negative, or negativenoninteger are NaNs.
arcsin, arccos, arctanh of a number outside [−1,+1] are NaNs. The

choice for 1NaN must be NaN if 1∞ is NaN. Other cases where a NaN is
returned are the following: log(1 + x) for x < −1, cot(±∞), sec(±∞),
csc(±∞), arcsec x and arccsc x for x ∈ (−1, 1), arctanhx for |x| > 1,
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arccoshx for x < 1, arccoth x for x ∈ (−1, 1), arcsechx for x < 0 or
x > 1.

It is not allowed to return a NaN when the exact result is mathematically

defined (e.g., sine of a huge number).

2.5.3 Infinities

Two kinds of infinities can be produced:
infinities as result of over/underflow: they occur when the
result is mathematically defined but larger or smaller than the largest
representable number. They must be handled as any over/underflow
that is produced by an arithmetic operation.

“exact infinities”: log(+0), log2(+0), log10(+0) and logb(+0) with
b > 0 are −∞ and arcsech(+0) = +∞, with flag “zero divide” being
raised. We suggest the same for −0 (see 2nd point of §2.5.1).
However, the sign of 0 is relevant in the following cases where “exact
infinities” are returned: cot(±0) = ±∞ with the sign of 0, i.e.
cot(+0) = +∞ and cot(−0) = −∞, csc(±0) = ±∞, coth(±0) = ±∞,
csch(±0) = ±∞ and arccsch(±0) = ±∞ and also (±0)x = ±∞ with
x < 0, as recommended in [9], in every case with the sign of 0. The
following must also hold: arctanh(−1) = −∞, arctanh(+1) = +∞,
arccoth(−1) = −∞ and arccoth(+1) = +∞.

It is worth being noticed that tangents, cotangents, secants and cosecants

never return infinities for current precision (no single precision nor double

precision floating-point number is close enough to a multiple of π/2 [16]).

2.6 “Inexact Result” flag

The following is extracted from [16] and completed for the additional func-
tions.

It is difficult to know when functions such as xy or logb x give an exact

result. However, using a theorem due to Lindemann, one can show that

the sine, cosine, tangent, exponential, or arctangent of a nonzero finite

machine number, or the logarithm of a finite machine number different

from 1 is not a machine number, so that its computation is always inexact.

9



Here are some examples of exact operations (for a complete list, see the
INRIA Research Report corresponding to this paper).
For the radix-2 logarithm and exponential functions:

1. log2(±0) = −∞ and log2(+∞) = +∞;

2. log2 1 = +0 except that 5(log2 1) = −0;

3. for any integer p such that 2p is exactly representable, log2 2p = p;

4. 2−∞ = +0 and 2+∞ = +∞;

5. for any integer p such that 2p is exactly representable, exp2 p = 2p. In
particular, exp2 0 = 20 = 1.

For the hyperbolic functions and their reciprocals:

1. f(±0) = ±0 for f = sinh, tanh, arcsinh, arctanh;

2. f(−∞) = −∞ and f(+∞) = +∞ for f = sinh, arcsinh;

3. cosh 0 = 1, cosh(−∞) = +∞ and cosh(+∞) = +∞;

4. tanh(−∞) = −1 and tanh(+∞) = 1;

3 Now, it’s up to you

The benefits expected from this standardization are the same as those
provided by the IEEE-754 standard for floating-point arithmetic: better
portability of codes, reproducibility of numerical results, along with a sound
definition of floating-point mathematical functions which can be used to
study and prove results on algorithms using these functions.

To round correctly mathematical functions, the main difficulty is to eval-
uate efficiently a mathematical function with enough intermediate precision
to be able to correctly round the result. Two directions are explored to solve
this problem: on the one hand, hardest-to-round cases are sought after for
every function and every computing precision; on the other hand, practical
implementations of mathematical functions, in hardware or in software, are
getting more and more efficient. Recent advances [12, 13, 16, 17, 18] give
hints that the quality required by a standard is becoming reality.

We are eagerly looking for comments from the computer arithmetic and
numerical analysis communities.
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