
, , 1–12 ()
c© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Accelerated Shift-and-Add algorithms

N. REVOL AND J.-C. YAKOUBSOHN nathalie.revol@univ-lille1.fr, yak@cict.fr

Lab. ANO, Univ. de Lille 1, UFR IEEA, Bat. M3, 59655 Villeneuve d’Ascq Cedex, FRANCE
Lab. d’Analyse Numérique et Optimisation, Univ. Paul Sabatier, 118 rte de Narbonne, 31062
Toulouse Cedex 4, FRANCE

Editor:

Abstract. The problem addressed in this paper is the computation of elementary functions
(exponential, logarithm, trigonometric functions, hyperbolic functions and their reciprocals) in
fixed precision, typically the computer single or double precision.The method proposed here com-
bines Shift-and-Add algorithms and classical methods for the numerical integration of ODEs: it
consists in performing the Shift-and-Add iteration until a point close enough to the argument is
reached, thus only one step of Euler method or Runge-Kutta method is performed. This speeds up
the computation whilst ensuring the desired accuracy is preserved. Time estimations on various
processors are presented which illustrate the advantage of this hybrid method.

Keywords: single and double floating-point numbers, computation of elementary functions,
Shift-and-Add algorithms, numerical integration of ODEs

1. Introduction

Nowadays, one is so accustomed to have a pocket calculator performing additions
and multiplications as well as square roots or exponentials that he does not wonder
how these operations are performed.

Arithmetic operations (+, −, ∗, /) are generally implemented according to meth-
ods learnt at primary school. The complexity of an arithmetic operation (the num-
ber of operations performed on digits) is linear for the addition/subtraction and
quadratic for the multiplication and division (even if division is much slower from
a practical point of view). Asymptotically faster algorithms have been derived for
the latter ones, but they supersede the “school” ones only for operands with much
more figures than a pocket calculator can usually cope with, and are therefore not
used.

If we now turn to so-called transcendental or elementary functions (exp, log, sin,
arctan, sinh, arccosh,. . .), it is not so obvious to decide how to compute them. There
is no way to compute them exactly with a finite number of arithmetic operations and
thus approximations are sought. These approximations are computed in different
ways, depending on the required accuracy for the result. If the number of figures
of the result is not fixed, but depends on the user’s needs, then solutions can be
to use a Taylor expansion, a Padé approximant or the algorithms developped by
Brent in [3].

In this paper we are interested with fixed precision, of the kind provided by the
“float” type on any computer. Of course, the previously listed methods can be
employed (and for instance Padé approximants, or rather continued fractions, were

2

used in early pocket calculators). However, since a fixed number of digits is required,
pre-computed tables can be used; these tables have a fixed (small) number of en-
tries and these entries use the same fixed storage. Thus specific methods have been
developped for the fixed-precision computations of elementary functions. Among
such methods, we will be interested only in Shift-and-Add ones; for an excellent
introduction to the computation of elementary functions, see [9]. A Shift-and-Add
algorithm decomposes its argument into a number basis such that the decompo-
sition is performed by means of additions only. Furthermore, the function to be
computed is computed along with the decomposition and requires only additions
and multiplications or divisions by 2, which are realized on a computer by shifts.
Since additions and shifts are very efficiently performed, the elementary iteration
is very efficient. Moreover, the number of iterations is small.

A Shift-and-Add computation looks like integrating the ODE the function satis-
fies, with fixed, decreasing steps, until the argument is reached. In this paper we
propose a method which combines the advantages of Shift-and-Add and numerical
integration: it consists in performing the Shift-and-Add iteration until the reached
point is close enough to the argument to ensure the convergence of the numeri-
cal integration of the ODE satisfied by the computed function; when the distance
between these two points is close enough, only one step of a numerical integra-
tion method suffices to reach the argument whilst ensuring the desired accuracy is
preserved, and the remaining steps of the Shift-and-Add algorithm can be shunted.

It has to be mentioned that any of these methods (for infinite precision as well
as for fixed precision) requires that the argument belongs to a fixed interval [A;B].
Techniques have been developed to ensure that the argument belongs to it, they
are called argument reduction and are the subject of many papers [4, 5, 6, 11]. It
will be assumed in the following that the argument is already reduced.

This paper is composed as follows: in a first part we recall explicit Euler and
Runge-Kutta-4 methods for the integration of an ODE [1] and we precise some
useful quantities. In a second part, Shift-and-Add methods will be introduced;
this name covers algorithms for exponential and logarithm as well as CORDIC
method for trigonometric functions. Then our “hybrid” method will be stated in a
general framework. It will then be specified for various elementary functions and
corresponding experimental results and estimated times for two different processors
will be presented. Finally, redundant Shift-and-Add methods will be introduced and
it will be shown that our method is suited to a redundant number system without
further work.

2. Numerical integration of ODEs

2.1. Problem

An ODE (of first-order, in explicit form) is an equation

y′ = f(t, y)

3

where y′ is the first derivative of y, y being a function of one (one-dimensional)
variable t to IRp and f is a given function defined on a domain Df ⊂ IR × IRp to
IRp. Usually, an initial condition is specified : y(t0) = η ∈ IRp.

The corresponding Cauchy problem or initial value problem is the following:

solve
{

y′ = f(t, y),
y(t0) = η.

Let [α;β] ⊂ IR with t0 ∈ [α;β], a C1-function Y : t ∈ [α, β] 7→ Y (t) ∈ IRp is a
solution if (t, Y (t)) ∈ Df ∀t ∈ [α;β]

Y (t0) = η
Y ′(t) = f(t, Y (t)) ∀t ∈ [α;β]

are fulfilled.

Cauchy-Lipschitz theorem states the existence of a solution if f is a continuous
function, and furthermore its uniqueness if f is also local Lipschitz relative to y.
These two conditions hold for the elementary functions addressed in this paper.

To integrate an ODE, numerical methods obtain approximate values of the solu-
tion at a set of points t0 < t1 < . . . < tn < . . . < tN . The approximate value yn of
Y (tn) is computed by using some of the values obtained in previous steps. In what
follows, only explicit Euler and Runge-Kutta of order 4 are considered.

For more definitions and results, see for instance [1], particularly to obtain precise
definitions of error and estimations for the following methods.

2.2. Explicit Euler and RK4 methods

Let us denote by Y (t) the solution of the initial value problem. Explicit Euler
method is a single-step method of order 1 defined on [t0; γ] by{

yn+1 = yn + hf(tn, yn),
y0 = η,

where h = γ−t0
N and for any 0 ≤ n ≤ N , tn = t0 + nh.

A Runge-Kutta method aims at achieving a given order without evaluating any
derivatives of f (which can be cumbersome both to establish and to evaluate) and
involves the evaluation of f at intermediary points. Among these methods, RK4 is
a most popular one since it is of order 4 and requires only 4 evaluations of f . It is
given by the following formulae

k1 = f(tn, yn)
k2 = f(tn + h

2 , yn + h
2 k1)

k3 = f(tn + h
2 , yn + h

2 k2)
k4 = f(tn + h, yn + hk3)
yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4)

y0 = η

4

2.3. Choice of h to achieve a given precision

In this paragraph we consider the computation of Y (t) for any t ∈ [t0; γ]. The
method we propose in §3 is based, on a first part, on Shift-and-Add methods which
compute exactly (up to rounding errors, which are not taken into account) Y (tk)
where tk is an intermediary point used to reach t. This explains why we consider
only the error yn − Y (tn) in order to choose h. For Euler, h has to satisfy h ≤√

2ε
‖y′′‖∞ (the maximum for ‖.‖∞ is taken on [t0; γ]) and for RK4 h has to satisfy a

more complex inequality: h ≤ 5

√
2880ε

49‖ ∂4f(t,y(t))
∂t4

‖∞
. The following table sums up the

choice of h for a given precision ε in a first column, ε = 2−24 corresponding then
to the single precision in a second column and ε = 2−53 for the double precision in
a third column, for each elementary function and for explicit Euler and RK4. For
calculations details, see [12].

Function Euler RK4
on [t0; γ] ε single double ε single double

exp
√

2ε
e1.56 1.58 10−4 6.83 10−9 5

√
120ε

e1.56+11e3.12 3.10 10−2 5.55 10−4

[0; 1.56]

ln
√

2ε 3.45 10−4 1.49 10−7 5

√
120ε
49 4.30 10−2 7.71 10−4

[1; 2[(
sin t
cos t

) √
2ε 3.45 10−4 1.49 10−7 5

√
320ε
129 4.31 10−2 7.23 10−4

[0; π
4]

arctan
√

2ε 3.45 10−4 1.49 10−7 5

√
120ε
29 4.77 10−2 8.56 10−4

[0; 1](
sinh t
cosh t

) √
2ε

cosh 2 1.78 10−4 7.68 10−8 1
cosh 2

5

√
320ε
129 1.14 10−2 2.05 10−4

[0; 1]

argtanh
√

2ε
8.52 1.17 10−4 5.08 10−8 5

√
30ε
7693 1.19 10−2 2.13 10−4

[0; 0.76]

(Trigonometric and hyperbolic sines and cosines have to be treated in pairs since
the derivative of a sine is (up to a sign) a cosine and vice-versa.) What these
bounds should put in evidence is the following fact: in order to compute exp t with
a precision 10−16 (which is roughly the double-precision accuracy on a computer),
even a “good” method such as RK4 requires about 10,000 steps. This shows that
numerical integration methods are not good candidates for computing the elemen-

5

tary functions. However we will show how they can be used in order to “shunt”
some other methods’ iterations.

3. Shift-and-add algorithms

3.1. Principle of Shift-and-Add algorithms

In this section, we study methods for computing the elementary functions without
multiplications and divisions (thus only operations with linear complexity are per-
formed) and with a small number of iterations. These methods are very well suited
to hardware computations. Our presentation will follow [8] and [9].
We will firstly illustrate the underlying principle with the computation of exp t,
t ∈ [0; b] (b has to be precised). Since we can write t as a sum

∑+∞
k=0 dk ln(1 + 2−k)

with the values ln(1 + 2−k) being tabulated and either dk = 0 or 1, then exp t =∏+∞
k=0(1 + 2−k)dk . (For the proof of this assertion and the following ones about

the decomposition of a number as a sum or product of elements of a discrete basis,
see [8].) The computation of exp t based on this formula involves only shifts and
additions, thus the inner statement is very efficiently performed on hardware.

Such a decomposition is a generalization of more familiar ones: on a computer,
one is accustomed to write a number z ∈ [0; 2] as z =

∑
k∈IN dk2−k. Shift-and-

add algorithms use bases that are well suited to the computation of elementary
functions.

3.2. Exponential and logarithm

Using the results presented in the previous paragraph, the algorithm computing
exp t can be derived as follows, the stopping criterion being based on the property
0 ≤ t− tk ≤ 2−k+1:

input: t ∈ [0; 1.56 . . .] ; precision ε
output: exp t approximated (more and more) accurately by ek

t0 := 0; e0 := 1.0; k := 0;
while 2−k+1 > ε do

dk :=
{

1 if tk + ln(1 + 2−k) ≤ t
0 otherwise

tk+1 := tk + dk ln(1 + 2−k)
ek+1 := ek + dk2−kek

k := k + 1
end loop

An invariant of this algorithm is that ek = exp tk ∀k.
This method is a step-by-step method, each step aiming at getting closer to

the argument. However, it is different from a numerical integration method since
the steps are imposed (they are the elements of the discrete basis). Moreover, to
compare this with the example at the end of the previous section, to get an accuracy

6

of 10−16 ' 2−53 (which is the double precision accuracy on a computer), only 54
iterations are required instead of tens of thousands!

The same algorithm can be used to compute the logarithm, at the expense of a
slight modification: if t becomes the result and e the input, the invariant ek = exp tk
can also be written tk = ln ek and thus the logarithm can be computed. The only
problem arises when tk + ln(1 + 2−k) is compared to t since t is now unknown.
However, this comparison is equivalent to ek(1 + 2−k) ≤ exp t = e since exp is an
increasing function.

3.3. Trigonometric functions

The underlying idea to compute the sine or cosine of an angle θ is to decompose it
as a sum: θ =

∑
k θk. Since the sine of the sum of two angles involves their cosine,

sine and cosine will be computed together and thus it corresponds to computing
a rotation of angle θ as a succession of rotations of angles θk. To simplify the
formulae, (θk)k∈IN is chosen as (arctan 2−k)k∈IN .

The decomposition of θ as
∑

dkθk with dk ∈ {−1; 1} leads to an algorithm which
again involves only shifts and additions (and a final multiplication). It is known as
CORDIC algorithm (COordinate Rotation Digital Computer) and is due to Volder
[14]. It can also be used to compute the arctan function. See for instance [9] for a
detailed presentation.

Using the fact that arctan 2−k ≤ 2−k ∀k, it can be shown that k + 1 steps are
necessary to obtain k digits of the result (the absolute error is bounded by 2−k+1

and again rounding errors are not taken into account).

3.4. Hyperbolic functions

Since trigonometric and hyperbolic formulae are very similar, it seems possible to
use the same kind of algorithm, replacing arctan 2−k by argtanh 2−k, to compute the
hyperbolic functions. J. Walther in 1971 showed that the sequence (argtanh 2−k)k∈IN

does not satisfy the conditions enabling to compute a signed-digit decomposition.
He also discovered that if certain terms of the sequence are repeated (namely, the
terms 3k+1−1

2) then the resulting sequence is a discrete basis. With this basis,
a slight adaptation of CORDIC algorithm computes the cosh, sinh and argtanh
functions.

4. Fast computation of elementary functions

4.1. General idea

In the two previous sections we have recalled what numeric integration and Shift-
and-Add methods are. We will now combine them.

The advantage of a Shift-and-Add method is the small number of steps it requires
to obtain a given accuracy. Each step makes the current argument closer to the

7

actual one, and the main drawback is that the steps tend to be smaller and smaller.
When the distance between the current argument and the actual one is small enough
to ensure the convergence of a numerical integration method with the required
accuracy, we will drop off the Shift-and-Add method and go directly to the actual
argument thanks to the numerical integration method. This hybrid method still
has a drawback: the computations involved by the last step are no more shifts
and additions. However, the number of spared Shift-and-Add steps is usually so
important that some time can be lost in the computations of the last step.

More precisely, suppose Y (t) has to be computed with a required accuracy 2−n.
At each step k of the Shift-and-Add algorithm, the absolute error on t is |t− tk| ≤
2−k+1 with tk =

∑k
j=0 dkwk and the value computed at step k, yk, is exactly

equal to Y (tk) (again, rounding errors are not taken into account). It is possible
to determine the step h of the numerical integration method corresponding to a
method error less than 2−n. Let M be the smallest integer such that h ≥ 2−M+1.
If the Shift-and-Add algorithm is stopped after the M -th iteration, giving tM and
yM and if one iteration of the numerical integration method is performed with a
step h′ = t− tM , then the error is bounded by |yM+1 − Y (t)| ≤ 2−n.

We will now precise the value of M corresponding to the single (32 bits) and
double (64 bits) IEEE floating-point numbers, for the various elementary functions
when the numerical integration method is either explicit Euler or RK4. Error has
to be less than 2−24 for the single precision type and less than 2−53 for the double
precision type. For instance, the hybrid algorithms to compute the exponential are
given on the following page.

Function Euler RK4
ME ME MRK4 MRK4

Single prec. Double prec. Single prec. Double prec.

exp 14 29 7 12
ln 13 24 6 12(

sin t
cos t

)
13 24 6 12

arctan 13 24 6 12(
sinh t
cosh t

)
14 25 8 14

argtanh 15 26 8 14

Experimental times have been obtained with C codes for the elementary func-
tions. The hardware FPU is much faster than the software Shift-and-Add (with
a factor ' 50). The Euler-hybrid is faster, with a factor between 1.5 and 2, and
the RK4-hybrid is faster than the software Shift-and-Add with a factor between 2.5
and 4. (The following times are averaged times measured on a 166MHz Pentium
processor, the average is taken over the computed f(x) where f is the elementary
function and x takes 15,000 different values).

8

Function Method Single precision Double precision
time in µs time in µs

FPU 1 2
exp Shift-and-Add 23 33
on [0; 1.56] hybrid Euler 10 20

hybrid RK4 6 9

FPU 1 2
ln Shift-and-Add 30 61
on [1; 2] hybrid Euler 19 28

hybrid RK4 10 18

sin FPU 1 2
cos Shift-and-Add 57 117
on [0; π

4] hybrid Euler 31 55
hybrid RK4 17 30

FPU 1 2
arctan Shift-and-Add 51 110
on [0; 1] hybrid Euler 31 52

hybrid RK4 17 30

sinh FPU 2 4
cosh Shift-and-Add 55 120
on [0; 1] hybrid Euler 31 57

hybrid RK4 22 34

FPU 1 2
argtanh Shift-and-Add 57 116
on [0; 0.76] hybrid Euler 36 62

hybrid RK4 22 35

Below are the hybrid algorithms to compute the exponential:

Euler-hybrid RK4-hybrid

t0 := 0; y0 := 1 t0 := 0; y0 := 1
for k = 0 to ME − 1 do for k = 0 to MRK4 − 1 do

dk :=
{

1 if tk + wk ≤ t
0 otherwise dk :=

{
1 if tk + wk ≤ t
0 otherwise

tk+1 := tk + dkwk tk+1 := tk + dkwk

yk+1 := yk + dk2−kyk yk+1 := yk + dk2−kyk

end for end for
h′ := t− tME

h′ := t− tMRK4

y := yME
+ h′yME

y := yMRK4

[
1 + h′

(
1 + h′

2 [1 + h′

3 (1 + h′

4)]
)]

9

If we try to estimate the number of clock cycles for each method, on a hypothet-
ical processor such that an addition, a multiplication or a shift are performed in
one clock cycle whereas a division is five times longer, we observe that this is in
good concordance with the experimental times and also that our hybrid methods
supersede the Shift-and-Add ones by a multiplicative factor between 2 and 3.5. We
also estimate the number of clock cycles with a less favourable configuration, the
PA-8000 processor from HP, PA-RISC 2.0: it performs a shift in one clock cycle, an
addition or a multiplication in 3 clock cycles, a single precision division in 17 clock
cycles and a double precision division in 31 clock cycles. For this processor, our
hybrid algorithms always improve the Shift-and-Add ones. Furthermore, the hybrid
RK4 is superior to the hybrid Euler except when the last step involves too many
divisions (cf. the logarithm): when a division is very costly, in terms of time, then
the hybrid Euler should be preferred. In the following table, times are indicated in
clock cycles.

Function Method Single precision Double precision
hyp. proc. PA-8000 hyp. proc. PA-8000

exp Shift-and-Add 75 175 162 378
on [0; 1.56] hybrid Euler 45 107 90 212

hybrid RK4 37 95 55 151

ln Shift-and-Add 75 175 162 378
on [1; 2] hybrid Euler 42 114 75 205

hybrid RK4 45 129 63 227

sin Shift-and-Add 125 275 270 594
cos hybrid Euler 69 155 124 276
on [0; π

4] hybrid RK4 49 121 79 201

arctan Shift-and-Add 125 275 270 594
on [0; 1] hybrid Euler 78 186 133 335

hybrid RK4 53 139 83 247

sinh Shift-and-Add 125 275 270 594
cosh hybrid Euler 74 166 129 287
on [0; 1] hybrid RK4 43 103 73 183

argtanh Shift-and-Add 125 275 270 594
on [0; 0.76] hybrid Euler 88 208 138 346

hybrid RK4 68 178 98 300

5. Redundant number systems

In the previous sections, it has been shown that using a suitable number basis
enables to perform quickly various computations. Redundant number systems have
been introduced to enable the computation of an addition in constant time. We

10

will firstly define a (radix 2) redundant number system, sketch its main features
and the computation of the elementary functions with such a system. Finally it
will be shown how to adapt our hybrid methods to a redundant number system.

5.1. Redundant number systems

Redundant number systems have been introduced to enable fully parallel additions.
What prevents the addition from being parallel is the propagation of the carry. To
avoid this, Avizienis proposed to represent numbers with signed digits -1, 0 or 1.
For instance, the number 5 can be written as 101, 11̄01 or 101̄1̄ in radix 2, where
1̄ denotes -1. This variety of representations explains the name of this number
system. Actually, Avizienis [2] proposed redundant number systems for any radix,
but we will focus only on the radix-2 system.

Another kind of redundant system relies on the replacement of every digit by
two digits, the second one being a lazy representation of the carry, i.e. no carry is
propagated. Such a system is called a carry-save number system.

Redundant number systems are commonly used by microprocessors in their mul-
tipliers or dividers (cf. the Pentium divider). The main advantages of redundant
number systems is to enable constant time additions. Since a multiplication con-
sists in a series of additions, it can be performed in linear time. Divisions are also
performed in linear time in a redundant number system. However, it is difficult
to perform a comparison: since a given number can be written in different ways,
comparing the representations of two numbers does not suffice to state their iden-
tity or their inequality. It is then necessary to write the arguments of a comparison
in a canonical way (which can be their “classical” representations) to be able to
compare them. For a more detailed introduction to redundant number systems and
the corresponding arithmetic operators, see [2, 7, 9, 10, 13].

5.2. Computing the elementary functions

Let us present the principle of the algorithm for the computation of the exponential.
The “classical” Shift-and-Add algorithm is (here, Lk = t− tk)

L0 := t; E0 := 1.0

dk :=
{

1 if Lk ≥ ln(1 + 2−k)
0 otherwise

Lk+1 := Lk − ln(1 + dk2−k)
Ek+1 := Ek(1 + dk2−k)

In order to adapt this algorithm for a redundant number system, we have to avoid
the comparison Lk ≥ ln(1 + 2−k). Indeed, such a comparison can be performed in
linear time; since the aim here is to accelerate the Shift-and-Add algorithm, linear
time operations must be avoided. We thus allow the dk to belong to {−1; 0; 1}
and they have to be chosen so that Lk tends to zero. This signed digit dk can be
determined by performing an approximate comparison: since only four digits of Lk

have to be examined, this “comparison” is done in constant time.
The same kind of algorithm exists for every elementary function.

11

5.3. Fast redundant methods to compute the elementary functions

To adapt this algorithm to our hybrid procedure, we only need to know when to
jump from this method to a numerical method for integrating an ODE, i.e. we
need to know a bound for Lk: this bound is given by − 5

22−k < Lk < 2−k+1 for
the exponential and by similar properties for the other functions [9, 10, 13]. It is
therefore straightforward to determine the number of iterations of the Shift-and-
Add algorithm to perform: for instance, to compute the exponential in double
precision with the hybrid RK4 method, to get |Ln| ≤ 5.55 10−4 only N = 13
iterations of the Shift-and-Add algorithm suffice.

We will now sum up in a table the number of steps of the redundant Shift-and-
Add algorithm required to compute the exponential and logarithm in single and
double precision with our hybrid procedure:

Function Single precision Double precision
Euler RK4 Euler RK4

exp 11 7 29 13
ln 14 7 26 13

6. Conclusion

In this paper, we have studied how to accelerate the Shift-and-Add algorithms by
substituting some iterations by one step of an ODE integration method. This com-
bines the advantages of the two kinds of methods, without suffering their drawbacks:
an ODE integration method performs small steps

-

whereas a Shift-and-Add method performs steps whose length is (roughly) divided
by 2 at each iteration

-

The idea is to jump from this method to an ODE integration method when the
step of the Shift-and-Add method becomes too small.

-

The number of spared steps of the Shift-and-Add algorithm are given in this
paper, the formulae for the length of the unique step of explicit Euler or RK4 also:
to determine precisely what the gain is on a given processor, one has to compare
the number of clock cycles required by each method.

Even if we have conducted our experiments at a software level, this hybrid al-
gorithm is aimed at an hardware implementation. However, since the step we

12

introduce involves multiplications (and sometimes divisions), a fast multiplier has
to be used to preserve the gain in terms of time. Nevertheless, if a superfast mul-
tiplier is used, then the computation of elementary functions may be performed
faster using approximations by low degree polynomials on small subintervals, since
the coefficients of these polynomials and the bounds on the subintervals can be
tabulated. A closer study should be performed in order to decide which method is
the fastest with a given multiplier.

References

1. K. Atkinson, An introduction to numerical analysis, 2nd edition, Wiley, 1989.

2. A. Avizienis, Signed-digit representations for fast parallel arithmetic, IRE Transactions on
electronic computers, 10:389–400. Reprinted in E.E. Swartzlander, Computer arithmetic,
vol. 2, IEEE Computer Society Press, 1990.

3. R.P. Brent, Fast multiple precision evaluation of elementary functions, Journal of the ACM,
23:242–251, 1976.

4. W.J. Cody and W. Waite, Software manual for the elementary functions, Prentice Hall,
1980.

5. W.J. Cody, Implementation and testing of function software, In Problems and methodologies
in mathematical software production, Lecture Notes in Computer Science 142, Springer-
Verlag, 1982.

6. M. Daumas, C. Mazenc, X. Merrheim and J.-M. Muller, Modular range reduction: a new al-
gorithm for fast and accurate computation of the elementary functions, Journal of Universal
Computer Science, 1(3):162–175, 1995.

7. M.D. Ercegovac and T. Land, Division and square-root: digit-recurrence algorithms and
implementations, Kluwer, 1994.

8. J.-M. Muller, Arithmétique des ordinateurs (in french), Masson, 1989.

9. J.M. Muller, Elementary functions, Birkhaüser, 1997.

10. B. Parahmi, Generalized signed-digit number systems: a unifying framework for redundant
number representations, IEEE Transactions on Computers, 39(1):89–98, 1990.

11. M. Payne and R. Hanek, Radian reduction for trigonometric functions, SIGNUM Newsletter,
18:19–24, 1983.

12. N. Revol and J.-C. Yakoubsohn, Accelerated Shift-and-Add algorithms, Research Report,
extended version, ftp://ano.univ-lille1.fr/pub/1999/ano395.ps.Z.

13. N. Takagi, T. Asada and S. Yajima, Redundant CORDIC methods with a constant scale
factor, IEEE Transactions on Computers, 40(9):989–995, 1991.

14. J. Volder, The CORDIC computing technique, IRE Transactions on electronic computers,
14–17, 1959. Reprinted in E.E. Swartzlander, Computer arithmetic, vol. 1, IEEE Computer
Society Press, 1990.

