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Abstract. This paper justifies why an arbitrary precision interval arithmetic is needed. To provide
accurate results, interval computations require small input intervals; this explains why bisection is so
often employed in interval algorithms. The MPFI library has been built in order to fulfill this need.
Indeed, no existing library met the required specifications. The main features of this library are briefly
given and a comparison with a fixed-precision interval arithmetic, on a specific problem, is presented.
It shows that the overhead due to the multiple precision is completely acceptable. Eventually, some
applications based on MPFI are given: robotics, isolation of polynomial real roots (by an algorithm
combining symbolic and numerical computations) and approximation of real roots with arbitrary
accuracy.

1. Motivations and State of the Art

Computing with interval arithmetic [3], [25], [31] gives guarantees on a numerical
result. The fundamental principle of this arithmetic consists of replacing every num-
ber by an interval enclosing it. For instance,  cannot be exactly represented using a
binary or decimal arithmetic, but it is certified that  belongs to [314159 314160].
Measurement errors also can be taken into account. The advantages of interval
arithmetic are numerous. Computed results are validated, and rounding errors are
taken into account, since computer implementations perform outward rounding.
Last but not least, interval arithmetic provides global information: for instance, it
provides the range of a function over a whole set S, which is a crucial information
for global optimization. Such properties cannot be reached without set computing:
interval arithmetic computes with sets and is easily available.

However, in spite of the improvements in interval analysis, the problem of over-
estimation, i.e. of enclosures which are far too large and thus of little practical use,
seems to plague interval computations. With fixed-precision floating-point arith-
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metic, results can be wide even when the input data are provided with machine
precision; a remedy for this phenomenon consists of computing with a higher
precision. This proposal is the core of the MPFI library (MPFI stands for Multi-
ple Precision Floating-point Interval), a library implementing arbitrary precision
interval arithmetic which is described in this paper.

This quest for extra accuracy can be found primarily in the development of
algorithms for interval analysis: use of centered forms and slopes instead of direct
interval evaluation, preconditioners, and many other directions [5]. Real-world
applications where extra accuracy is required are to be found in control theory
(we have indeed received requests for a tool that would integrate linear systems
with high accuracy) or chemistry: determining a molecular conformation entails
the minimization of an energy function and requires accurate evaluations of this
energy function.

Most usual interval arithmetic libraries (PROFIL/BIAS [27], Intlib [22], ) or
compilers (Sun Forte, e.g. C++ [41]) are based on double floating-point numbers
and do not propose arbitrary precision interval arithmetic. The XSC languages [25]
include a long accumulator type, initially for accurate dot product. It has also been
used for Horner evaluation of a polynomial in the interval Newton algorithm for
example [26]. The maximal precision is thus limited, since the long accumulator
type relies on the double type, whose range of exponents is {−1022  1023}.
Several arbitrary precision interval packages are available, for instance intpak [11]
and intpakX [15] for Maple or a similar package for Mathematica [24]. These pack-
ages cannot be considered as reliable: unverified assumptions on the roundings of
elementary functions (0.6 ulp for intpak inMaple, 1 ulp for Mathematica), incorrect
roundings� and several other undue assumptions can be found. Other works include
“range arithmetic” [1], [2] and IntLab [40]. The range library is a (now quite old)
arbitrary precision library which primarily aims at indicating the number of correct
digits rather than at performing interval arithmetic. However, it implements variable
precision interval arithmetic for this purpose. It is a pioneering work, however the
C++ used to implement it can no longer be compiled by recent compilers. The Int-
Lab library primarily implements efficient interval algorithms using MatLab, and
additionally provides a type for arbitrary precision computations but implements
few related functionalities. In version 3, only the exponential function and the 
constant are available. Arbitrary precision interval arithmetic was also mentioned as
an easy-to-implement extension to Brent’s multiple precision package MP as early
as 1978 [8]. It was implemented in 1980 [43], using the Augment preprocessor
(which replaced arithmetic operators by calls to the appropriate functions, as over-
loading was not available). However, the precision was not really dynamic, since
the memory storage used for every number corresponded to the maximal precision
indicated at compile time. Furthermore, Brent himself now advises to use another

� For instance, with 3 decimal digits, the rounding towards 0 of 1 − 910−5 gives 1 instead of
0.999 in Maple v6 to v8.
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package than MP: “MP is now obsolescent. Very few changes to the code or docu-
mentation have been made since 1981! [...] In general, we recommend the use of a
more modern package, for example David Bayley’s MPP package or MPFR” (cf.
http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/
pub043.html). Since none of the aforementioned packages implements a com-
plete and really reliable arbitrary precision interval arithmetic, this led us to imple-
ment our own library.

In Section 2, we recall the theorem which justifies our approach from a theo-
retical point of view. It states that using arbitrary precision yields arbitrary accu-
racy. The MPFI (Multiple Precision Floating-point Interval arithmetic) library is
then presented in Section 3. The requirements on the underlying floating-point
arithmetic are explained before the functionalities and implementation choices are
developed. Then, in Section 4, some benchmarks on Gaussian elimination per-
formed on M-matrices allow measuring the overhead factor due to the handling
of arbitrary precision numbers. This factor is 5 compared to the fixed-precision
interval library fi_lib; the effects of increasing the precision are also shown.
Lastly, some applications using our MPFI library are presented in Section 5, in
order to illustrate the power of this kind of arithmetic. One could obtain guaranteed
solutions to a problem not solvable by usual numerical methods, acceleration of
an exact method and handling of inaccurate data, and finally solution to a problem
with arbitrary accuracy.

2. Influence of the Computing Precision

The idea underlying MPFI is expressed by the following theorem [33].

THEOREM 2.1. Let x be an interval,  a function and f an interval extension of
, let us assume that f is given by a Lipschitz expression. Let  correspond to the
current computing precision p:  = 2−p. Then f(x) overestimates (x), and the
overestimation is bounded by

q
(
(x) f(x)

)
≤ c1w(x) + c2 (2.1)

where q is the Hausdorff distance, w(x) is the width of x, and the constants c1 and
c2 depend on f.

This means that the computing precision p can become a limiting factor to
the accuracy of the result for small intervals and that being able to increase the
computing precision can become an issue.

A first problem where arbitrary precision proves useful is the global optimization
of a continuous function. Hansen’s algorithm [16] highlights the fact that bisection
is sometimes the last resort to get improvements. Of course, pruning techniques
are extremely useful and should not be neglected. Bisection can mainly be seen as
a way to escape the wrapping effect by providing a paving of the sought set. The
paving by a union of small boxes can be as accurate as desired and circumvents the
overestimation induced by the inclusion into one single box.
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A second example comes from linear algebra: the Hansen and Sengupta algo-
rithm [18] “solves” a linear system Ax = b with A an interval matrix and b an
interval vector, i.e. it computes an enclosure of the convex hull of {x | A  A
b  b Ax = b}. This algorithm first computes C, an approximation of (midA)−1,
and then applies Gauss-Seidel iterations to CAx = Cb until convergence is reached.
This algorithm is based on the idea (or hope) that, since CA contains the identity
matrix, it is diagonally dominant and thus Gauss-Seidel iteration is a contraction.
This means that an arbitrary accuracy can be reached if arbitrary computing
precision is available.

The theorem above is also the starting point of Müller’s work on an effective
simulation of a Real RAM [32], following the theoretical results by Brattka and
Hertling [7] on the feasibility of a Real RAM. In Müller’s work, a computation
is performed. If the final accuracy is not sufficient, then the whole computation
is restarted with a higher computing precision; this process is repeated until the
outputs are accurate enough.

3. The MPFI Library

In order to implement an arbitrary precision interval arithmetic, a multiple precision
floating-point library was needed. Bymultiple precision, it is meant that the comput-
ing precision can be set arbitrarily and is not limited to the single or double precision
of machine floating-point numbers. Furthermore, this computing precision must be
dynamically adjustable in response to the accuracy needed. Another requirement for
interval arithmetic is the outward rounding facility, ensuring that for each operation,
the interval computed using floating-point arithmetic contains the interval obtained
should exact real arithmetic be used. Very desirable, exact directed rounding avoids
losses in accuracy, i.e. the interval computed using floating-point arithmetic is the
smallest one for inclusion. However, it is rarely available for elementary functions.
To sum up, compliance with the IEEE 754 standard for floating-point arithmetic,
extended to elementary functions, is welcome.

This can be found in the Arithmos project of the CANT team, U. Antwerpen,
Belgium [9], or in the MPFR library (Multiple Precision Floating-point Reliable
arithmetic library), developed by the Spaces team, INRIA Lorraine, France [13].
For portability and efficiency reasons (MPFR is based on GMP and efficiency
is a motto for its developers) and also because of the availability of the source
code, we chose MPFR. The corresponding interval library, named MPFI for Mul-
tiple Precision Floating-point Interval arithmetic library [35], is a portable library
written in C for arbitrary precision interval arithmetic (source code and documen-
tation can be freely downloaded at the url http://perso.ens-lyon.fr/
nathalie.revol/software.html). It is based on the GNUMP library and
on the MPFR library. The largest achievable computing precision is determined
by MPFR and depends in practice on the computer memory. The only theoretical
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limitation is that the exponent must fit in a machine integer. It suffices to say that it
is possible to compute with numbers with several million binary digits if needed.

Intervals are implemented using their endpoints, which are MPFR floating-
point numbers: this is not visible for the user but ensures that the swelling of
intervals’ widths is less important than with the midpoint-radius representation such
as implemented by Rump in IntLab [39], [40]. Every interval arithmetic operation
using the endpoint representation switches the rounding mode. With the midpoint-
radius representation, matrix operations can be performed with only one change
of rounding mode per matrix operation. This means that IntLab fully exploits the
processor’s pipeline, whereas libraries based on the representation by endpoints
do not. As switching the rounding modes incurs no computing time penalty with
arbitrary precision arithmetic, the motivation for this choice in IntLab does not hold
for MPFI, since in MPFI, every multiple precision operation is a software one.

The specifications used for the implementation are based on the IEEE 754
standard [19].

 An interval is a connected closed subset of R.

 If op is an n-ary operation and x1 xn are intervals, the result of op(x1 xn),
the operation op performed with interval arguments, is an interval such that:
{op(x1 xn) xi  xi}  op(x1 xn).

 In case op(x1 xn) is not defined, then a NaN (“Not a Number”, which stands
for an invalid operation) is generated, i.e. the intersection with the domain of op
is not taken prior to the operation.

 Each endpoint carries its own precision (set at initialization or modified during
the computations).

The arithmetic operations are implemented, and all functions provided byMPFR
are included as well (trigonometric and hyperbolic trigonometric functions and their
reciprocals). Conversions to and from usual and GMP data types are available as
well as rudimentary input/output functions. The code is written according to GMP
standards (functions and arguments names, memory management).

The planned functionalities, that are under development, include a C++ interface
à la PROFIL/BIAS [27] for ease of use, basic tools for linear algebra (vector
and matrix data types, additions and multiplications) and automatic differentiation
(forward differentiation by overloading operators and functions).

4. Benchmarks

According to our experiments, the MPFI implementation is as efficient as theoret-
ically expected. For Gaussian elimination performed on a “random” M-matrix of
dimension 300 and followed by a computation of the residual to check the result,
the overhead factor is close to 2 compared to MPFR, whatever the precision.

To give a precise idea of the additional cost caused by the use of an arbitrary
precision arithmetic, we compare MPFI with fi_lib. The library fi_lib [29]
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Table 1. Timings using floating-point double precision, fi lib interval
arithmetic and MPFI arbitrary precision interval arithmetic on Gaussian
elimination on a M-matrix of dimension 300.

Arithmetic double fi lib MPFI MPFI MPFI
Prec. (in bits) 53 53 53 63 127
Time (in s) 0.42 4.39 21.75 22.35 24.11
Ratio 0.10 1 4.95 5.09 5.49

Arithmetic MPFI MPFI MPFI MPFI MPFI
Prec. (in bits) 255 511 1023 2047 4095
Time (in s) 34.09 51.61 112.30 285.57 817.05
Ratio 7.76 11.75 25.58 65.05 186.11

is based on the native double type for floating-point numbers. A first important
feature of fi_lib is the avoidance of switching rounding modes, by adding
or subtracting one ulp to each endpoint after each operation (however, a faithful
rounding is assumed). Another important point is that fi_lib avoids the use of
elementary functions provided by the computer or the compiler, which return results
with unknown and possibly large errors. Indeed, fi_lib implements software
evaluations of elementary functions that return enclosing intervals. To take into
account the point of view and the constraints of a user, we implemented a simple
Gaussian elimination method to solve linear systems using both packages. The
functions and the data structures implemented in fi_lib and MPFI have been
homogenized (embedded into classes having exactly the same specifications—we
directly used only the C functions and data structures from fi_lib) so that the
algorithms using these arithmetic libraries are strictly identical. In order to measure
the quality of the implementation, we embedded in the sameway hardware “double”
coefficients (floating-point numbers, not intervals) as well and ran the resulting
algorithm.

On the one hand, the computation time includes the cost of the various loops
and function calls (which constitutes a higher percentage of the computing time
of the fi_lib computation than of the MPFI one), but on the other hand it also
includes the memory management aspects induced by the MPFI package (as the
numbers are always dynamically allocated, this constitutes a non negligible part of
MPFI computing time).

The timings in seconds of our programs and ratios compared to fi_lib on an
Athlon 1GHz processor (using gcc v3.04 with options -O2, fi lib 1.1, GMP 4.1,
MPFR 2.0.1 and MPFI 1.0) are given in Table 1.

Comments on the timings. The first remark is that the overhead induced by
MPFI in 53 bit mode is reasonable (a factor less than 5) compared to a package
that uses hardware floating-point arithmetic. This overhead is due to the dynamic
management of memory (allocation of numbers) in GMP, which is comparable to
the cost of arithmetic operations for small precisions.
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A second remark is that this overhead increases slowly as the computing pre-
cision increases, up to 1024 bits (32 machine words). Indeed, highly optimized
functions written in assembly language perform efficiently operations with data
encoded with few machine words; this prevents the overhead from being too large
for small precisions.

Let us also highlight the overhead incurred by successive doublings of the
precision. The overhead factor is less or equal to 3, which is due to the cost of
Karatsuba multiplication in multiple precision. Furthermore, the factor between
MPFR and MPFI remains constant and equal to 2 for this program on M-matrices
(it is upper bounded by 4 when general multiplications occur).

Comments on the accuracy of the results. In 53 bit mode, the intervals produced
by MPFI are always strictly included in those provided by the fi_lib package,
whether the solution or the residual is concerned. This is due to the use, in fi_lib,
of a software “blowing” of the intervals to avoid frequent switchings of rounding
modes as previously explained. The results obtained by fi_lib are extremely
close to those computed by MPFI using 52 bits.

Being able to work with 511 bits of precision (i.e. 10 times more than with
hardware floating-point numbers), losing only a factor of about 12 compared to a
more conventional interval arithmetic library based on hardware doubles pleads in
favour of MPFI. It is convenient to develop an algorithm and to correct a lack of
accuracy by increasing the precision of the underlying floating-point arithmetic.
This lack of accuracy can be attributed either to a quick and not very careful
expression of the problem (in the first stage of the development for instance) or to
theoretical reasons such as those mentioned in Section 2.

5. Applications

There are several motivations to use interval arithmetic in scientific calculation. One
can think for example of the following aspects: validation of numerical algorithms
(study of the precision of the output when it is not known from the theory or, in the
example presented below, remedy to numerical failures), exact calculations (where
the qualitative aspect of the result may be more important than the quantitative
aspect), algorithms requiring global information and thus designed to work with
interval arithmetic. We show in the few following examples that the use of multi-
precision interval arithmetic is crucial.

5.1. SOLVING ALGEBRAIC SYSTEMS—PARALLEL ROBOTS

One of the motivations for the development of MPFI was to propose effective
methods for solving algebraic systems with a finite number of solutions.

We focus on strategies relying on Gröbner basis calculations (see [12] for an
introduction), which can handle realistic problems in numerous application fields.
A Gröbner basis characterizes the ideal associated with a system of equations by a
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basis for the ideal and a function of reduction modulo this ideal. Once a Gr̈obner
basis is computed, various approaches yield numerical approximations of the real
or complex solutions of the system.

Let S = {1 = 0  s = 0} be an algebraic system with rational coefficients
depending on n variables X1Xn, let I be the ideal generated by {1 s} in
Q[X1Xn] and G any Gröbner basis of I. One can read on G, without any further
computation, whether S has a finite number of complex solutions. In the case of a
finite number of solutions, the algebra A = Q[X1Xn]  I is a finite dimensional
Q-vector space, and the monomials of Q[X1Xn] which are irreducible modulo
G form a basis of A.

A first approach to solve the algebraic system S reduces to a computation of
eigenvalues. Indeed, given any polynomial q  Q[X1Xn], the multiplication
by q in A is a linear application in a vector space of finite dimension, and the
corresponding matrix Mq can be explicitly constructed. The eigenvalues of Mq are
exactly the scalars q(1) q(d), where 1 d are the complex roots of S. As
a consequence, the simultaneous computation of all eigenvalues of MX1 MXn

provides an approximation of all the complex solutions of S, as detailed in [4].
Another approach continues with exact computations and computes the so-

called Rational Univariate Representation (RUR) as suggested in [36]. A RUR has
the following shape:



h(T) = 0
X1 = h1(T)  h0(T)

...

Xn = hn(T)  h0(T)

where T denotes a new variable, h and hi, i = 0n, belong to Q[T], and h and h0
are coprime.

In order to compute a validated approximation of the solutions, one has first to
compute the solutions of the equation h(T) = 0. If we are interested in computing
the real solutions of the system, the real solutions of h = 0 can be described by
isolating intervals as explained in Section 5.2. If these intervals can be sufficiently
refined so that h0 never vanishes on them (which is theoretically possible since h
and h0 are coprime), then it suffices to evaluate the rational functions hi h0 on these
intervals to compute isolating boxes containing the real solutions of S.

As mentioned above, having a precise interval arithmetic may be useful for
studying other arithmetics, and namely the accuracy of the result or simply for
overcoming a numerical instability. An illustration of this comes from the solution
of the direct kinematics problem for parallel robots [30].

In our problem, the parallel manipulators studied were hexapod manipulators:
they consist of a mobile platform and a base, linked by 6 rigid kinematic chains, cf.
Figure 1. The joints between the kinematic chains and the platforms are assumed to
be concentric frictionless ball joints. The goal is to determine all possible positions
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Figure 1. Parallel robot: the two platforms linked by rigid kinematic chains.

of the manipulator (up to 40); these positions must satisfy some constraints, such
as the length of the kinematic chains, which are fixed, or the relative position of the
joints on each platform.

Different modellings yield different formulations for this problem. A first class
of modelling consists of considering two Cartesian coordinate systems, one for
each platform: (O x y) for the basis, fixed platform and (O x y) for the upper,
mobile platform. The position of the upper platform is determined by the vector
OO (3 unknowns) and by the rotation of the upper platform from a reference
position (9 unknowns for the coefficients of the rotation matrix, or 4 coefficients
if quaternions are used). The constraints are the fixed lengths of the kinematic
chains (6 polynomial constraints of degree 2) and the fact that the coefficients of
the rotation do indeed define a rotation (7 polynomial constraints of degree 3 in the
9 unknowns, or 1 constraint of degree 2 with the quaternion approach). A second
class of modelling determines the position of the mobile platform from the position
of 3 specific points C1C2C3 on the mobile platform: this leads to a system of 9
equations (6 polynomial equations of degree 2 for the fixed lengths of the kinematic
chains and 3 polynomial equations of degree 2 for the fixed distances between the
3 chosen points C1C2C3) in 9 unknowns (the coordinates of C1C2C3 in a fixed
coordinate system).

In the case of the hexapod manipulator, the RUR-based computation, performed
by the RS software [37], provides all solutions. More precisely, all real roots are
enclosed with arbitrary accuracy using the algorithm described in Section 5.2. The
considered polynomial is the characteristic polynomial of the matrix, computed
using computer algebra methods. Isolation of the real roots is performed with 64 bits
of computing precision, and results have 32 correct bits. On the contrary, floating-
point numerical computations of eigenvalues using NAG or Lapack libraries failed.
They returned the correct number of roots, possibly complex, but with no correct
digits. However, if the floating-point arithmetic used by these libraries is simply
replaced by a more precise arithmetic, namely MPFI with 128 bits of mantissa,
then these eigenvalues can be computed with a good accuracy.
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This example illustrates on the one hand that symbolic and numeric computations
can be successfully mixed. In this case the problem is symbolically pre-processed.
On the other hand, classical numerical computations failed here, but precise interval
ones did not. The extra precision allowed successful computation of the roots, and
intervals guaranteed these solutions.

5.2. ISOLATION OF POLYNOMIAL REAL ROOTS

Other experiments provide evidence that multiple precision interval arithmetic may
replace, after some additional theoretical work, exact rational numbers in exact
computations. Let us illustrate this with methods based on the Descartes rule of
signs.

The exact version of the so-called Uspensky’s algorithm is already known to
be very efficient for isolating the real roots of univariate polynomials (see [38]
for example). It can deal with orthogonal polynomials such as Wilkinson’s or
Chebyshev’s, of degree greater than 2000. To summarize, the algorithm is based on
Descartes rule of signs, which is defined below.

NOTATION. We define the number of sign changes V(a) in the list a = (a1 ak)
of elements of R \ {0} by induction over k:

V(a1) = 0 V(a1 ak) =

{
V(a1 ak−1) + 1 if ak−1ak < 0
V(a1 ak−1) otherwise

We extend this notation to a list of elements in R that may contain zeroes: if b is
the list obtained by removing zeroes in a, we define V(a) = V(b).

THEOREM 5.1 Descartes rule of signs. Let P =
d∑

i=0
aixi be a polynomial in R[x].

If we denote by V(P) the number of sign changes in the list (a0 ad) and by
pos(P) the number of positive real roots of P counted with multiplicities, then
pos(P) ≤ V(P), and V(P)− pos(P) is even.

Let us assume that P is a square-free polynomial of degree d in R[x] with all its

roots in (0 1). Defining Pk c = 2kdP
(
x + c
2k

)
, if Descartes rule of signs gives 1 (resp.

0) when applied to the polynomial (x + 1)dPk c(1  (1 + x)), then the polynomial

P has exactly one root (resp. no root) in the interval
(

c
2k
 c + 1

2k

)
. Theorems due to

Collins/Akritas [10] and Vincent [42] state that for sufficiently large values of k,
Descartes rule of signs when applied to the polynomial (x + 1)dPk c(1  (1 + x))
always yields 0 or 1.

We are only interested in the signs of coefficients, and thus the accuracy needed
for the result of computations can be poor. However, the transformations x  x  2
used during the computations forbid the use of hardware floats (even interval arith-
metic based on hardware floats) for solving polynomials of high degree, because
of limitations on the exponents’ range.
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Furthermore, when replacing rational coefficients with intervals, two problems
may occur:

 a lack of numerical accuracy may induce problems in sign determinations (0
can appear in intervals);

 the polynomial may not be square-free (say a polynomial with interval coeffi-
cients represents a set of polynomials that may contain a non square-free one).

As shown in [38], these two situations lead to the same problem: some sign
determinations will not be possible, which means that, if a sign determination
failure is used as a stopping criterion, then the algorithm will always terminate. The
final result will be a set of isolating intervals and a set of intervals for which no
decision is possible (they may or may not contain real roots). One can then increase
the precision of the arithmetic to continue the computations: one important feature
is that the computation can be restarted exactly where it failed, i.e. there is no
need to restart the computation from the beginning. If the coefficients of the initial
polynomial are known exactly, such a process will always give a complete and exact
result.

In [38], an algorithm based on the previous considerations is presented: this
algorithm uses MPFI to evaluate the sign of the coefficients of the transformed
polynomial (x + 1)dPk c(1  (1 + x)); it doubles dynamically its computing precision
when the determination of a sign fails.

Here we only present some results obtained on Laguerre and Mignotte poly-
nomials, since they exhibit different features. These polynomials are known to be
difficult, since they have a large number of roots or very close roots. More detailed
comparisons with other algorithms, along with more experiments and more detailed
results can be found in [38]. Tests were performed on a 1.5GB, 1GHz AMDAthlon
processor.

Other efficient root finder programs are MPSolve from Bini and Fiorentino
[4], and eigensolve from Fortune [8], [9]. Both programs give a floating-
point approximation of all complex roots of a univariate polynomial. Since Fortune
already compared eigensolve to MPSolve, we just compared our timings with
eigensolve. For [] Laguerre polynomials of degree 500, our program is 2–3
times faster than eigensolve v1.0. This speedup goes to more than 5 for the
degree-500 Wilkinson polynomial. However, eigensolve is 100 times faster for
Mignotte’s polynomials: our algorithm does not use the fact that those polynomials
are sparse. (Extract from [38], reference [4] corresponds to reference [6] in this
paper, and [8], [9] have been replaced by [14] here.)

Compared to the same algorithm where all operations are performed using exact
arithmetic, the results are as follows. For Laguerre polynomials of high degree (900
or 1000), the times are very close, whereas the algorithm using MPFI performs
more than 15 times faster for Mignotte’s polynomials. The algorithm using MPFI
is only slightly more efficient than the exact one on Laguerre polynomials since
most of the roots require a large working precision to be isolated. This need of a
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Table 2. Number of roots isolated at a given precision, for Laguerre polynomials.

Degree Computing precision (MPFI algorithm) Exact IS
53 107 215 431 863 algorithm

200 0 0 2 198 0 0 3456
400 0 0 0 7 393 0 7648
600 0 0 0 0 70 530 12064
800 0 0 0 0 15 785 16864
900 0 0 0 0 3 897 18944
1000 0 0 0 0 0 1000 21056

Table 3. Number of roots isolated at a given precision, for Mignotte polynomials.

Degree Computing precision (MPFI algorithm) Exact IS
53 107 215 431 863 algorithm

200 2 0 0 2 0 0 46400
400 2 0 0 0 2 0 185536
600 2 0 0 0 2 0 ?

high precision will appear clearly on Table 2. However, timings to the disadvantage
of the algorithm using MPFI have not been observed.

Finally, Tables 2 and 3 illustrate the need for arbitrary precision. They display
the number of roots which can be isolated only when a given precision is reached.
The total number of roots is the sum of the numbers in a row. Amaximal computing
precision is set to 1024 (which may not be enough for the given examples). The
algorithm doubles its computing precision when needed and switches to the exact
algorithm when the maximal precision is reached. The last column, IS, gives the
maximum bit-size of integers appearing in the exact algorithm.

This algorithm is a very good example of symbolic/numeric computations. The
multi-precision arithmetic speeds up the computations in general but also allows one
to deal with polynomials whose coefficients are not exactly known (approximate
coefficients, real algebraic numbers, etc.).

5.3. APPROXIMATION OF THE ZEROES OF A FUNCTION

Revol [34] has implemented the interval Newton algorithm [17] and has adapted
it to arbitrary precision computations. In this example, the algorithm is primarily
intended for interval computations. It has been developed in order to enclose reliably
every real zero of the function. Indeed, it uses an interval enclosure of the graph of
the function and searches for zeroes in the intersection of this enclosure with the
Ox1xn hyperplane, where x1 xn denote the variables.

With an interval arithmetic based on hardware floating-point numbers, the accu-
racy of the result is limited. In particular with a root of multiplicity m > 1 or a
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cluster of m zeroes, the accuracy of this zero is the computing precision divided by
m. However, the interval Newton algorithm is based either on a contracting scheme
or, if the contraction is not efficient enough, on a bisection. This implies that arbi-
trary accuracy can be reached, if only enough computing precision is available.
This remark led us to implement the interval Newton algorithm in MPFI.

The interval Newton algorithm we derived is the following:

Input: , f an interval extension of the derivative of , X0 the initial search interval
Output: Res, a list of intervals that may contain the zeroes of  in X0.
Initialization: L = {X0}
Loop: while L �= ∅

Suppress (XL)
one step of Newton on X:

(X1X2) :=
(
x− (x)

f (X)

)
 X (X2 can be empty)

if the Newton step was not contracting enough then

(X1X2) := bisect(X)

increase the computing precision if needed (*)
stopping test applied to X1: insert X1 in L or Res (**)
ibid. for X2

In this algorithm one can recognize the classical interval Newton algorithm
[17]. The modifications concern the increase of the computing precision (*) and
the stopping criterion (**) (here, f denotes an interval extension of ).

 (*) The computing precision is increased when:

− either the bisection is not possible: X1 = X because the endpoints of X are two
consecutive floating-point numbers (for the current computing precision);

− or the evaluation of f(X1) is not narrower than f(X): w( f(X1)) ≥ w( f(X))
because the computing precision does not allow one to refine it (cf. Theo-
rem 2.1).

 (**) Stopping criterion: since arbitrary accuracy can be reached, the usual test
“w(X) ≤ X orw( f(X)) ≤ Y” [23] is replaced by “w(X) ≤ X andw( f(X)) ≤ Y ,”
where X and Y are thresholds given by the user.

 The termination of this new algorithm has been proven [34].

 If f contains interval coefficients, these coefficients should be handled as vari-
ables to be split, in order to enable refinements of the evaluations of f(X).

Some experiments have been performed on Chebyshev polynomials of degree
up to 40, on the Wilkinson polynomial of degree 20 [34], and on a polynomial with
a double root to illustrate the correct behaviour of this algorithm [28].
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To conclude, the two aforementioned implementationsmanaged to adapt dynam-
ically the precision to the computing needs without restarting the whole program.
This desirable feature will be sought after for future implementations of other
algorithms.

6. Conclusion

MPFI is a library for arbitrary precision interval arithmetic which fully satisfies
the containment requirement and allows one to compute with arbitrary precision. It
exhibits acceptable overheads compared to fixed-precision interval libraries, and it
is not extremely sensitive to increases of the computing precision. MPFI is written
in C and built upon MPFR and GMP and can be freely downloaded. New facilities
such as automatic differentiation and linear algebra are under development.

MPFI has enabled us to implement and test some algorithms. The first one,
presented in Section 5.1, determines all solutions of the general case of the direct
kinematic problem for parallel robots. The second one, presented in Section 5.2,
isolates real roots of polynomials of large degree and with possibly inaccurately
known coefficients. The third one, introduced in Section 5.3, approximates with
arbitrary accuracy zeroes of a function using an adapted interval Newton algorithm.
In the two latter algorithms, the computing precision has been dynamically adapted
in order to fulfill the computational needs, without requiring restarting the program
from the very beginning. This work will be pursued with a careful study of the
solution of linear systems and of global optimization of continuous functions [16],
[21]. Applications such as parameter estimation in control theory [20] will offer the
opportunity to gain further insight in the development of new algorithms.
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