MPFI: a library for arbitrary precision interval arithmetic

Nathalie Revol Arénaire (CNRS/ENSL/INRIA), LIP, ENS-Lyon and Lab. ANO, Univ. Lille
Nathalie.Revol@ens-lyon.fr

Fabrice Rouillier Spaces, CNRS, LIP6, Univ. Paris 6, LORIA-INRIA
Fabrice.Rouillier@loria.fr

SCAN 2002, Paris, France, 24-27 September
Reliable computing: Interval Arithmetic

Numbers are replaced by intervals.
Ex: \(\pi \) replaced by \([3.14159, 3.14160]\)

Computations: can be done with interval operands.

Advantages:

- Every result is guaranteed (including rounding errors).
- Data known up to measurement errors are representable.
- Global information can be reached (“computing in the large”).

Drawbacks: overestimation of the results.
Hansen’s algorithm for global optimization

Hansen 1992

\[\mathcal{L} = \text{list of boxes to process} := \{ X_0 \} \quad F: \text{function to minimize} \]

while \(\mathcal{L} \neq \emptyset \) loop

suppress \(X \) from \(\mathcal{L} \)

reject \(X \) ?

yes if \(F(X) > \bar{f} \)

yes if Grad\(F(X) \) \(\not= 0 \)

yes if \(HF(X) \) has its diag. non \(> 0 \)

reduce \(X \)

Newton applied with the gradient

solve \(Y \subset X \) such that \(F(Y) \leq \bar{f} \)

bisect \(Y \) into \(Y_1 \) and \(Y_2 \) if \(Y \) is not a result

insert \(Y_1 \) and \(Y_2 \) in \(\mathcal{L} \)
Solving linear systems
preconditioned Gauss-Seidel algorithm

Hansen & Sengupta 1981

Linear system: $Ax = b$ with A and b given.

Problem: compute an enclosure of
Hull ($\Sigma_{\exists\exists}(A, b)) = $ Hull ($\{x : \exists A \in A, \exists b \in b, Ax = b\}$).

Hansen & Sengupta’s algorithm
compute C an approximation of $\text{mid}(A)^{-1}$
apply Gauss-Seidel to $CAx = Cb$ until convergence.

Idea (hope):
CA contains the identity matrix, is diagonally dominant, thus the iteration matrix has a spectral radius < 1 and this iteration is a contraction.
Agenda

• Introduction: when is more precision wanted?
 – global optimization (Hansen’s algorithm)
 – linear system solving (Hansen & Sengupta’s algorithm)

• MPFI: a library for arbitrary precision interval arithmetic
 – general view of MPFI
 – MPFI in details
 – other libraries

• Applications
 – robot kinematics
 – isolation of real roots of a polynomial
 – approximation of zeros of a function
MPFI Multiple Precision Floating-point Interval arithmetic library

general view

- **what:** C library for arbitrary precision interval arithmetic

- **why:** to compute reliably and accurately

- **where:** freely available, including source code and documentation (last release: April 2002)

- **who:** N. Revol and F. Rouillier

- **how:** based on MPFR for arbitrary precision floating-point arithmetic (based on GMP: efficient and portable)
• **Requirements:** directed roundings are required, exact is better. Even for elementary functions! (provided by MPFR)

• **Interval:** connected closed subset of \(IR \)

• **Operation:** \(op(X_1, \ldots, X_n) \supset \{ op(x_1, \ldots, x_n) : x_i \in X_i \} \)

• **Undefined operation:** NaN if \(op(x_1, \ldots, x_n) \) is undefined (no \(a \ priori \) intersection with the domain)

• **Precision:** intervals are represented by their endpoints, each endpoint carries its own precision.
MPFI: functionalities

- arbitrary precision interval data type
- arithmetic operations: $+, -, \times, \div, \sqrt{\cdot}$
- constants: π, log 2, Euler constant
- elementary functions: exp, log, atan, cosh, asinh...
- IEEE-754 special values: ∞, signed zeros, NaN
- conversions to and from integer, double, exact naturals, exact integers, rational, “reals” (MPFR numbers)
- Input/Output (to be improved)
Performances

Development version

Gaussian elimination on a random M-matrix (300 × 300)

<table>
<thead>
<tr>
<th>ARITHM PREC</th>
<th>double 53 bits</th>
<th>fi.lib 53 bits</th>
<th>MPFI 53 bits</th>
<th>MPFI 63 bits</th>
<th>MPFI 127 bits</th>
<th>MPFI 255 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME (s)</td>
<td>0.42</td>
<td>4.39</td>
<td>21.75</td>
<td>22.35</td>
<td>24.11</td>
<td>34.09</td>
</tr>
<tr>
<td>RATIO</td>
<td>0.10</td>
<td>1.00</td>
<td>4.95</td>
<td>5.09</td>
<td>5.49</td>
<td>7.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARITHM PREC</th>
<th>MPFI 511 bits</th>
<th>MPFI 1023 bits</th>
<th>MPFI 2047 bits</th>
<th>MPFI 4095 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME (s)</td>
<td>51.61</td>
<td>112.30</td>
<td>285.57</td>
<td>817.05</td>
</tr>
<tr>
<td>RATIO</td>
<td>11.75</td>
<td>25.58</td>
<td>65.05</td>
<td>186.11</td>
</tr>
</tbody>
</table>

(Athlon 1GHz)
Other libraries

Most of the interval arithmetic libraries are based on machine floating-point precision (Profil/BIAS, Intlib, Sun Forte. . .)

Some libraries offer multiple precision:

- **Maple, Mathematica**: floating-point arithmetic and roundings bugged
- **range**: “the interval is only crudely represented” (Aberth)
- **XSC**: limited use (in long accumulators)
- **IntLab**: limited set of operations and functions
Agenda

• Introduction: when is more precision wanted?
 – global optimization (Hansen’s algorithm)
 – linear system solving (Hansen & Sengupta’s algorithm)

• MPFI: a library for arbitrary precision interval arithmetic
 – general view of MPFI
 – MPFI in details
 – other libraries

• Applications
 – robot kinematics
 – isolation of real roots of a polynomial
 – approximation of zeros of a function
Parallel robot kinematics

Formulation: algebraic system depending on 7 to 12 variables.

Goal: computing all the real solutions (up to 40).

Usual numerical computational strategies failed on this example using hardware doubles.

Solution obtained by

- a few exact methods
- MPFI using 128 bits of precision

Remark: some preliminary computations were performed using exact computations (Gröbner bases).
Isolation of polynomial real roots

Rouillier and Zimmermann 2002

Descartes’ rule of sign
Let $P = \sum_{i=0}^{d} p_i x^i$ be a polynomial,
$V(P) =$ number of sign changes in (p_0, \ldots, p_d)
and $\text{pos}(P) =$ number of > 0 real roots of P, counted with mult.
Then $\text{pos}(P) \leq V(P)$ and $V(P) - \text{pos}(P)$ is even.
Isolation of polynomial real roots algorithm

“Uspensky’s” algo.
Assumption: \(P \) is a square-free polynomial with roots in \([0, 1]\).
Transform \(P \) into \(Q = \sum_i q_i x^i \) such that \(V(Q) = 0 \) or 1
i.e. \(P \) has 0 or 1 root on a given interval:
a root of \(P \) is isolated.

Modified algorithm using MPFI
replace exact computations in \(\text{Transform } P \text{ into } Q \)
by MPFI computations:
\(q_i \) is now an interval.
If \(q_i \ni 0 \) then stop interval computation, increase MPFI precision or go
on with exact computation.
Approximation of zeros: interval Newton algorithm
principle of one iteration

The result will be a list of intervals.
Interval Newton algorithm

Input: F, F', X_0 // X_0 initial search interval
Initialization: $\mathcal{L} = \{X_0\}$,
$\alpha = 0.75$ // any value in $]0.5, 1[$ is suitable

Loop: while $\mathcal{L} \neq \emptyset$

Suppress (X, \mathcal{L})

Increase the working precision if needed

$x := \text{mid}(X)$

$(X_1, X_2) := (x - \frac{F(\{x\})}{F'(X)}) \cap X$ // X_1 and X_2 can be empty

if $w(X_1) > \alpha w(X)$ or $w(X_2) > \alpha w(X)$ then $(X_1, X_2) := \text{bisect}(X)$
if $X_1 \neq \emptyset$ and $F(X_1) \ni 0$ then

if $w(X_1)/|\text{mid}(X_1)| \leq \varepsilon_X$ and $w(F(X_1)) \leq \varepsilon_Y$ then Insert X_1 in Res
else Insert X_1 in \mathcal{L}

same handling of X_2

Output: Res, a list of intervals that may contain the roots.
Interval Newton algorithm: experiments

Chebychev polynomials: $C_n(\cos(\theta)) = \cos(n\theta)$.

Results: very precise roots for degrees up to 40, with proof of existence and uniqueness.

Wilkinson polynomial: $\prod_{i=1}^{20} (X - i)$.

With enough precision to be able to store exactly the coefficients: roots found with a precision 5.10^{-2} and a proof of existence (but not uniqueness). A lot of intervals are not eliminated: $[0.96, 1.02]$ et $[1.62, 20.984]$.

With enough precision and a perturbation $\pm 2^{-19}$ on the coefficient of X^{19}: roots (with proof of existence but not uniqueness): 1 ± 4.10^{-2}, 2 ± 5.10^{-2}, 3 ± 4.10^{-2}, 4 ± 4.10^{-2}, 5 ± 4.10^{-2}, 6 ± 5.10^{-2}, 7 ± 6.10^{-2} and $[7.91, 22.11]$. A lot of intervals are not eliminated: $[0.96, 22.64]$.
Conclusion

MPFI:
• library for arbitrary precision interval computation
• at a reasonable cost.

Applications
• guaranteed results with arbitrary accuracy
• algorithms: increase precision when needed and continue

Coming soon
• MPFI++
• linear algebra
• more algorithms.