Master class Validation in scientific computing
Master in Computer Science, École Normale Supérieure de Lyon, 2006-2007
Nathalie Revol (INRIA, LIP, École Normale Supérieure de Lyon)
Description of this course,
along with some general references.
Monday 2006-09-25: cancelled
Monday 2006-10-02
Friday 2006-10-13
Friday 2006-10-20
Monday 2006-10-23
Thursday 2006-10-26
Friday 2006-11-10
Friday 2006-11-24
Monday 2006-11-27
Friday 2006-12-08
Monday 2006-12-11
plus two more in January 2007.
Monday: 13h30 - 15h30, B1
Thursday: 10h15 - 12h15, B1
Friday: 10h15 - 12h15, B1
General bibliography:
-
D. Goldberg: What every computer scientist should know
about floating-point arithmetic,
ACM Computing Surveys, vol 23, no 1, pp 5–48, 1991.
-
W. Kahan: How Futile are Mindless Assessments of Roundoff in
Floating-Point Computations?,
Householder Symposium XVI, May 2005,
text available here.
-
Ph. Langlois: Chap. 1 : Introduction générale,
in A. Barraud et al.: Outils d'analyse numérique pour l'automatique, pp 19–52,
Traité IC2. Hermès Science, 2002.
-
N. Higham: Accuracy and Stability of Numerical Algorithms,
SIAM Press, 2nd edition, 2003.
-
J.-M. Chesneaux et F. Jézéquel: Théorie et pratique de
l'arithmétique stochastique discrète,
Réseaux et systèmes répartis - calculateurs parallèles,
vol 13, no 4-5, pp 485-504, 2001.
-
P. Zimmermann: Arithmétique en précision arbitraire,
Réseaux et systèmes répartis - calculateurs parallèles, vol 13, no 4-5, pp 357–386, 2001.
Également disponible sous forme de rapport de
recherche INRIA 4272 http://www.inria.fr/rrrt/rr-4272.html, septembre 2001,
- G. Alefeld and G. Mayer: Interval analysis: theory and applications,
Journal of Computational and Applied Mathematics,
vol 121, pp 421–464, 2000.
- J. von zur Gathen and J. Gerhard: Modern Computer Algebra,
Cambridge University Press, 2nd edition, 2003.
Exam papers:
-
S. Funke, K. Mehlhorn:
LOOK: A Lazy Object-Oriented Kernel design for geometric computation,
Computational Geometry, vol 22, pp. 99-118, 2002.
-
K.O. Geddes and W.W. Zheng: Exploiting fast hardware floating point in high precision computation,
Proceeding ISSAC 2003, pp 111-118.
Complements: chapter 7 on Iterative refinement,
N. Higham: Accuracy and Stability of Numerical Algorithms,
SIAM Press, 2nd edition, 2003.
-
L.. Granvilliers:
An Interval Component for Continuous Constraints,
Journal of Computational and Applied Mathematics, vol 162, no 1, pp. 79-92, 2004
L. Granvilliers, E. Monfroy:
Implementing Constraint Propagation by Composition of Reductions,
Proceedings of the International Conference on Logic Programming, ICLP 2003, Springer LNCS 2916, pp. 300-314, 2003.
-
J. Harrison:
A Machine-Checked Theory of Floating Point Arithmetic,
Proceedings of the 1999 International Conference on Theorem Proving in Higher Order Logics, TPHOLs'99. Springer LNCS 1690, pp. 113-130, 1999.
-
T. Hickey:
Analytic Constraint Solving and Interval Arithmetic,
Proceedings of the 27th Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL'00).
-
T. Hickey, Q. Ju, M.H. van Emden:
Interval Arithmetic: from Principles to Implementation,
Journal of the ACM, volume 48, issue 5, pp. 1038-1068, September 2001.
-
N. Higham:
Exploiting Fast Matrix Multiplication Within the Level 3 BLAS,
ACM Transactions on Mathematical Software, vol 16, no 4, pp 352-368, 1990.
-
F. Jézéquel: Dynamical control of converging sequences computation,
Applied Numerical Mathematics, vol 50, 2004, pp 147-164.
-
Ph. Langlois:
Automatic Linear Correction of Rounding Errors,
BIT Numerical Mathematics, vol 41, no 3, 2001, pp 515-539.
-
X.S. Li, J.W. Demmel, D.H. Bailey, G. Henry, Y.hida, J. Iskandar, W. Kahan, S.Y. Kang, A. Kapur, M.C. Marti, B.J. Thompson, T. Tung and D.J. Yoo:
Design, Implementation and Testing of Extended and Mixed Precision BLAS,
ACM Transactions on Mathematical Software, vol 28, no 2, 2002, pp 152-205.
-
G. Melquiond, S. Pion:
Formally Certified Floating-Point Filters for Homogeneous Geometric Predicates,
to appear in Theoretical Informatics and Applications,
2007.
-
D. Michelucci, J.-M. Moreau, S. Foufou:
Robustness and Randomness,
to appear in Lecture Notes in Computer Science, special issue on
Reliable Implementation of Real Numbers Algorithms: Theory and Practice,
2007.
-
Y. Nievergelt: Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit,
ACM Transactions on Mathematical Software vol 29, no 1, 2003, pp 27-48.
-
F. Rouillier, P. Zimmermann:
Efficient isolation of polynomial's real roots,
Journal of Computational and Applied Mathematics, vol 162, pp. 33-50, 2004.
-
S.M. Rump, T. Ogita, and S. Oishi: Accurate Floating-Point Summation,
Technical Report 05.1, Faculty of Information and Communication Science, Hamburg University of Technology, 2005.
Available here.
-
H. Schichl, A. Neumaier:
Interval Analysis on Directed Acyclic Graphs for Global Optimization,
Journal of Global Optimization, vol 33, pp.541-562, 2005.
-
J.R. Shewchuk:
Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates,
Discrete Computational Geometry, vol 18, 1997, pp 305-363,
except Section 2 which will be detailed during lecture 6.
- Lecture 1
- General introduction to this course: notes (in french)
- Introduction to IEEE-754 floating-point arithmetic:
floating-point numbers and their representation, rounding modes and ulps, special values (zeros, infinities, NaNs).
Exercises: what does Gentleman's program do?, devise programs that spy the machine representation (length of the mantissa,
extreme values for the exponents).
-
Lecture 2: IEEE-754 floating-point arithmetic and condition number
- Properties that can be established thanks to the IEEE-754 standard, TwoSum and TwoMult: notes
- Work on the paper by T. Ogita, S.M. Rump and S. Oishi: Accurate Sum and Dot Product with Applications,
Proceedings of 2004 IEEE International Symposium on Computer Aided Control Systems Design, Taipei, pages 152-155, 2004.
- Condition number: intuition and definition
-
Lecture 3: Error analysis
- Condition number: notes
- Stability of an algorithm: forward analysis, backward analysis, accuracy of the solution
-
Lecture 4: Error analysis of some examples
- JM Muller's recurrence, Let's count to 6 (N. Higham)...:
notes
- linear systems solving: triangular systems, LU factorization
-
Lecture 5: Probabilistic arithmetic
- CESTAC method
- Monte Carlo arithmetic and Kahan's criticisms:
notes
-
Lecture 6: Multiple precision arithmetic
notes
- Expansions
- Multiple precision arithmetic (based on integer computations)
-
Lecture 7: Interval arithmetic:
notes
-
Lecture 8: Interval arithmetic
-
Lecture 9: Exact arithmetic
-
Lecture 10: Exact arithmetic
-
Lecture 11: Formal proofs
Go to Page Teaching of Nathalie Revol
Go to Page Nathalie Revol
Go to Page Arenaire
Go to Page LIP
Go to Page INRIA Rhône-Alpes
Go to Page ANO
Go to Page USTL