Master class Validation in scientific computing
  
  Master in Computer Science, École Normale Supérieure de Lyon, 2006-2007
  
  Nathalie Revol (INRIA, LIP,  École Normale Supérieure de Lyon)
  
  
Description of this course,
along with some general references.
Monday 2006-09-25: cancelled 
Monday 2006-10-02 
Friday 2006-10-13 
Friday 2006-10-20 
Monday 2006-10-23 
Thursday 2006-10-26 
Friday 2006-11-10 
Friday 2006-11-24 
Monday 2006-11-27 
Friday 2006-12-08 
Monday 2006-12-11 
plus two more in January 2007.
Monday: 13h30 - 15h30, B1 
Thursday: 10h15 - 12h15, B1 
Friday: 10h15 - 12h15, B1 
General bibliography: 
  - 
    D. Goldberg: What every computer scientist should know
    about floating-point arithmetic,
    ACM Computing Surveys, vol 23, no 1, pp 5–48, 1991.
  
 
  - 
    W. Kahan: How Futile are Mindless Assessments of Roundoff in
    Floating-Point Computations?,
    Householder Symposium XVI, May 2005,
    text available here.
  
 - 
    Ph. Langlois: Chap. 1 : Introduction générale,
    in A. Barraud et al.: Outils d'analyse numérique pour l'automatique, pp 19–52,
    Traité IC2. Hermès Science, 2002.
  
 
  - 
    N. Higham: Accuracy and Stability of Numerical Algorithms,
    SIAM Press, 2nd edition, 2003.
  
 
  - 
    J.-M. Chesneaux et F. Jézéquel: Théorie et pratique de
    l'arithmétique stochastique discrète,
    Réseaux et systèmes répartis - calculateurs parallèles,
    vol 13, no 4-5, pp 485-504, 2001.
  
 
  - 
    P. Zimmermann: Arithmétique en précision arbitraire,
    Réseaux et systèmes répartis - calculateurs parallèles, vol 13, no 4-5, pp 357–386, 2001.
    Également disponible sous forme de rapport de
    recherche INRIA 4272 http://www.inria.fr/rrrt/rr-4272.html, septembre 2001,
  
 
  - G. Alefeld and G. Mayer: Interval analysis: theory and applications,
    Journal of Computational and Applied Mathematics,
    vol 121, pp 421–464, 2000.
  
 
  - J. von zur Gathen and J. Gerhard: Modern Computer Algebra,
    Cambridge University Press, 2nd edition, 2003.
  
 
Exam papers: 
  - 
    S. Funke, K. Mehlhorn:
    LOOK: A Lazy Object-Oriented Kernel design for geometric computation,
    Computational Geometry, vol 22, pp. 99-118, 2002.
  
 
  - 
    K.O. Geddes and W.W. Zheng: Exploiting fast hardware floating point in high precision computation, 
    Proceeding ISSAC 2003, pp 111-118.
    
    Complements: chapter 7 on Iterative refinement, 
    N. Higham: Accuracy and Stability of Numerical Algorithms,
    SIAM Press, 2nd edition, 2003.
   
  - 
    L.. Granvilliers:
    An Interval Component for Continuous Constraints,
    Journal of Computational and Applied Mathematics, vol 162, no 1, pp. 79-92, 2004
    
    L. Granvilliers, E. Monfroy:
    Implementing Constraint Propagation by Composition of Reductions,
    Proceedings of the  International Conference on Logic Programming, ICLP 2003, Springer LNCS 2916, pp. 300-314, 2003.
   
  - 
    J. Harrison:
    A Machine-Checked Theory of Floating Point Arithmetic,
         Proceedings of the 1999 International Conference on Theorem Proving in Higher Order Logics, TPHOLs'99. Springer LNCS 1690, pp. 113-130, 1999.
  
 
  - 
    T. Hickey: 
    Analytic Constraint Solving and Interval Arithmetic,
    Proceedings of the 27th Annual ACM SIGACT-SIGPLAN Symposium
    on Principles of Programming Languages (POPL'00).
  
 
  - 
    T. Hickey, Q. Ju, M.H. van Emden:
    Interval Arithmetic: from Principles to Implementation,
    Journal of the ACM, volume 48, issue 5, pp. 1038-1068, September 2001.
  
 
  - 
    N. Higham:
    Exploiting Fast Matrix Multiplication Within the Level 3 BLAS,
    ACM Transactions on Mathematical Software, vol 16, no 4, pp 352-368, 1990.
  
 
  - 
    F. Jézéquel: Dynamical control of converging sequences computation,
    Applied Numerical Mathematics, vol 50, 2004, pp 147-164.
  
 
  - 
    Ph. Langlois:
    Automatic Linear Correction of Rounding Errors,
    BIT Numerical Mathematics, vol 41, no 3,  2001, pp 515-539.
  
 
  - 
    X.S. Li, J.W. Demmel, D.H. Bailey, G. Henry, Y.hida, J. Iskandar, W. Kahan, S.Y. Kang, A. Kapur, M.C. Marti, B.J. Thompson, T. Tung and D.J. Yoo:
    Design, Implementation and Testing of Extended and Mixed Precision BLAS,
    ACM Transactions on Mathematical Software, vol 28, no 2, 2002, pp 152-205.
  
 
  - 
    G. Melquiond, S. Pion:
    Formally Certified Floating-Point Filters for Homogeneous Geometric Predicates,
    to appear in Theoretical Informatics and Applications,
    2007.
  
 
  - 
    D. Michelucci, J.-M. Moreau, S. Foufou:
    Robustness and Randomness,
    to appear in Lecture Notes in Computer Science, special issue on 
    Reliable Implementation of Real Numbers Algorithms: Theory and Practice,
    2007.
  
 
  - 
    Y. Nievergelt: Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit,
    ACM Transactions on Mathematical Software vol 29, no 1, 2003, pp 27-48.
  
 
  - 
    F. Rouillier, P. Zimmermann:
    Efficient isolation of polynomial's real roots,
    Journal of Computational and Applied Mathematics, vol 162, pp. 33-50, 2004.
  
 
  - 
    S.M. Rump, T. Ogita, and S. Oishi: Accurate Floating-Point Summation,
    Technical Report 05.1, Faculty of Information and Communication Science, Hamburg University of Technology, 2005.
    Available here.  
  
 
  - 
    H. Schichl, A. Neumaier:
    Interval Analysis on Directed Acyclic Graphs for Global Optimization,
    Journal of Global Optimization, vol 33, pp.541-562, 2005.
  
 
  - 
    J.R. Shewchuk:
    Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates,
    Discrete Computational Geometry, vol 18, 1997, pp 305-363, 
    except Section 2 which will be detailed during lecture 6.
   
    - Lecture 1
      
        - General introduction to this course: notes (in french)
        
 
        - Introduction to IEEE-754 floating-point arithmetic:
          floating-point numbers and their representation, rounding modes and ulps, special values (zeros, infinities, NaNs). 
          Exercises: what does Gentleman's program do?, devise programs that spy the machine representation (length of the mantissa,
          extreme values for the exponents).
         
      
      
      
     
    - 
      Lecture 2: IEEE-754 floating-point arithmetic and condition number
      
      
        - Properties that can be established thanks to the IEEE-754 standard, TwoSum and TwoMult: notes
        
 
	- Work on the paper by T. Ogita, S.M. Rump and S. Oishi: Accurate Sum and Dot Product with Applications,
	  Proceedings of 2004 IEEE International Symposium on Computer Aided Control Systems Design, Taipei, pages 152-155, 2004. 
	
 
        - Condition number: intuition and definition
        
 
      
        
        
     
    - 
        Lecture 3: Error analysis
	
	  - Condition number: notes
	  
 
	  - Stability of an algorithm: forward analysis, backward analysis, accuracy of the solution
	  
 
	
	
	
        
        
     
    - 
        Lecture 4: Error analysis of some examples
	
	
	  - JM Muller's recurrence, Let's count to 6 (N. Higham)...:
	    notes
	  
 
	  - linear systems solving: triangular systems, LU factorization
	  
 
	
        
        
     
    - 
        Lecture 5: Probabilistic arithmetic
	
	
	  - CESTAC method
	  
 
	  - Monte Carlo arithmetic and Kahan's criticisms: 
	    notes
	  
 
	
        
        
     
    - 
        Lecture 6: Multiple precision arithmetic
	    notes
	
	
	  - Expansions
	  
 
	  - Multiple precision arithmetic (based on integer computations)
	  
 
	
        
        
        
     
    - 
        Lecture 7: Interval arithmetic:
	
	    notes
        
        
     
    - 
        Lecture 8: Interval arithmetic
	
        
        
     
    - 
        Lecture 9: Exact arithmetic
	
        
        
     
    - 
        Lecture 10: Exact arithmetic
	
        
        
     
    - 
        Lecture 11: Formal proofs
	
        
        
     
Go to  Page Teaching of Nathalie Revol 
Go to  Page Nathalie Revol 
Go to  Page Arenaire 
Go to  Page LIP 
Go to  Page INRIA Rhône-Alpes 
Go to  Page ANO 
Go to  Page USTL