Data processing and networks optimization

Part I: Introduction

Pierre Borgnat¹, Jean-Christophe Pesquet², Nelly Pustelnik¹

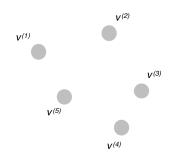
- ¹ ENS Lyon Laboratoire de Physique CNRS UMR 5672 pierre.borgnat@ens-lyon.fr, nelly.pustelnik@ens-lyon.fr
 - ² LIGM Univ. Paris-Est CNRS UMR 8049 jean-christophe.pesquet@univ-paris-est.fr

Optimization?

Whatever people do, at some point they get a craving to organize things in a best possible way. This intention, converted in a mathematical form, turns out to be an optimization problem of certain type. (Yurii Nesterov)

►
$$\mathcal{V} = \{ v^{(i)} \mid i \in \{1, ..., M\} \}$$

 \rightsquigarrow set of vertices = objects
 $v^{(i)} \in \mathcal{V} \leftrightarrow i \in \{1, ..., M\}$

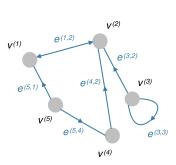


►
$$\mathcal{V} = \{ v^{(i)} \mid i \in \{1, ..., M\} \}$$

 \rightsquigarrow set of vertices = objects
 $v^{(i)} \in \mathcal{V} \leftrightarrow i \in \{1, ..., M\}$

▶
$$\mathcal{E} = \{ e^{(i,j)} \mid (i,j) \in \mathbb{E} \}$$

 \rightsquigarrow set of edges = object relationships
 $e^{(i,j)} \in \mathcal{E} \leftrightarrow (i,j) \in \mathbb{E}$



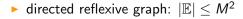
Г

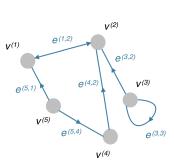
►
$$\mathcal{V} = \{ v^{(i)} \mid i \in \{1, ..., M\} \}$$

 \rightsquigarrow set of vertices = objects
 $v^{(i)} \in \mathcal{V} \leftrightarrow i \in \{1, ..., M\}$

►
$$\mathcal{E} = \{ e^{(i,j)} \mid (i,j) \in \mathbb{E} \}$$

 \rightsquigarrow set of edges = object relationships
 $e^{(i,j)} \in \mathcal{E} \iff (i,j) \in \mathbb{E}$





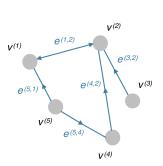
Г

►
$$\mathcal{V} = \{ v^{(i)} \mid i \in \{1, ..., M\} \}$$

 \rightsquigarrow set of vertices = objects
 $v^{(i)} \in \mathcal{V} \leftrightarrow i \in \{1, ..., M\}$

►
$$\mathcal{E} = \{ e^{(i,j)} \mid (i,j) \in \mathbb{E} \}$$

 \rightsquigarrow set of edges = object relationships
 $e^{(i,j)} \in \mathcal{E} \iff (i,j) \in \mathbb{E}$



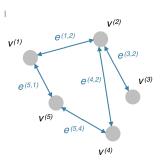
b directed reflexive graph: |𝔼| ≤ M²
 directed nonreflexive graph: |𝔅| ≤ M(M − 1)

►
$$\mathcal{V} = \{ v^{(i)} \mid i \in \{1, ..., M\} \}$$

 \rightsquigarrow set of vertices = objects
 $v^{(i)} \in \mathcal{V} \leftrightarrow i \in \{1, ..., M\}$

►
$$\mathcal{E} = \{ e^{(i,j)} \mid (i,j) \in \mathbb{E} \}$$

 \rightsquigarrow set of edges = object relationships
 $e^{(i,j)} \in \mathcal{E} \Leftrightarrow (i,j) \in \mathbb{E}$



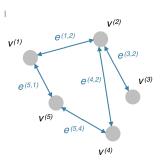
b directed reflexive graph: |E| ≤ M²
 directed nonreflexive graph: |E| ≤ M(M − 1)
 undirected nonreflexive graph: |E| ≤ M(M − 1)/2

►
$$\mathcal{V} = \{ v^{(i)} \mid i \in \{1, ..., M\} \}$$

 \rightsquigarrow set of vertices = objects
 $v^{(i)} \in \mathcal{V} \leftrightarrow i \in \{1, ..., M\}$

►
$$\mathcal{E} = \left\{ e^{(i,j)} \mid (i,j) \in \mathbb{E} \right\}$$

 \rightsquigarrow set of edges = object relationships
 $e^{(i,j)} \in \mathcal{E} \iff (i,j) \in \mathbb{E}$



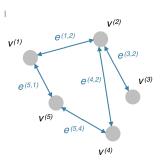
 directed reflexive graph: |E| ≤ M² directed nonreflexive graph: |E| ≤ M(M - 1) undirected nonreflexive graph: |E| ≤ M(M - 1)/2
 (x⁽ⁱ⁾)_{1≤i≤M}: weights on vertices (scalars or vectors)

►
$$\mathcal{V} = \{ v^{(i)} \mid i \in \{1, ..., M\} \}$$

 \rightsquigarrow set of vertices = objects
 $v^{(i)} \in \mathcal{V} \leftrightarrow i \in \{1, ..., M\}$

►
$$\mathcal{E} = \left\{ e^{(i,j)} \mid (i,j) \in \mathbb{E} \right\}$$

 \rightsquigarrow set of edges = object relationships
 $e^{(i,j)} \in \mathcal{E} \iff (i,j) \in \mathbb{E}$



directed reflexive graph: |E| ≤ M² directed nonreflexive graph: |E| ≤ M(M - 1) undirected nonreflexive graph: |E| ≤ M(M - 1)/2
(x⁽ⁱ⁾)_{1≤i≤M}: weights on vertices (scalars or vectors)
(x^(i,j))_{(i,j)∈E}: weights on edges (scalars or vectors)

Quantitative analysis

Objective function

The merits of a given choice of the weights is evaluated by

 $f((x^{(i)})_{1\leq i\leq M}, (x^{(i,j)})_{(i,j)\in\mathbb{E}})$

Quantitative analysis

Objective function

The merits of a given choice of the weights is evaluated by

$$f(\underbrace{(x^{(i)})_{1 \le i \le M}, (x^{(i,j)})_{(i,j) \in \mathbb{E}}}_{X})$$

where

$$x = \begin{bmatrix} (x^{(i)})_{1 \le i \le M} \\ (x^{(i,j)})_{(i,j) \in \mathbb{E}} \end{bmatrix} \in D \subset \mathbb{R}^N$$

and $f: D \mapsto [-\infty, +\infty]$.

Example: scalar weights $\Rightarrow N = M + |\mathbb{E}|$

The number of variables can often be reduced.

Optimization over graphs

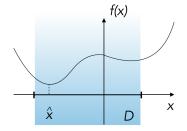
- Minimization problems
 - *f*: cost function

We want to

Find $\widehat{x} \in D$ such that $(\forall x \in D) f(\widehat{x}) \leq f(x)$ \Leftrightarrow Find $\widehat{x} \in D$ such that $f(\widehat{x}) = \inf_{x \in D} f(x)$

that is

Find
$$\widehat{x} \in \underset{x \in D}{\operatorname{Argmin}} f(x)$$
.



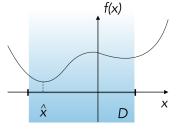
Optimization over graphs

- Maximization problems
 - *f*: reward function

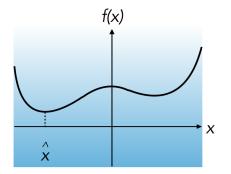
We want to

Find $\hat{x} \in D$ such that $(\forall x \in D) f(\hat{x}) \ge f(x)$ \Leftrightarrow Find $\hat{x} \in D$ such that $(\forall x \in D) - f(\hat{x}) \le -f(x)$ \Leftrightarrow Find $\hat{x} \in \underset{x \in D}{\operatorname{Argmin}} (-f(x)).$

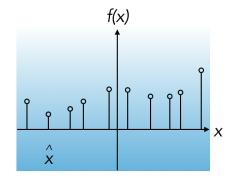
Without loss of generality, we can focus on minimization problems with $f: D \rightarrow]-\infty, +\infty]$.



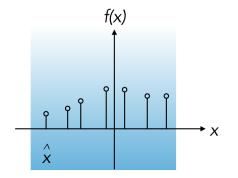
▶ $D = \mathbb{R}^N$: unconstrained problem



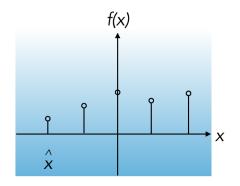
- $D = \mathbb{R}^N$: unconstrained problem
- D countable: discrete optimization problem



- $D = \mathbb{R}^N$: unconstrained problem
- D countable: discrete optimization problem
 - D finite: combinatorial optimization problem



- $D = \mathbb{R}^{N}$: unconstrained problem
- D countable: discrete optimization problem
 - D finite: combinatorial optimization problem
 - $D \subset \mathbb{Z}^N$: integer optimization problem



- D uncountable: continuous optimization problem
- Optimization problem with P equality constraints and Q inequality constraints:

$$D = \{x \in \mathbb{R}^N \mid (\forall i \in \{1, \dots, P\}) \varphi_i(x) = \delta_i$$

and $(\forall j \in \{1, \dots, Q\}) \psi_j(x) \le \eta_j\}$

where $(\forall i \in \{1, ..., P\})$ $\delta_i \in \mathbb{R}$ and $\varphi_i \colon \mathbb{R}^N \to]-\infty, +\infty]$, $(\forall j \in \{1, ..., Q\})$ $\eta_j \in \mathbb{R}$ and $\psi_j \colon \mathbb{R}^N \to]-\infty, +\infty]$. If $\varphi_i \colon x \mapsto \langle x \mid u_i \rangle$ with $i \in \{1, ..., P\}$ and $u_i \in \mathbb{R}^N$, then *linear* (or affine) equality constraint. If $\psi_i \colon x \mapsto \langle x \mid u_i \rangle$ with $j \in \{1, ..., Q\}$ and $u_i \in \mathbb{R}^N$, then *linear* (or

affine) inequality constraint.

Remark:

Find
$$\widehat{x} \in \operatorname{Argmin}_{x \in D} f(x)$$

 \Leftrightarrow Find $\widehat{x} \in \operatorname{Argmin}_{x \in \mathbb{R}^N} \widetilde{f}(x)$

where

$$(\forall x \in \mathbb{R}^N) \quad \widetilde{f}(x) = \begin{cases} f(x) & \text{if } x \in D \\ +\infty & \text{otherwise.} \end{cases}$$

Allowing non finite valued functions leads to a unifying view of constrained and unconstrained minimization problems.

1. Existence/uniqueness of a solution \hat{x} ?

- 1. Existence/uniqueness of a solution \hat{x} ?
- 2. Characterization of solutions: necessary/sufficient conditions for \hat{x} to be a solution.

- 1. Existence/uniqueness of a solution \hat{x} ?
- 2. Characterization of solutions: necessary/sufficient conditions for \hat{x} to be a solution.
- Designing an algorithm to approximate a solution in the frequent case when no closed form solution is available, i.e. building a sequence (x_n)_{n∈ℕ} of ℝ^N such that

$$\lim_{n\to+\infty}x_n=\widehat{x}.$$

- 1. Existence/uniqueness of a solution \hat{x} ?
- 2. Characterization of solutions: necessary/sufficient conditions for \hat{x} to be a solution.
- Designing an algorithm to approximate a solution in the frequent case when no closed form solution is available, i.e. building a sequence (x_n)_{n∈ℕ} of ℝ^N such that

$$\lim_{n\to+\infty}x_n=\widehat{x}.$$

- 4. Evaluation of the performance of the optimization algorithm:
 - Convergence speed
 Example: If there exists ρ ∈]0, 1[and n* ∈ N such that (∀n ≥ n*)
 ||x_{n+1} − x̂|| ≤ ρ||x_n − x̂||, then *Q*-linear convergence rate.

 If lim_{n→+∞} ||x_n − x̂|| = 0, then *Q*-superlinear convergence rate.
 Robustness to numerical errors
 - Amenability to parallel/distributed implementations.

Example: Traveling salesman problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

Example: Traveling salesman problem

- Directed nonreflexive graph
 - \mathcal{V} : set of the cities
 - $\mathcal{E} \colon$ set of roads

 $x = (x^{(i,j)})_{(i,j) \in \mathbb{E}}$ where, for every $(i,j) \in \mathbb{E}$, $x^{(i,j)} = 1$ if the path goes from the city *i* to the city *j* and 0 otherwise,

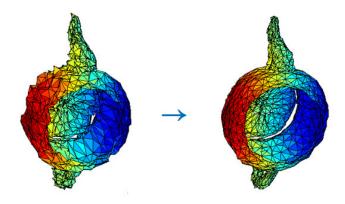
$$N = |\mathbb{E}|.$$

Cost function

$$\begin{split} f(x) &= \sum_{(i,j) \in \mathbb{E}} c_{i,j} x^{(i,j)} & \text{to be minimized subject to} \\ \begin{cases} (\forall (i,j) \in \mathbb{E}) \ x^{(i,j)} \in \{0,1\}, & c_{i,j} \text{: distance between } i \text{ and } j \\ (\forall j \in \{1, \dots, M\}) \ \sum_{i=1, (i,j) \in \mathbb{E}}^{M} x^{(i,j)} = 1 \ \leftarrow \ \text{There is 1 arrival to each city.} \\ (\forall i \in \{1, \dots, M\}) \ \sum_{j=1, (i,j) \in \mathbb{E}}^{M} x^{(i,j)} = 1 \ \leftarrow \ \text{From each city, there is 1 departure.} \\ \rightsquigarrow D \subset \{0,1\}^N \end{split}$$

Example: Mesh denoising problem

Remove uncertainties in mesh measurements



Example: Mesh denoising problem

- ▶ Undirected nonreflexive graph \mathcal{V} : set of vertices of the mesh \mathcal{E} : set of edges of the mesh $x = (x^{(i)})_{1 \le i \le M}$ where, for every $i \in \{1, ..., M\}$, $x^{(i)} \in \mathbb{R}^3$: 3D coordinates of the *i*-th vertex of the true object N = 3M and $D = \mathbb{R}^N$.
- Cost function

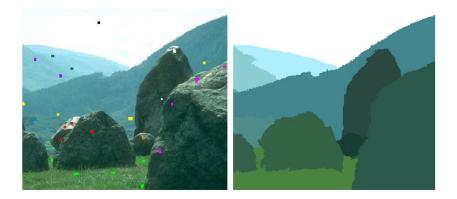
$$f(x) = \sum_{i=1}^{M} \left(\|x^{(i)} - y^{(i)}\|^2 + \left(\sum_{j \in \mathcal{N}_i} \omega_{i,j} \|x^{(j)} - x^{(i)}\|^2\right)^{1/2} \right)$$

where, for every $i \in \{1, \ldots, M\}$,

- y⁽ⁱ⁾: 3D measured coordinates of the *i*-th vertex
- \mathcal{N}_i : neighborhood of *i*-th vertex
- $(\omega_{i,j})_{j \in \mathcal{N}_i}$: nonnegative regularization constants.

Example: Segmentation problem

 Assign a label to every pixel in an image so that pixels with the same label share certain characteristics.



Example: Segmentation problem

- Undirected nonreflexive regular graph
 - \mathcal{V} : Set of pixels

 \mathcal{E} : Set of neighborhood relationships between pixels $x = (x^{(i)})_{1 \le i \le M}$ where, for every $i \in \{1, ..., M\}$, $x^{(i)} \in \mathcal{L}$: label of pixel i

- $\mathcal{L} \subset \mathbb{R}$: finite set of labels N = M and $D = \mathcal{L}^M$.
- Cost function

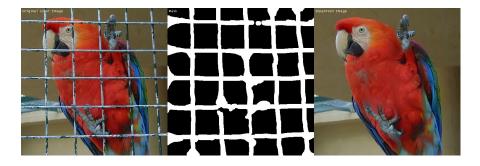
$$f(x) = \sum_{i=1}^{M} \alpha_i^q |x^{(i)} - y^{(i)}|^q + \sum_{(i,j) \in \mathbb{E}} \omega_{i,j}^q |x^{(j)} - x^{(i)}|^q$$

where, for every $i \in \{1, \ldots, M\}$,

- y⁽ⁱ⁾: intensity value of pixel i
- $(\alpha_i)_{1 \le i \le M}$ and $(\omega_{i,j})_{(i,j) \in \mathbb{E}}$: nonnegative constants
- $(p,q) \in [1,+\infty[^2.$

Example: Inpainting

 Given an incomplete image, fill its missing part in a visually plausible way



Example: Inpainting

Undirected nonreflexive graph

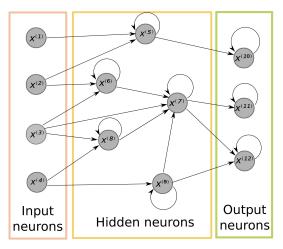
 \mathcal{V} : Set of patches intersecting the target region (black area) \mathcal{E} : Set of neighborhood relationships between these patches $x = (x^{(i)})_{1 \le i \le M}$ where, for every $i \in \{1, ..., M\}$, $x^{(i)} \in \mathcal{L}$: patch i \mathcal{L} : Set of complete patches from the source image (blue boxes) N = M and $D = \mathcal{L}^N$.

Cost function

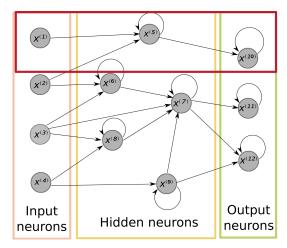
$$f(x) = \sum_{i=1}^{M} U_i(x^{(i)}) + \sum_{(i,j) \in \mathbb{E}} V_{i,j}(x^{(i)}, x^{(j)})$$

- ► (U_i)_{1≤i≤M}: measure the similarity between the target patch and the source patches
- (V_{i,j})_{1≤i,j≤N}: measure the similarity on overlapping regions.

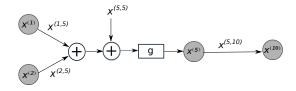
Mimic biological neural networks



Mimic biological neural networks



Mimic biological neural networks



Directed reflexive graph
 𝔅: Set of neurons in the network
 𝔅: Set of synaptic connections
 𝑥 = (𝑥^(i,j))_{(i,j)∈𝔅} where, for every (i, j) ∈ 𝔅, if i ≠ j, 𝑥^(i,j) is a weighting input factor, and if i = j, 𝑥^(i,i) is a bias parameter.
 𝒦 = |𝔅| and 𝔅 𝔅

Cost function

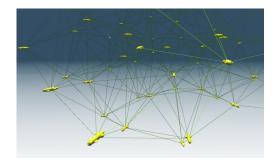
$$f(x)=\sum_{i\in\mathbb{V}_O}|x^{(i)}-s^{(i)}|^p,\quad p\in[1,+\infty]$$

where $(\forall i \in \{1, ..., M\}) x^{(i)} = g(\sum_{j \in \mathcal{N}_i} x^{(j,i)} x^{(j)} + x^{(i,i)})$ with $g : \mathbb{R} \to \mathbb{R}$ activation function (ex: sigmoid $g = \tanh$), \mathcal{N}_i set of neurons exciting neuron i, $s^{(i)}$ desired response when the neuron is trained with an element $(x^{(j)})_{j \in \mathbb{V}_I}$ of an input training sequence, $\{1, ..., M\} = \mathbb{V}_I \cup \mathbb{V}_T \cup \mathbb{V}_O$ with \mathbb{V}_I input layer, \mathbb{V}_T intermediate layers, and \mathbb{V}_O output layer.

 \leadsto deep learning requiring a large training sequence for the parameters to be estimated in a reliable manner.

Example: Multiagent consensus problem

- Each agent process local data and cooperate with its neighbors to estimate global parameters.
 - Examples: Trajectory planning, distributed clustering, Internet traffic anomalies, ...



Example: Multiagent consensus problem

- Directed nonreflexive graph
 - \mathcal{V} : Set of agents

 \mathcal{E} : Set of relationships between agents $x = (x^{(i)})_{1 \le i \le M}$ vector of estimates in \mathbb{R}^P at each node N = MP and

$$D = \{ (x^{(i)})_{1 \le i \le M} \in (\mathbb{R}^P)^M \mid x^{(1)} = \ldots = x^{(M)} \}.$$

Cost function

$$f(x) = \sum_{i=1}^{M} g_i(x^{(i)}, y^{(i)})$$

where $(\forall i \in \{1, ..., M\}) - g_i : \mathbb{R}^P \times \mathbb{R}^Q \rightarrow] - \infty, +\infty]$ utility function at node *i* and $y^{(i)} \in \mathbb{R}^Q$: observations available at node *i*.

Optimization ?

Convex optimization (~ 8 hours)

- Fundamentals
- Dual formulation
- Non-smooth optimization
- Algorithms

• Discrete optimization (\sim 3 hours)

- Graph-cut problem
- Alpha expansion

Distributed algorithms (~ 3 hours)

Reference books

- D. Bertsekas, Nonlinear programming, Athena Scientic, Belmont, Massachussets, 1995.
- Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Springer, 2004.
- S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
- H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.