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Hilbert spaces

A (real) Hilbert space H is a complete real vector space endowed with an
inner product (- | -). The associated norm is

(WxeH) xll = Vi{x]x).

» Particular case: H = RN (Euclidean space with dimension N).
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(WxeH) xll = Vi{x]x).

» Particular case: H = RN (Euclidean space with dimension N).

27 is the power set of 7, i.e. the family of all subsets of .
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Hilbert spaces

Let H and G be two Hilbert spaces.
A linear operator L: H — G is bounded (or continuous) if

IL[l = sup ||Lx]lg < +o0
Ixllze<1
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Hilbert spaces

Let H and G be two Hilbert spaces.
A linear operator L: H — G is bounded (or continuous) if

ILll = sup [[Lx|| < +oo
lIxlI<1

» In finite dimension, every linear operator is bounded.

B(H,G): Banach space of bounded linear operators from H to G.
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L € B(H,G). Its adjoint L* is the operator in B(G,H) defined as

(Voy) e xG)  {y[Lx)g=(Ly[x)y-
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L € B(H,G). Its adjoint L* is the operator in B(G,H) defined as

(VOoy) eHxG)  (x|y)=(x|L7).

Example:
If L:H—H": x—(x,...,x)
then L*:H"—)H:y:(yl,...,y,,)v—)z:y,-

Proof:

(LX|y>=<(Xa---7X)|(ylv---,yn)>=_z x| yi) =< IZyl>
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L € B(H,G). Its adjoint L* is the operator in B(G,H) defined as

(VOoy) eHxG)  (x|y)=(x|L7).

~ We have |[L*]| = |IL].

> If L is bijective (i.e. an isomorphism ) then L~% € B(G,H) and
(L—i)* ::(L*)_l.

» If H=RN and G = RM then L* = L.
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Functional analysis: definitions

Let £ : H — ]—o00,+00] where H is a Hilbert space.
» The domain of fis domf = {x € H|f(x) < +o0}.
» The function f is proper if domf # &.

Domains of the functions ?

| f(x) !

\ |/

x
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Functional analysis: definitions

Let £ : H — ]—o00,+00] where H is a Hilbert space.
» The domain of fis domf = {x € H|f(x) < +o0}.
» The function f is proper if domf # &.

Domains of the functions ?

| f(X) !

L/

x

7

domf =R dom f =0, 4]
(proper) (proper)
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Functional analysis: definitions

Let C C H.
The indicator function of C is

0 if xe C
+o0o otherwise.

(Vx € H) te(x) = {

Example : C = [01, d2]
F(x) = 151,620 (%)
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Convergence in Hilbert spaces

Let H be a Hilbert space.
Let (xp)nen be a sequence in H and X € H.

» (xn)nen converges strongly to X if

i xp — %] = 0.

It is denoted by x, — X.
» (Xn)neny converges weakly to X if

(Vy e H) lim (y|x,—X) =0.

n—-+o00

It is denoted by x, — X.

Remark: x, —» x = x, — x.
In a finite dimensional Hilbert space, strong and weak convergences are
equivalent.
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Convergence in Hilbert spaces

Let S be a subset of a Hilbert space H.

» Sis bounded if it is included in a ball.

» Sis closed if the limit of every converging sequence of elements of
S belongs to S.
» Sis compact if, from every sequence (xp)nen of H, one can extract

a subsequence (x,, )ken Which converges to a point of S.

» If S is compact, then it is closed and bounded.
» The converse property holds, when H is finite dimensional.
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Limits inf and sup

Let (£n)nen be a sequence of elements in [—oo, +00].
Its infimum limit is liminf&, = lim,_ 4 inf {fk | k> n} € [—o0, +0o0]

and its supremum limit is limsup&, = lim,yoosup{& | k> n} €
[_OO7+OO]'
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Limits inf and sup

Let (£n)nen be a sequence of elements in [—oo, +00].
Its infimum limit is liminf&, = lim,_ 4 inf {fk | k> n} € [—o0, +0o0]

and its supremum limit is limsup&, = lim,yoosup{& | k> n} €
[—OO,+OO].
> limsup§&, = — liminf(=¢,)

> limps 400 &n = € € [—00, +00] if and only if liminf &, = limsup &, = &.
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Epigraph

Let f : H — ]—o00,+00]. The epigraph of f is

epif = {(x,¢) edomf xR | f(x) < ¢}
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Epigraph

Let f : H — ]—o00,+00]. The epigraph of f is

epif = {(x,¢) edomf xR | f(x) < ¢}

I F(x) = Ix| F(x) = t-s,5(x)
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Lower semi-continuity

Let f: H — ]—o0, +0o0].
f is a lower semi-continuous (l.s.c.) function at x € # if, for every se-
quence (x,)nen of H,

Xp = x = liminf f(x,) > f(x).
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Lower semi-continuity

Let f: H — ]—o0, +0o0].
f is a lower semi-continuous function on H if and only if epi f is closed

» |.s.c. functions ?
) f(x)

I ‘ \}‘\\~___,///;; 1 e
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Lower semi-continuity

» Every continuous function on H is |.s.c.
» Every finite sum of |.s.c. functions is |.s.c.

» Let (f;);es be a family of l.s.c functions.
sup;¢ fi is l.s.c.
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Minimizers

Let S be a nonempty set of a Hilbert space H.
Let f : S — ]—o00,+00] be a proper function and let X € S.

» X is a local minimizer of f if there exists an open neigborhood O of
X such that
(e OnYS) f(x) < f(x).

» X is a (global) minimizer of f if

(Vx€S)  f(R) < f(x).
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Minimizers

Let S be a nonempty set of a Hilbert space H.
Let f : S — ]—o00,+00] be a proper function and let X € S.

» X is a strict local minimizer of f if there exists an open neigborhood
O of X such that

(Vx e (ONS)\ {x}) f(x) < f(x).
» X is a strict (global) minimizer of f if

(Vx € S\ {X))  f(X) < F(x).
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Existence of a minimizer

Weierstrass theorem

Let S be a nonempty compact set of a Hilbert space H.

Let f : S — |—o00,+0o0] be a proper |.s.c function such that dom fNS # &.
Then, there exists X € S such that

f(x) = )l(g]; f(x).




14/29

Existence of a minimizer

Let H be a Hilbert space. Let f: H — |—o0, +a].
f is coercive if lim, 400 f(x) = +00.
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Existence of a minimizer

Let H be a Hilbert space. Let f: H — |—o0, +o].
f is coercive if lim, 400 f(x) = +00.

Coercive functions ?
2 F(X) L F(X) Af(X)

|
N
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Existence of a minimizer

Let H be a finite dimensional Hilbert space.

Let f : H — |—o0,+0o0] be a proper |.s.c. coercive function.
Then, the set of minimizers of f is a nonempty compact set.
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Convex set

C C His a convex set if

(V(x,y) € C*)(Va €]0,1]) ax+(l—a)ye C

Convex sets ?

DO L
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Minimizers over convex sets

Let H be a Hilbert space and let f: H — ]—o0, +0o0] be a proper function.

f is Gateaux differentiable at x € dom f if there exists Vf(x) € H such
that

(yeH)  (VFG) |y) = lim TEHA 2T
a0

Let C be a nonempty convex subset of a Hilbert space H. Let f: C —
]—o00, +00] be Gateaux differentiable at x € C. If X is a local minimizer of
f, then

(Vy € C) (VF(R) |y —X)>o0.

If C is a vector space or X € int (C), then the condition reduces to

VF(%) = 0.
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Convex function: definitions

f:H — ]—o00,+00] is a convex function if

(V(x,y) € H?) (Ve €]0,1])
flax+ (1 —a)y) < af(x) + (1 - a)f(y)
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Convex functions: definition

f:H — ]—00,+00] is convex & its epigraph is convex.
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Convex functions: definition

f:H — ]—00,+00] is convex & its epigraph is convex.

I F(x) = Ix| F(x) = /Ix] F(x) = y-5.5(x)
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Convex functions: definition

f:H — ]—00,+00] is convex & its epigraph is convex.

B

I F(x) = Ix| T F(x) = /x| F(x) = t-s,5(x)
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Convex functions: definition

f:H — ]—00,+00] is convex & its epigraph is convex.

I ) = Ix | ) = N ) = 1159
X - \ X X

» If f:H — ]—o00,400] is convex, then dom f is convex.

» f:H — [—o0,+00[ is concave if —f is convex.
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Convex functions: properties

Every finite sum of convex functions is convex.

v

v

Let (f;)jc/ be a family of convex functions. sup;¢, f; is convex.

» To(H) : class of convex, |.s.c., and proper functions from H to
]—OO, +OO].
» 1c € To(H) < C is a nonempty closed convex set.

Proof: epi,. = C x [0, +o0[.
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Strictly convex functions

Let H be a Hilbert space. Let f: H — |—o0, +o].
f is strictly convex if

(Vx € dom f)(Vy € dom f)(Va €]0, 1)
x#y = flax+(1—-a)y)<af(x)+(1—-a)f(y).
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Strictly convex functions

Let H be a Hilbert space. Let f: H — |—o0, +o].
f is strictly convex if

(Vx € dom f)(Vy € dom f)(Va €]0, 1)
x#y = flax+(1—-a)y)<af(x)+(1—-a)f(y).

Strictly convex functions ?
f(x) f(x) 4 f(x)
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Characterization of twice differentiable convex functions

Let H be a Hilbert space.
Let f: H — ]—o0,+0o0] be a twice (Fréchet) differentiable function on its
domain. Assume that dom f is a convex set.

» f is convex if and only if, for every x € dom f,
(Vz e H) (z| V*f(x)z) > 0.
» If, for every x € dom f,

(Vz € H\ {0}) (z | V*f(x)z) >0,

then f is strictly convex.
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Minimizers of a convex function

Let H be a Hilbert space. Let f: H — |—o00,+00] be a proper convex
function such that u = inf f > —oo.

> {x€H | f(x) =p} is convex.

» Every local minimizer of f is a global minimizer.

» If f is strictly convex, then there exists at most one minimizer.
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Existence and uniqueness of a minimizer

Let # be a Hilbert space and C a closed convex subset of H. Let f € ['o(H)
such that domf N C # @.
If f is coercive or C is bounded, then there exists X € C such that

(%) = inf £(x).

If, moreover, f is strictly convex, this minimizer X is unique.
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Exercise 1

Provide an example of a function f : R — R and a nonempty set C C R
such that

» f is nonconvex
» C is convex

» f 4 1c is convex.
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Exercise 2

1. Let f: H — ]—o00,+00] be a convex function.

Prove that for every ( € R, the lower level set
levee f ={xeM | f(x) <(}

is convex.

2. Show that the converse is false by providing an example of a
nonconvex function the lower level sets of which are all convex.
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Exercise 3

Let Ac RM*N and z ¢ RM. Let f: RN — R: x = ||Ax — z|| and let
g RV 5 R: x— ||Ax — z||2.
1. Prove that f and g are convex.

2. Give a necessary and sufficient condition on A for g to be strictly
convex.

3. Can f be strictly convex ?
4. Find the minimizers of g.
5. What are the minimizers of f 7
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Exercise 4

Let y € R. Show that
f:R—R: x— log(1+ exp(—yx))

is convex. When is it strictly convex ?
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Exercise 5

Let H be a Hilbert space and let f: H — |—o00,+00] be a convex
function. Let g be the perspective function of f defined as
tf(x/t) ift>0
400 otherwise.

(V(x,t) € H x R) g(x,t) = {

1. How is the epigraph of g related to the epigraph of f ?
2. Deduce that g is a convex function.
3. As a consequence of this result, show that the Kullback-Leibler

divergence defined as
(vx = (xM)1<icn € RM) (Vy = (yD)1<icn € RV)
oy — d SR GOy 0) i (xy) € (10, o[
’ 400 otherwise,

is convex.



