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Hilbert spaces

A (real) Hilbert space H is a complete real vector space endowed with an

inner product 〈· | ·〉. The associated norm is

(∀x ∈ H) ‖x‖ =
√

〈x | x〉.

◮ Particular case: H = R
N (Euclidean space with dimension N).
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A (real) Hilbert space H is a complete real vector space endowed with an

inner product 〈· | ·〉. The associated norm is

(∀x ∈ H) ‖x‖ =
√

〈x | x〉.

◮ Particular case: H = R
N (Euclidean space with dimension N).

2H is the power set of H, i.e. the family of all subsets of H.
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Hilbert spaces

Let H and G be two Hilbert spaces.
A linear operator L : H → G is bounded (or continuous) if

‖L‖ = sup
‖x‖H≤1

‖Lx‖G < +∞
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◮ In finite dimension, every linear operator is bounded.
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Hilbert spaces

Let H and G be two Hilbert spaces.
A linear operator L : H → G is bounded (or continuous) if

‖L‖ = sup
‖x‖≤1

‖Lx‖ < +∞

◮ In finite dimension, every linear operator is bounded.

B(H,G): Banach space of bounded linear operators from H to G.
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H × G) 〈y | Lx〉G = 〈L∗y | x〉H .
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H× G) 〈Lx | y〉 = 〈x | L∗y〉 .

Example:

If L : H → Hn : x 7→ (x , . . . , x)

then L∗ : Hn → H : y = (y1, . . . , yn) 7→
n∑

i=1

yi

Proof:

〈Lx | y〉 = 〈(x , . . . , x) | (y1, . . . , yn)〉 =
n∑

i=1

〈x | yi 〉 =

〈
x |

n∑

i=1

yi

〉
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Hilbert spaces

Let H and G be two Hilbert spaces.
Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H× G) 〈Lx | y〉 = 〈x | L∗y〉 .

◮ We have ‖L∗‖ = ‖L‖.

◮ If L is bijective (i.e. an isomorphism ) then L−1 ∈ B(G,H) and

(L−1)∗ = (L∗)−1.

◮ If H = R
N and G = R

M then L∗ = L⊤.
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Functional analysis: definitions

Let f : H → ]−∞,+∞] where H is a Hilbert space.

◮ The domain of f is dom f = {x ∈ H | f (x) < +∞}.

◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

x

f (x)

δ
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Functional analysis: definitions

Let f : H → ]−∞,+∞] where H is a Hilbert space.

◮ The domain of f is dom f = {x ∈ H | f (x) < +∞}.

◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

dom f = R

(proper)

x

f (x)

δ

dom f =]0, δ]
(proper)
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Functional analysis: definitions

Let C ⊂ H.
The indicator function of C is

(∀x ∈ H) ιC (x) =

{
0 if x ∈ C

+∞ otherwise.

Example : C = [δ1, δ2]
f (x) = ι[δ1,δ2](x)

δ1 xδ2
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Convergence in Hilbert spaces

Let H be a Hilbert space.
Let (xn)n∈N be a sequence in H and x̂ ∈ H.

◮ (xn)n∈N converges strongly to x̂ if

lim
n→+∞

‖xn − x̂‖ = 0.

It is denoted by xn → x̂ .
◮ (xn)n∈N converges weakly to x̂ if

(∀y ∈ H) lim
n→+∞

〈y | xn − x̂〉 = 0.

It is denoted by xn ⇀ x̂ .

Remark: xn → x ⇒ xn ⇀ x .
In a finite dimensional Hilbert space, strong and weak convergences are
equivalent.
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Convergence in Hilbert spaces

Let S be a subset of a Hilbert space H.

◮ S is bounded if it is included in a ball.

◮ S is closed if the limit of every converging sequence of elements of
S belongs to S .

◮ S is compact if, from every sequence (xn)n∈N of H, one can extract

a subsequence (xnk )k∈N which converges to a point of S .

◮ If S is compact, then it is closed and bounded.
◮ The converse property holds, when H is finite dimensional.
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Limits inf and sup

Let (ξn)n∈N be a sequence of elements in [−∞,+∞].

Its infimum limit is lim inf ξn = limn→+∞ inf
{
ξk

∣∣ k ≥ n
}
∈ [−∞,+∞]

and its supremum limit is lim sup ξn = limn→+∞ sup
{
ξk

∣∣ k ≥ n
}

∈

[−∞,+∞].
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Limits inf and sup

Let (ξn)n∈N be a sequence of elements in [−∞,+∞].

Its infimum limit is lim inf ξn = limn→+∞ inf
{
ξk

∣∣ k ≥ n
}
∈ [−∞,+∞]

and its supremum limit is lim sup ξn = limn→+∞ sup
{
ξk

∣∣ k ≥ n
}

∈

[−∞,+∞].

◮ lim sup ξn = − lim inf(−ξn)

◮ limn→+∞ ξn = ξ ∈ [−∞,+∞] if and only if lim inf ξn = lim sup ξn = ξ.
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Epigraph

Let f : H → ]−∞,+∞]. The epigraph of f is

epi f =
{
(x , ζ) ∈ dom f × R

∣∣ f (x) ≤ ζ
}
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Epigraph

Let f : H → ]−∞,+∞]. The epigraph of f is

epi f =
{
(x , ζ) ∈ dom f × R

∣∣ f (x) ≤ ζ
}

x

f (x) = |x |

epif

xδ−δ

f (x) = ι[−δ,δ](x)

epif
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Lower semi-continuity

Let f : H → ]−∞,+∞].

f is a lower semi-continuous (l.s.c.) function at x ∈ H if, for every se-
quence (xn)n∈N of H,

xn → x ⇒ lim inf f (xn) ≥ f (x).
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Lower semi-continuity

Let f : H → ]−∞,+∞].
f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x
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x
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f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x

f (x)

x

f (x)
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Lower semi-continuity

◮ Every continuous function on H is l.s.c.

◮ Every finite sum of l.s.c. functions is l.s.c.

◮ Let (fi )i∈I be a family of l.s.c functions.
supi∈I fi is l.s.c.
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Minimizers

Let S be a nonempty set of a Hilbert space H.
Let f : S → ]−∞,+∞] be a proper function and let x̂ ∈ S .

◮ x̂ is a local minimizer of f if there exists an open neigborhood O of
x̂ such that

(∀x ∈ O ∩ S) f (x̂) ≤ f (x).

◮ x̂ is a (global) minimizer of f if

(∀x ∈ S) f (x̂) ≤ f (x).
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Minimizers

Let S be a nonempty set of a Hilbert space H.
Let f : S → ]−∞,+∞] be a proper function and let x̂ ∈ S .

◮ x̂ is a strict local minimizer of f if there exists an open neigborhood
O of x̂ such that

(∀x ∈ (O ∩ S) \ {x̂}) f (x̂) < f (x).

◮ x̂ is a strict (global) minimizer of f if

(∀x ∈ S \ {x̂}) f (x̂) < f (x).



13/29

Existence of a minimizer

Weierstrass theorem

Let S be a nonempty compact set of a Hilbert space H.
Let f : S → ]−∞,+∞] be a proper l.s.c function such that dom f ∩S 6= ∅.
Then, there exists x̂ ∈ S such that

f (x̂) = inf
x∈S

f (x).
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Existence of a minimizer

Let H be a Hilbert space. Let f : H → ]−∞,+∞].
f is coercive if lim‖x‖→+∞ f (x) = +∞.
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x
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Existence of a minimizer

Theorem

Let H be a finite dimensional Hilbert space.
Let f : H → ]−∞,+∞] be a proper l.s.c. coercive function.
Then, the set of minimizers of f is a nonempty compact set.
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Convex set

C ⊂ H is a convex set if

(∀(x , y) ∈ C 2)(∀α ∈]0, 1[) αx + (1− α)y ∈ C

Convex sets ?

C C
C
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Minimizers over convex sets

Let H be a Hilbert space and let f : H → ]−∞,+∞] be a proper function.

f is Gâteaux differentiable at x ∈ dom f if there exists ∇f (x) ∈ H such
that

(∀y ∈ H) 〈∇f (x) | y〉 = lim
α→0
α6=0

f (x + αy)− f (x)

α
.

Theorem

Let C be a nonempty convex subset of a Hilbert space H. Let f : C →
]−∞,+∞] be Gâteaux differentiable at x̂ ∈ C . If x̂ is a local minimizer of
f , then

(∀y ∈ C ) 〈∇f (x̂) | y − x̂〉 ≥ 0.

If C is a vector space or x̂ ∈ int (C ), then the condition reduces to

∇f (x̂) = 0.
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Convex function: definitions

f : H → ]−∞,+∞] is a convex function if

(
∀(x , y) ∈ H2

)
(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
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f : H → ]−∞,+∞] is a convex function if

(
∀(x , y) ∈ H2

)
(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

Convex functions ?

x

f (x) = |x |

x

f (x) =
√
|x |

+∞ otherwise)

xδ−δ

f (x) = ι[−δ,δ](x)

(0 if x ∈ [−δ, δ]
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Convex functions: definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is convex.
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Convex functions: definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is convex.

x

f (x) = |x |

epif

x

f (x) =
√
|x |

epif

xδ−δ

f (x) = ι[−δ,δ](x)

epif

◮ If f : H → ]−∞,+∞] is convex, then dom f is convex.

◮ f : H → [−∞,+∞[ is concave if −f is convex.
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Convex functions: properties

◮ Every finite sum of convex functions is convex.

◮ Let (fi )i∈I be a family of convex functions. supi∈I fi is convex.

◮ Γ0(H) : class of convex, l.s.c., and proper functions from H to

]−∞,+∞].

◮ ιC ∈ Γ0(H) ⇔ C is a nonempty closed convex set.
Proof: epiιC = C × [0,+∞[.
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Strictly convex functions

Let H be a Hilbert space. Let f : H → ]−∞,+∞].

f is strictly convex if

(∀x ∈ dom f )(∀y ∈ dom f )(∀α ∈]0, 1[)

x 6= y ⇒ f (αx + (1− α)y) < αf (x) + (1− α)f (y).
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Characterization of twice differentiable convex functions

Let H be a Hilbert space.
Let f : H → ]−∞,+∞] be a twice (Fréchet) differentiable function on its
domain. Assume that dom f is a convex set.

◮ f is convex if and only if, for every x ∈ dom f ,

(∀z ∈ H)
〈
z | ∇2f (x)z

〉
≥ 0.

◮ If, for every x ∈ dom f ,

(∀z ∈ H \ {0})
〈
z | ∇2f (x)z

〉
> 0,

then f is strictly convex.
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Minimizers of a convex function

Theorem

Let H be a Hilbert space. Let f : H → ]−∞,+∞] be a proper convex
function such that µ = inf f > −∞.

◮

{
x ∈ H

∣∣ f (x) = µ
}
is convex.

◮ Every local minimizer of f is a global minimizer.

◮ If f is strictly convex, then there exists at most one minimizer.
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Existence and uniqueness of a minimizer

Theorem

Let H be a Hilbert space and C a closed convex subset of H. Let f ∈ Γ0(H)
such that dom f ∩ C 6= ∅.
If f is coercive or C is bounded, then there exists x̂ ∈ C such that

f (x̂) = inf
x∈C

f (x).

If, moreover, f is strictly convex, this minimizer x̂ is unique.
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Exercise 1

Provide an example of a function f : R → R and a nonempty set C ⊂ R

such that

◮ f is nonconvex

◮ C is convex

◮ f + ιC is convex.
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Exercise 2

1. Let f : H → ]−∞,+∞] be a convex function.

Prove that for every ζ ∈ R, the lower level set

lev≤ζ f =
{
x ∈ H

∣∣ f (x) ≤ ζ
}

is convex.

2. Show that the converse is false by providing an example of a
nonconvex function the lower level sets of which are all convex.
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Exercise 3

Let A ∈ R
M×N and z ∈ R

M . Let f : RN → R : x 7→ ‖Ax − z‖ and let
g : RN → R : x 7→ ‖Ax − z‖2.

1. Prove that f and g are convex.

2. Give a necessary and sufficient condition on A for g to be strictly
convex.

3. Can f be strictly convex ?

4. Find the minimizers of g .

5. What are the minimizers of f ?
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Exercise 4

Let y ∈ R. Show that

f : R → R : x 7→ log(1 + exp(−yx))

is convex. When is it strictly convex ?
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Exercise 5

Let H be a Hilbert space and let f : H → ]−∞,+∞] be a convex
function. Let g be the perspective function of f defined as

(∀(x , t) ∈ H× R) g(x , t) =

{
t f (x/t) if t > 0

+∞ otherwise.

1. How is the epigraph of g related to the epigraph of f ?

2. Deduce that g is a convex function.

3. As a consequence of this result, show that the Kullback-Leibler
divergence defined as
(
∀x = (x(i))1≤i≤N ∈ R

N
)(
∀y = (y (i))1≤i≤N ∈ R

N
)

h(x , y) =

{∑
N

i=1 x
(i) ln(x(i)/y (i)) if (x , y) ∈ ( ]0,+∞[N)2

+∞ otherwise,

is convex.


