Data processing and networks optimization

Part II: Optimization (Basics)

Pierre Borgnat¹, Jean-Christophe Pesquet², Nelly Pustelnik¹

¹ ENS Lyon – Laboratoire de Physique – CNRS UMR 5672 pierre.borgnat@ens-lyon.fr, nelly.pustelnik@ens-lyon.fr

> ² LIGM – Univ. Paris-Est – CNRS UMR 8049 jean-christophe.pesquet@univ-paris-est.fr

A (real) Hilbert space \mathcal{H} is a complete real vector space endowed with an inner product $\langle \cdot | \cdot \rangle$. The associated norm is

 $(\forall x \in \mathcal{H})$ $\|x\| = \sqrt{\langle x \mid x \rangle}.$

▶ Particular case: $\mathcal{H} = \mathbb{R}^N$ (Euclidean space with dimension N).

A (real) Hilbert space $\mathcal H$ is a complete real vector space endowed with an inner product $\langle\cdot\mid\cdot\rangle$. The associated norm is

 $(\forall x \in \mathcal{H})$ $\|x\| = \sqrt{\langle x \mid x \rangle}.$

▶ Particular case: $\mathcal{H} = \mathbb{R}^N$ (Euclidean space with dimension N).

is the power set of \mathcal{H} , i.e. the family of all subsets of \mathcal{H} .

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L: \mathcal{H} \to \mathcal{G}$ is bounded (or continuous) if $\|L\| = \sup_{\|x\|_{\mathcal{H}} \le 1} \|Lx\|_{\mathcal{G}} < +\infty$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L: \mathcal{H} \to \mathcal{G}$ is bounded (or continuous) if $\|L\| = \sup_{\|x\| \le 1} \|Lx\| < +\infty$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L \colon \mathcal{H} \to \mathcal{G}$ is bounded (or continuous) if $\|L\| = \sup_{\|x\| \le 1} \|Lx\| < +\infty$

▶ In finite dimension, every linear operator is bounded.

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. A linear operator $L: \mathcal{H} \to \mathcal{G}$ is bounded (or continuous) if $\|L\| = \sup_{\|x\| \le 1} \|Lx\| < +\infty$

▶ In finite dimension, every linear operator is bounded.

 $\mathcal{B}(\mathcal{H},\mathcal{G})$: Banach space of bounded linear operators from \mathcal{H} to \mathcal{G} .

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle y \mid Lx \rangle_{\mathcal{G}} = \langle L^*y \mid x \rangle_{\mathcal{H}}.$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle y \mid Lx \rangle = \langle L^*y \mid x \rangle.$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle Lx \mid y \rangle = \langle x \mid L^*y \rangle$.

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle Lx \mid y \rangle = \langle x \mid L^*y \rangle.$

Example:

If
$$L: \mathcal{H} \to \mathcal{H}^n \colon x \mapsto (x, \dots, x)$$

then $L^*: \mathcal{H}^n \to \mathcal{H} \colon y = (y_1, \dots, y_n) \mapsto \sum_{i=1}^n y_i$

Proof:

$$\overline{\langle Lx \mid y \rangle} = \langle (x, \dots, x) \mid (y_1, \dots, y_n) \rangle = \sum_{i=1}^n \langle x \mid y_i \rangle = \left\langle x \mid \sum_{i=1}^n y_i \right\rangle$$

Let \mathcal{H} and \mathcal{G} be two Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Its adjoint L^* is the operator in $\mathcal{B}(\mathcal{G}, \mathcal{H})$ defined as $(\forall (x, y) \in \mathcal{H} \times \mathcal{G}) \qquad \langle Lx \mid y \rangle = \langle x \mid L^*y \rangle$.

• We have
$$||L^*|| = ||L||$$
.

▶ If *L* is bijective (i.e. an isomorphism) then $L^{-1} \in \mathcal{B}(\mathcal{G}, \mathcal{H})$ and $(L^{-1})^* = (L^*)^{-1}$.

• If
$$\mathcal{H} = \mathbb{R}^N$$
 and $\mathcal{G} = \mathbb{R}^M$ then $L^* = L^\top$.

Let
$$f:\mathcal{H}
ightarrow \left]-\infty,+\infty
ight]$$
 where $\mathcal H$ is a Hilbert space.

▶ The domain of f is dom
$$f = \{x \in \mathcal{H} \mid f(x) < +\infty\}$$
.

▶ The function *f* is proper if dom $f \neq \emptyset$.

Domains of the functions ?

Let $f:\mathcal{H}\rightarrow \left]-\infty,+\infty
ight]$ where \mathcal{H} is a Hilbert space.

• The domain of f is dom
$$f = \{x \in \mathcal{H} \mid f(x) < +\infty\}$$
.

▶ The function *f* is proper if dom $f \neq \emptyset$.

Domains of the functions ?

Let $f:\mathcal{H}\rightarrow \left]-\infty,+\infty\right]$ where $\mathcal H$ is a Hilbert space.

• The domain of f is dom
$$f = \{x \in \mathcal{H} \mid f(x) < +\infty\}$$
.

▶ The function *f* is proper if dom $f \neq \emptyset$.

Domains of the functions ?

Let $C \subset \mathcal{H}$. The indicator function of C is

$$(\forall x \in \mathcal{H})$$
 $\iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{otherwise.} \end{cases}$

Example : $C = [\delta_1, \delta_2]$

Convergence in Hilbert spaces

Let
$$\mathcal{H}$$
 be a Hilbert space.
Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in \mathcal{H} and $\hat{x} \in \mathcal{H}$.
• $(x_n)_{n \in \mathbb{N}}$ converges strongly to \hat{x} if
 $\lim_{n \to +\infty} ||x_n - \hat{x}|| = 0.$
It is denoted by $x_n \to \hat{x}$.
• $(x_n)_{n \in \mathbb{N}}$ converges weakly to \hat{x} if
 $(\forall y \in \mathcal{H})$ $\lim_{n \to +\infty} \langle y \mid x_n - \hat{x} \rangle = 0.$
It is denoted by $x_n \to \hat{x}$.
Remark: $x_n \to x \Rightarrow x_n \to x$.

In a finite dimensional Hilbert space, strong and weak convergences are equivalent.

Convergence in Hilbert spaces

Let S be a subset of a Hilbert space \mathcal{H} .

- ► *S* is **bounded** if it is included in a ball.
- S is closed if the limit of every converging sequence of elements of S belongs to S.
- ▶ S is compact if, from every sequence $(x_n)_{n \in \mathbb{N}}$ of \mathcal{H} , one can extract a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ which converges to a point of S.
- If S is compact, then it is closed and bounded.
- \blacktriangleright The converse property holds, when ${\cal H}$ is finite dimensional.

Limits inf and sup

Let $(\xi_n)_{n\in\mathbb{N}}$ be a sequence of elements in $[-\infty, +\infty]$. Its infimum limit is lim inf $\xi_n = \lim_{n \to +\infty} \inf \{\xi_k \mid k \ge n\} \in [-\infty, +\infty]$ and its supremum limit is lim sup $\xi_n = \lim_{n \to +\infty} \sup \{\xi_k \mid k \ge n\} \in [-\infty, +\infty]$.

Limits inf and sup

Let $(\xi_n)_{n\in\mathbb{N}}$ be a sequence of elements in $[-\infty, +\infty]$. Its infimum limit is lim inf $\xi_n = \lim_{n \to +\infty} \inf \{\xi_k \mid k \ge n\} \in [-\infty, +\infty]$ and its supremum limit is lim sup $\xi_n = \lim_{n \to +\infty} \sup \{\xi_k \mid k \ge n\} \in [-\infty, +\infty]$.

lim sup
$$\xi_n = - \liminf(-\xi_n)$$

▶ $\lim_{n\to+\infty} \xi_n = \overline{\xi} \in [-\infty, +\infty]$ if and only if $\lim \inf \xi_n = \lim \sup \xi_n = \overline{\xi}$.

Epigraph

Let $f : \mathcal{H} \to]-\infty, +\infty]$. The epigraph of f is epi $f = \{(x, \zeta) \in \text{dom } f \times \mathbb{R} \mid f(x) \leq \zeta\}$

Epigraph

Let $f : \mathcal{H} \to]-\infty, +\infty]$. f is a lower semi-continuous (l.s.c.) function at $x \in \mathcal{H}$ if, for every sequence $(x_n)_{n \in \mathbb{N}}$ of \mathcal{H} , $x_n \to x \quad \Rightarrow \quad \liminf f(x_n) \ge f(x)$.

Let $f : \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

Let $f : \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

Let $f: \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

Let $f: \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

Let $f: \mathcal{H} \to]-\infty, +\infty].$

f is a lower semi-continuous function on ${\mathcal H}$ if and only if ${\rm epi}\,f$ is closed

- Every continuous function on \mathcal{H} is l.s.c.
- Every finite sum of l.s.c. functions is l.s.c.
- Let (f_i)_{i∈I} be a family of l.s.c functions. sup_{i∈I} f_i is l.s.c.

Minimizers

Minimizers

Let *S* be a nonempty set of a Hilbert space \mathcal{H} . Let $f: S \to]-\infty, +\infty]$ be a proper function and let $\hat{x} \in S$.

x is a strict local minimizer of f if there exists an open neigborhood
 O of x such that

$$(\forall x \in (O \cap S) \setminus {\widehat{x}}) \quad f(\widehat{x}) < f(x).$$

 $\rightarrow \hat{x}$ is a strict (global) minimizer of f if

 $(\forall x \in S \setminus {\widehat{x}}) \quad f(\widehat{x}) < f(x).$

Weierstrass theorem

Let S be a nonempty compact set of a Hilbert space \mathcal{H} . Let $f : S \to]-\infty, +\infty]$ be a proper l.s.c function such that dom $f \cap S \neq \emptyset$. Then, there exists $\hat{x} \in S$ such that

$$f(\widehat{x}) = \inf_{x \in S} f(x).$$

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$. f is coercive if $\lim_{\|x\|\to+\infty} f(x) = +\infty$.

Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$.
 f is coercive if $\lim_{\|x\|\to+\infty} f(x) = +\infty$.

Let
$$\mathcal{H}$$
 be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$.
 f is coercive if $\lim_{\|x\|\to+\infty} f(x) = +\infty$.

Theorem

Let \mathcal{H} be a finite dimensional Hilbert space. Let $f : \mathcal{H} \to]-\infty, +\infty]$ be a proper l.s.c. coercive function. Then, the set of minimizers of f is a nonempty compact set.

Convex set

$$\mathcal{C}\subset\mathcal{H}$$
 is a convex set if $(orall (x,y)\in\mathcal{C}^2)(orall lpha\in]0,1[)\qquad lpha x+(1-lpha)y\in\mathcal{C}$

Convex sets ?

Convex set

$$\mathcal{C}\subset\mathcal{H}$$
 is a convex set if $(orall (x,y)\in\mathcal{C}^2)(orall lpha\in]0,1[)\qquad lpha x+(1-lpha)y\in\mathcal{C}$

Convex sets ?

Minimizers over convex sets

Let \mathcal{H} be a Hilbert space and let $f : \mathcal{H} \to]-\infty, +\infty]$ be a proper function. f is Gâteaux differentiable at $x \in \text{dom } f$ if there exists $\nabla f(x) \in \mathcal{H}$ such that $f(x + \alpha y) - f(x)$

$$(\forall y \in \mathcal{H})$$
 $\langle \nabla f(x) | y \rangle = \lim_{\substack{\alpha \to 0 \\ \alpha \neq 0}} \frac{f(x + \alpha y) - f(x)}{\alpha}$

Theorem

Let *C* be a nonempty convex subset of a Hilbert space \mathcal{H} . Let $f: C \to]-\infty, +\infty]$ be Gâteaux differentiable at $\hat{x} \in C$. If \hat{x} is a local minimizer of f, then

$$(\forall y \in C) \quad \langle
abla f(\widehat{x}) \mid y - \widehat{x} \rangle \geq 0.$$

If C is a vector space or $\hat{x} \in int(C)$, then the condition reduces to

 $\nabla f(\widehat{x})=0.$

$$egin{aligned} f:\mathcal{H} o]{-\infty,+\infty}] ext{ is a convex function } & ext{if} \ & ig(orall (x,y)\in\mathcal{H}^2)(orall lpha\in]0,1[) & \ & f(lpha x+(1-lpha)y)\leq lpha f(x)+(1-lpha)f(y) \end{aligned}$$

$$egin{aligned} f:\mathcal{H} o]{-\infty,+\infty}] ext{ is a convex function } & ext{if} \ & ig(orall (x,y)\in\mathcal{H}^2)(orall lpha\in]0,1[) & \ & f(lpha x+(1-lpha)y)\leq lpha f(x)+(1-lpha)f(y) \end{aligned}$$

Convex functions ?

$$f: \mathcal{H} \to]-\infty, +\infty]$$
 is a convex function if
 $(\forall (x, y) \in \mathcal{H}^2)(\forall \alpha \in]0, 1[)$
 $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$

Convex functions ?

If f : H →]-∞, +∞] is convex, then dom f is convex.
f : H → [-∞, +∞[is concave if -f is convex.

Convex functions: properties

- Every finite sum of convex functions is convex.
- ▶ Let $(f_i)_{i \in I}$ be a family of convex functions. $\sup_{i \in I} f_i$ is convex.
- $\Gamma_0(\mathcal{H})$: class of convex, l.s.c., and proper functions from \mathcal{H} to $]-\infty, +\infty]$.
- ► $\iota_C \in \Gamma_0(\mathcal{H}) \Leftrightarrow C$ is a nonempty closed convex set. <u>Proof</u>: $epi_{\iota_C} = C \times [0, +\infty[.$

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$. f is strictly convex if

 $\begin{aligned} (\forall x \in \operatorname{dom} f)(\forall y \in \operatorname{dom} f)(\forall \alpha \in]0,1[) \\ x \neq y \quad \Rightarrow \quad f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y). \end{aligned}$

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$. f is strictly convex if

$$(\forall x \in \operatorname{dom} f) (\forall y \in \operatorname{dom} f) (\forall \alpha \in]0, 1[) \ x \neq y \quad \Rightarrow \quad f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y).$$

Strictly convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$. f is strictly convex if

$$(\forall x \in \operatorname{dom} f) (\forall y \in \operatorname{dom} f) (\forall \alpha \in]0, 1[) \ x \neq y \quad \Rightarrow \quad f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y).$$

Characterization of twice differentiable convex functions

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a twice (Fréchet) differentiable function on its domain. Assume that dom f is a convex set.

• f is convex if and only if, for every $x \in \text{dom } f$,

$$(\forall z \in \mathcal{H}) \qquad \left\langle z \mid \nabla^2 f(x) z \right\rangle \geq 0.$$

• If, for every $x \in \operatorname{dom} f$,

$$(\forall z \in \mathcal{H} \setminus \{0\}) \qquad \left\langle z \mid \nabla^2 f(x) z \right\rangle > 0,$$

then f is strictly convex.

Minimizers of a convex function

Theorem

Let \mathcal{H} be a Hilbert space. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a proper convex function such that $\mu = \inf f > -\infty$.

•
$$\{x \in \mathcal{H} \mid f(x) = \mu\}$$
 is convex.

- Every local minimizer of *f* is a global minimizer.
- ▶ If *f* is strictly convex, then there exists at most one minimizer.

Existence and uniqueness of a minimizer

Theorem

Let \mathcal{H} be a Hilbert space and C a closed convex subset of \mathcal{H} . Let $f \in \Gamma_0(\mathcal{H})$ such that dom $f \cap C \neq \emptyset$. If f is coercive or C is bounded, then there exists $\hat{x} \in C$ such that

$$f(\widehat{x}) = \inf_{x \in C} f(x).$$

If, moreover, f is strictly convex, this minimizer \hat{x} is unique.

Provide an example of a function $f : \mathbb{R} \to \mathbb{R}$ and a nonempty set $C \subset \mathbb{R}$ such that

- f is nonconvex
- C is convex
- $f + \iota_C$ is convex.

1. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a convex function. Prove that for every $\zeta \in \mathbb{R}$, the lower level set

$$\operatorname{lev}_{\leq \zeta} f = \{x \in \mathcal{H} \mid f(x) \leq \zeta\}$$

is convex.

Show that the converse is false by providing an example of a nonconvex function the lower level sets of which are all convex.

Let $A \in \mathbb{R}^{M \times N}$ and $z \in \mathbb{R}^{M}$. Let $f : \mathbb{R}^{N} \to \mathbb{R} : x \mapsto ||Ax - z||$ and let $g : \mathbb{R}^{N} \to \mathbb{R} : x \mapsto ||Ax - z||^{2}$.

- 1. Prove that f and g are convex.
- 2. Give a necessary and sufficient condition on A for g to be strictly convex.
- 3. Can f be strictly convex ?
- 4. Find the minimizers of g.
- 5. What are the minimizers of f?

Let $y \in \mathbb{R}$. Show that

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \log(1 + \exp(-yx))$$

is convex. When is it strictly convex ?

Let \mathcal{H} be a Hilbert space and let $f: \mathcal{H} \to]-\infty, +\infty]$ be a convex function. Let g be the perspective function of f defined as

$$(\forall (x,t) \in \mathcal{H} \times \mathbb{R})$$
 $g(x,t) = \begin{cases} t f(x/t) & \text{if } t > 0 \\ +\infty & \text{otherwise.} \end{cases}$

- 1. How is the epigraph of g related to the epigraph of f?
- 2. Deduce that g is a convex function.
- As a consequence of this result, show that the Kullback-Leibler divergence defined as

$$(\forall x = (x^{(i)})_{1 \le i \le N} \in \mathbb{R}^N) (\forall y = (y^{(i)})_{1 \le i \le N} \in \mathbb{R}^N) h(x, y) = \begin{cases} \sum_{i=1}^N x^{(i)} \ln(x^{(i)}/y^{(i)}) & \text{if } (x, y) \in (\]0, +\infty[^N)^2 \\ +\infty & \text{otherwise,} \end{cases}$$

is convex.