TP : Mesh denoising

1 Degradation model

A mesh can be viewed as a weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{v^{(i)} \mid i \in \{1, \ldots, M\}\}$ denotes the set of vertices and $\mathcal{E} = \{e^{(i,j)} \mid (i,j) \in \mathbb{E}\}$ the set of edges, having cardinality of M and P, respectively. This graph is weighted in the sense that weights are included on both the edges and nodes. At each node of index $i \in \{1, \ldots, M\}$, we measure a 3D coordinates of the *i*-th vertex that is denoted by $y^{(i)} = (y_1^{(i)}, y_2^{(i)}, y_3^{(i)}) \in \mathbb{R}^3$. This observation results from an original unknown object $\overline{x} = (\overline{x}^{(i)})_{1 \leq i \leq M} \in \mathbb{R}^N$ (with N = 3M), the measure being degraded by a noise $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_N)$. An illustration of such a mesh is provided in Figure 1. An edge weight is a value assigned to each $e^{(i,j)}$, and it is denoted by $\omega_{i,j} \in]0, +\infty[$.

Figure 1: Example of a graph \mathcal{G} .

We propose here to find an estimate $\hat{x} \in \mathbb{R}^N$ of the original mesh \overline{x} by solving the following nonsmooth minimization problem involving only the knowledge of y:

$$\widehat{x} = \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} \sum_{i=1}^M \|x^{(i)} - y^{(i)}\|_2^2 + \chi g(x),$$
(1)

where $g \in \Gamma_0(\mathbb{R}^N)$ denotes a regularization term and $\chi > 0$.

2 Analysis of the data

1. Load \overline{x} and its associated triangulation mesh:

```
>> xyz = load('teapot_coord.txt');
>> tri = load('teapot_tri.txt');
```

- 2. Display the data by means of the function trisurf.m.
- 3. What are the values of N and M?
- 4. Create a noisy mesh from \overline{x} by means of randn.m such that,

$$(\forall k \in \{1, 2, 3\}) \quad \mathsf{y}_k = \bar{\mathsf{x}}_k + \epsilon_k \quad \text{with} \quad \varepsilon_k \sim \mathcal{N}(0, \sigma^2 I_M),$$

where $\sigma^2 = 0.36$, and $\bar{\mathsf{x}}_k$ denotes the vector of the k-th coordinates of the object, a similar notation being used for other vectors. Display the resulting noisy mesh $y \in \mathbb{R}^N$.

- 5. For every vertices v_i with $i \in \{1, \ldots, M\}$, identify its neighbors from the triangulation mesh and compute the cardinality/degree of each. What is the maximum encountered cardinality? Identify the associated vertex on the mesh.
- 6. Compute the number of edges.
- 7. Create a table with the edges.

3 A simple constraint approach

A simple approach for mesh denoising consists of minimizing the function $x \mapsto \sum_{i=1}^{M} \|x^{(i)} - y^{(i)}\|_2^2$ subject to the constraint that $x \in C$ where C is a nonempty closed subset of \mathbb{R}^N .

- 1. Show that this problem can be formulated under the form of Problem (1).
- 2. Can we find a closed form solution to this problem ?
- 3. Implement it when we impose lower and upper bounds on the 3 coordinates of the object.

4 Tikkonov-like regularization

We add to the previous constraint a quadratic regularization term applied on the difference between neighbors, by setting

$$(\forall x \in \mathbb{R}^N)$$
 $g(x) = \frac{1}{2} \sum_{j \in \mathcal{N}_i} \omega_{i,j}^2 ||x^{(j)} - x^{(i)}||_2^2 + \iota_C(x),$

where, for every $i \in \{1, ..., M\}$, \mathcal{N}_i is the neighborhood of node of index *i*.

The incidence matrix of a graph is a fundamental operator for formulating variational problems. Specifically, the edge-node incidence matrix $A \in \mathbb{R}^{P \times M}$ defines the discrete calculus analogue of the gradient, while A^{\top} is known to define the discrete calculus analogue of the divergence. The incidence matrix can be viewed as an operator mapping functions on nodes (analogue to a scalar field) to functions on edges (analogue to a vector field) and its elements are defined as

$$A_{e_{i,j}v_k} = \begin{cases} -1 & \text{if } i = k, \\ +1 & \text{if } j = k, \\ 0 & \text{otherwise,} \end{cases}$$

for every vertex v_k with $k \in \{1, \ldots, M\}$ and edge $e_{i,j}$ with $(i,j) \in \{1, \ldots, M\}^2$. An example of a graph represented with its incidence matrix is given in Figure 2. We introduce the weighted incidence matrix $D = \text{diag}(\omega)A$, where $\text{diag}(\omega)$ is a diagonal matrix whose diagonal elements correspond to the square roots of the components of edge weight vector ω .

Figure 2: A graph and its incidence matrix $A \in \mathbb{R}^{P \times M}$ with M = 6 and P = 7.

Using the incidence matrix notation, Problem (1) can be reexpressed as

$$\widehat{x} = \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} \sum_{i=1}^M \|x^{(i)} - y^{(i)}\|_2^2 + \frac{\chi}{2} \sum_{k=1}^3 \|D\mathsf{x}_k\|_2^2 + \iota_C(x).$$

We propose to estimate \hat{x} using an optimization approach.

1. Let $f: x \mapsto \frac{1}{2} \sum_{i=1}^{M} \|x^{(i)} - y^{(i)}\|_2^2 + \frac{\chi}{2} \sum_{k=1}^{3} \|D\mathsf{x}_k\|_2^2$. Is f convex ? proper ? Lipschitz continuous ? If so, how can we compute a Lipschitz constant of its gradient ?

- 2. Which algorithm would you suggest to solve the optimization problem ? Discuss the choice of the parameters of this algorithm.
- 3. How the algorithm proposed in the previous part can be adapted ?
- 4. Implement it and compare its performance by setting the weights to 1.
- 5. An alternative algorithm for minimizing f + h with $h \in \Gamma_0(\mathbb{R}^N)$ is given below:

```
Let \beta denote the Lipschitz constant of \nabla f.

Take u_1 = x_0 \in \mathbb{R}^N, t_1 = 1.

For n = 1, 2, ...

x_n = \operatorname{prox}_{\frac{1}{\beta}h} \left( u_n - \frac{1}{\beta} \nabla f(u_n) \right)

t_{n+1} = \frac{1 + \sqrt{1 + 4t_n^2}}{2}

u_n = x_n + \left( \frac{t_n - 1}{t_{n+1}} (x_n - x_{n-1}) \right).
```

Implement this algorithm and compare it to the previous one in terms of convergence speed.

- 6. What is the best choice for parameter χ in terms of mean square error between the estimated object and the ground truth ?
- 7. Is there be an alternative way of splitting the objective function? Test this second solution.

5 Anisotropic TV

In this part, we focus on a sparse regularization term applied on the difference between neighbors, by choosing

$$(\forall x \in \mathbb{R}^N) \qquad g(x) = \chi \Big(\sum_{j \in \mathcal{N}_i} \omega_{i,j} \| x^{(j)} - x^{(i)} \|_1 \Big).$$

We propose to estimate \hat{x} using an optimization procedure based on PPXA+ algorithm.

1. Recall the closed form expression of $\operatorname{prox}_{\gamma \| \cdot - y^{(i)} \|^2}$ with $\gamma \in [0, +\infty)$ and the one associated with the ℓ_1 -norm.

- 2. Implement PPXA+ for estimating \hat{x} by setting the weights to 1.
- 3. Evaluate the performance regarding the choice of χ .
- 4. Evaluate the impact of the choice of parameters γ and $(\lambda_n)_{n \in \mathbb{N}}$ of the algorithm.
- 5. We now evaluate the performance of the reconstruction according to the choice of the weights. Compute $\omega_{i,j} = \|\hat{x}^{(j)} - \hat{x}^{(i)}\|$ where \hat{x} denotes the anisotropic TV solution with weights set to 1. Implement once again PPXA+ for estimating a solution integrating these estimated weights in the minimization formulation. Comment the results.
- 6. Redo all the work by replacing the incidence matrix by the graph Laplacian matrix.