
TP : Mesh denoising

1 Degradation model

A mesh can be viewed as a weighted graph G = (V, E), where V = {v(i) | i ∈ {1, . . . ,M}} denotes
the set of vertices and E = {e(i,j) | (i, j) ∈ E} the set of edges, having cardinality of M and P ,
respectively. This graph is weighted in the sense that weights are included on both the edges and
nodes. At each node of index i ∈ {1, . . . ,M}, we measure a 3D coordinates of the i-th vertex that

is denoted by y(i) = (y
(i)
1 , y

(i)
2 , y

(i)
3 ) ∈ R3. This observation results from an original unknown object

x = (x(i))1≤i≤M ∈ RN (with N = 3M), the measure being degraded by a noise ε ∼ N (0, σ2IN ).
An illustration of such a mesh is provided in Figure 1. An edge weight is a value assigned to each
e(i,j), and it is denoted by ωi,j ∈]0,+∞[.
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Figure 1: Example of a graph G.

We propose here to find an estimate x̂ ∈ RN of the original mesh x by solving the following
nonsmooth minimization problem involving only the knowledge of y:

x̂ = arg min
x∈RN

1

2

M∑
i=1

‖x(i) − y(i)‖22 + χg(x), (1)

where g ∈ Γ0(RN ) denotes a regularization term and χ > 0.

2 Analysis of the data

1. Load x and its associated triangulation mesh:
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>> xyz = load(’teapot coord.txt’);

>> tri = load(’teapot tri.txt’);

2. Display the data by means of the function trisurf.m.

3. What are the values of N and M ?

4. Create a noisy mesh from x by means of randn.m such that,

(∀k ∈ {1, 2, 3}) yk = xk + εk with εk ∼ N (0, σ2IM ),

where σ2 = 0.36, and xk denotes the vector of the k-th coordinates of the object, a similar
notation being used for other vectors. Display the resulting noisy mesh y ∈ RN .

5. For every vertices vi with i ∈ {1, . . . ,M}, identify its neighbors from the triangulation mesh
and compute the cardinality/degree of each. What is the maximum encountered cardinality?
Identify the associated vertex on the mesh.

6. Compute the number of edges.

7. Create a table with the edges.

3 A simple constraint approach

A simple approach for mesh denoising consists of minimizing the function x 7→
∑M

i=1 ‖x(i) − y(i)‖22
subject to the constraint that x ∈ C where C is a nonempty closed subset of RN .

1. Show that this problem can be formulated under the form of Problem (1).

2. Can we find a closed form solution to this problem ?

3. Implement it when we impose lower and upper bounds on the 3 coordinates of the object.
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4 Tikkonov-like regularization

We add to the previous constraint a quadratic regularization term applied on the difference between
neighbors, by setting

(∀x ∈ RN ) g(x) =
1

2

∑
j∈Ni

ω2
i,j‖x(j) − x(i)‖22 + ιC(x),

where, for every i ∈ {1, . . . ,M}, Ni is the neigborhood of node of index i.

The incidence matrix of a graph is a fundamental operator for formulating variational problems.
Specifically, the edge-node incidence matrix A ∈ RP×M defines the discrete calculus analogue of
the gradient, while A> is known to define the discrete calculus analogue of the divergence. The
incidence matrix can be viewed as an operator mapping functions on nodes (analogue to a scalar
field) to functions on edges (analogue to a vector field) and its elements are defined as

Aei,jvk =


−1 if i = k,

+1 if j = k,

0 otherwise,

for every vertex vk with k ∈ {1, . . . ,M} and edge ei,j with (i, j) ∈ {1, . . . ,M}2. An example of
a graph represented with its incidence matrix is given in Figure 2. We introduce the weighted
incidence matrix D = diag(ω)A, where diag(ω) is a diagonal matrix whose diagonal elements
correspond to the square roots of the components of edge weight vector ω.

Figure 2: A graph and its incidence matrix A ∈ RP×M with M = 6 and P = 7.

Using the incidence matrix notation, Problem (1) can be reexpressed as

x̂ = arg min
x∈RN

1

2

M∑
i=1

‖x(i) − y(i)‖22 +
χ

2

3∑
k=1

‖Dxk‖22 + ιC(x).

We propose to estimate x̂ using an optimization approach.

1. Let f : x 7→ 1
2

∑M
i=1 ‖x(i) − y(i)‖22 + χ

2

∑3
k=1 ‖Dxk‖22. Is f convex ? proper ? Lipschitz

continuous ? If so, how can we compute a Lipschitz constant of its gradient ?
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2. Which algorithm would you suggest to solve the optimization problem ? Discuss the choice
of the parameters of this algorithm.

3. How the algorithm proposed in the previous part can be adapted ?

4. Implement it and compare its performance by setting the weights to 1.

5. An alternative algorithm for minimizing f + h with h ∈ Γ0(RN ) is given below:

Let β denote the Lipschitz constant of ∇f .
Take u1 = x0 ∈ RN , t1 = 1.
For n = 1, 2, . . .
xn = prox 1

β
h

(
un − 1

β∇f(un)
)

tn+1 =
1+
√

1+4t2n
2

un = xn +
(
tn−1
tn+1

(xn − xn−1)
)
.

Implement this algorithm and compare it to the previous one in terms of convergence speed.

6. What is the best choice for parameter χ in terms of mean square error between the estimated
object and the ground truth ?

7. Is there be an alternative way of splitting the objective function ? Test this second solution.

5 Anisotropic TV

In this part, we focus on a sparse regularization term applied on the difference between neighbors,
by choosing

(∀x ∈ RN ) g(x) = χ
( ∑
j∈Ni

ωi,j‖x(j) − x(i)‖1
)
.

We propose to estimate x̂ using an optimization procedure based on PPXA+ algorithm.

1. Recall the closed form expression of proxγ‖·−y(i)‖2 with γ ∈ ]0,+∞[ and the one associated
with the `1-norm.
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2. Implement PPXA+ for estimating x̂ by setting the weights to 1.

3. Evaluate the performance regarding the choice of χ.

4. Evaluate the impact of the choice of parameters γ and (λn)n∈N of the algorithm.

5. We now evaluate the performance of the reconstruction according to the choice of the weights.
Compute ωi,j = ‖x̂(j) − x̂(i)‖ where x̂ denotes the anisotropic TV solution with weights set
to 1. Implement once again PPXA+ for estimating a solution integrating these estimated
weights in the minimization formulation. Comment the results.

6. Redo all the work by replacing the incidence matrix by the graph Laplacian matrix.
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