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Dedicated to: Professor Nick Kingsbury who died earlier this year 

An early pioneer of sparse signal and image processing, rotation 

invariant wavelets, etc.
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Computational & Compressed 
Imaging



Imaging and Sensing Challenge

Insufficient Measurements
Complete measurements can be costly, time consuming 

and sometimes just impossible!



5

The Inverse problem

Goal: estimate signal 𝑥 from 𝑦

𝑦 = 𝐴𝑥 + 𝜖

• We are particularly interested in the underdetermined case: 𝑛 > 𝑚
• To invert, we need to restrict 𝑥 to some low dimensional set, 𝒳 ⊂ ℝ𝑛
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Examples

Magnetic resonance imaging

• 𝐴 = subset of Fourier modes 

(𝑘 − space) of 2D/3D images

Image inpainting

• 𝐴 = diagonal matrix 

with 1’s and 0s.

Computed tomography

• 𝐴 = 2D projections  

(sinograms) of 2D/3D 

images

𝑥𝑦 𝑦 𝑥
𝑦 𝑥

Single-pixel camera

• 𝐴 = binary matrix with 

iid Bernoulli entries

𝑦 𝑥



Compressed sensing

E. Candès, J. Romberg, and T. Tao, “Robust Ucertainty principles: Exact 
signal reconstruction from highly incomplete frequency information,” 
IEEE Trans. Information Theory, 2006

D. Donoho, “Compressed sensing,” 
IEEE Trans. Information Theory, 2006 

This is the principle behind Compressed Sensing

Compressible 

set of interest

random projection 

(observation)

nonlinear 

approximation 

(reconstruction)

Compressed Sensing assumes a hand crafted low 

dimensional signal models, e.g. approximately k-

sparse, low rank,...

Then using approximately 

𝑚 ≥ 𝒪 𝑘 …

random measurements have little or no information 

loss. Signal reconstruction by a nonlinear mapping, e.g. 

𝐿1 min., OMP, CoSaMP, IHT, etc...
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Machine Imaging
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• State-of-the-art reconstructions

• Once trained, 𝒇 is easy to evaluate

Machine Imaging 

x8 accelerated MRI [Zbontar et al., 2019]

Deep network 

(34.5 dB)Ground-truth

Total variation

(28.2 dB)
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Learning approach
Main disadvantage: Obtaining training signals 𝑥𝑖 can be 

expensive or impossible. 

• Medical and scientific imaging

• Only solves inverse problems which we already know 

what to expect

• Risk of training with signals from a different distribution

• Raises the question: can AI be used for data-driven 

knowledge discovery in imaging?

train test?

𝑦 {? }

𝒇
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The Challenge
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AI for Knowledge Discovery?

The Event Horizon Telescope

The First Image of the Milky Way's 
Black Hole: Sagittarius A*
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AI for Knowledge Discovery?
Cryo-electron microscopy: here are tomographic slices of SARS-CoV-2 virus particles

Recover
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AI for Knowledge Discovery?
Cryo-electron microscopy: here are tomographic slices of SARS-CoV-2 virus particles

Recover
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AI for Knowledge Discovery?
Cryo-electron microscopy: here are tomographic slices of SARS-CoV-2 virus particles

Recover
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The Inverse problem (again)

Goal: estimate signal 𝑥 from 𝑦

𝑦 = 𝐴𝑥 + 𝜖

• We are interested in the underdetermined case: 𝑛 > 𝑚
• To invert, we need to restrict 𝑥 to some low dimensional set, 𝒳 ⊂ ℝ𝑛

• However, 𝒳 is unknown and we need to learn it
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Can we learn from only the measurements, {𝒚𝒊}?

(Can we minimise the measurement consistency σ𝑖 𝑦𝑖 − 𝐴𝑓 𝑦𝑖
2?)

A Simple Null(-space) Result

𝒇

𝐴

Proposition: Any reconstruction function 𝑓 𝑦 = 𝐴†𝑦 + 𝑔(𝑦) is measurement 

consistent for any 𝑔: ℝ𝑚 ↦ 𝒩𝐴 whose image belongs to the nullspace of 𝐴.
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Possible Solutions

How to learn from {𝒚𝒊}? 

(1) We either need more measurement information, or

(2) We need more prior information
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Multi-Operator & 

Equivariant Imaging
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Multiple Measurement Operators
more measurement information…

Multiple Operators: what if we observe the images through a set of multiple 

different (known) operators? Can we learn from {𝑦𝑖, 𝐴𝑔𝑖
} pairs where:

𝑦𝑖 = 𝐴𝑔𝑖
𝑥𝑖,  𝑔𝑖 ∈ 𝐺

 

Example: accelerated MRI with different k-space (sub-)sampling.

Cramér-Wold Theorem: A Borel probability measure on ℝ𝑛 is uniquely 

determined by its one-dimensional projections.

Argument used in Ambient GAN [Bora et al. 2018] but in most settings we will 

not have access to such a large set of projections. Can we use fewer?
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Symmetry

more prior information…

Idea: Most natural image and signal distributions are invariant to certain 

groups of transformations:

∀𝑥 ∈ 𝒳, ∀𝑔 ∈ 𝐺, 𝑥′ = 𝑇𝑔𝑥 ∈ 𝒳 

where 𝑇𝑔 is the group action for 𝑔 ∈ 𝐺

Example: natural images are invariant to…

𝐺 = group of translational shifts

𝐺 = group of 2D rotations
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Exploiting Invariance

These two views are somewhat related…

Consider

 

    𝑦 = 𝐴𝑥 

• Implicitly invariance gives access to multiple operators 𝐴𝑔, 

• Each operator may have a different nullspace

= 𝐴𝑔𝑥′= 𝐴𝑇𝑔 𝑇𝑔
−1𝑥
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Model identification

When can we uniquely identify the set of signals 𝒳 ⊂ ℝ𝑛 

from the observed measurement sets {𝒴𝑔 = 𝐴𝑔𝒳}?

   



Proposition [Tachella, Chen and D. ’23]: Identifying 𝒳 from multiple sets 

{𝒴𝑔 = 𝐴𝑔𝒳} possible only if

   rank

𝐴1

⋮
𝐴|𝐺|

= 𝑛, 

and thus, only if: 𝑚 ≥
𝑛

𝐺
or, for invariance, m ≥ max

𝑐𝑗

𝑠𝑗
 where 𝑠𝑗 and 𝑐𝑗 

are dimension and multiplicity of the irreducible representations of 𝑇𝑔.

Corollary [Tachella, Chen and D. ’23]: For invariance, identifying 𝒳 

requires that A is not equivariant: 𝐴𝑇𝑔 ≠ ෨𝑇𝑔𝐴
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Necessary conditions
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Geometric intuition

Toy example (𝑛 = 3, 𝑚 = 2): Signal set is 𝒳 = span( 1,1,1 T) (note the permutation 

symmetry). Forward operator 𝐴 keeps first 2 coordinates.

𝐴 𝐴−1

𝒴 ≔ {𝑦 = 𝐴𝑥, 𝑥 ∈ 𝒳}
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Geometric intuition 

Toy example (𝑛 = 3, 𝑚 = 2): Signal set is 𝒳 = span 1,1,1 T . Forward operator 𝐴 keeps 

first 2 coordinates. Now with explicit permutation symmetry

𝐴−1𝒴 𝐴𝑇1
−1𝒴 𝐴𝑇2

−1𝒴

𝒳 = ሩ
𝑔∈𝐺

𝐴𝑔
−1 𝒴



Theorem [Tachella, Chen and D. ’22] (multi-operator imaging): 

A 𝑘-dimensional model 𝒳 ⊂ ℝ𝑛 is identifiable from the sets 𝒴𝑔: =

𝐴𝑔𝒳, 𝑔 ∈ 𝐺 for almost every set of operators 𝐴1, … , 𝐴|𝐺| ∈ ℝ𝑛×𝑚 if

𝑚 > 𝑘 +
𝑛

𝐺

27

Sufficient conditions

Additional assumption: The signal set is low-dimensional (c.f. Compressed 

Sensing)

The signal model has a box-counting dimension 𝑘 <  𝑛

Examples: Sparse dictionaries, union of subspaces, manifold models, etc.
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Sufficient conditions

Additional assumption: The signal set is low-dimensional (c.f. Compressed 

Sensing)

The signal model has a box-counting dimension 𝑘 <  𝑛

Examples: Sparse dictionaries, union of subspaces, manifold models, etc.

Theorem [Tachella, Chen and D. ’22] (equivariant imaging): Let 𝐺 

be a compact cyclic group. A 𝑘-dimensional model 𝒳 is identifiable 

from the sets 𝒴𝑔: = 𝐴𝑇𝑔𝒳, 𝑔 ∈ 𝐺 for almost every 𝐴 ∈ ℝ𝑛×𝑚 if

𝑚 > 2𝑘 + max 𝑐𝑗 + 1 ≥ 2𝑘 +
𝑛

𝐺
+ 1

where 𝑐𝑗 is the multiplicity of the representation and max 𝑐𝑗 ≥ 𝑛/ 𝐺 .
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Consequences

Magnetic Resonance Imaging

• 𝐴 = subset of Fourier modes 

• Equivariant to translations

• Not equivariant to rotations, 

which have max 𝑐𝑗 ≈ √𝑛

 𝑚 > 2𝑘 + 𝑛 + 1

Image inpainting

• 𝐴 = diagonal matrix with 1’s 

and 0s.

• Not equivariant to 

translations, which have 

max 𝑐𝑗 ≈ 1

 𝑚 > 2𝑘 + 2

Computed Tomography (CT)

• 𝐴 = 1D projections  

(sinograms) 

• Equivariant to translations

• Not equivariant to rotations, 

which have max 𝑐𝑗 ≈ √𝑛

 𝑚 > 2𝑘 + 𝑛 + 1

𝑥𝑦 𝑦 𝑥𝑦 𝑥
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Equivariant Imaging: 

the Algorithm
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Unsupervised training loss

argmin ℒ𝑀𝐶 𝑓  

• ℒ𝑀𝐶 𝑓 = σ𝑖 𝑦𝑖 − 𝐴𝑓 𝑦𝑖
2 measurement consistency

• ℒ𝐸𝐼 𝑓 = σ𝑖,𝑔 𝑓 𝐴𝑇𝑔𝑓 𝑦𝑖 − 𝑇𝑔𝑓 𝑦𝑖

2
enforces equivariance of 𝑓 ∘ 𝐴

𝑓

Network-agnostic: applicable to any existing deep model!

+ ℒ𝐸𝐼 𝑓

Equivariant Imaging

How can we enforce invariance in practice?

Idea: we would like 𝑓 ∘ 𝐴 to be 𝐺-equivariant, i.e. 𝑓 𝐴𝑇𝑔𝑥 = 𝑇𝑔𝑓(𝐴𝑥)
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Unsupervised training loss

argmin ℒ𝑀𝐶 𝑓  

• ℒ𝑀𝐶 𝑓 = σ𝑖 𝑦𝑖 − 𝐴𝑓 𝑦𝑖
2 measurement consistency

• ℒ𝐸𝐼 𝑓 = σ𝑖,𝑔 𝑓 𝐴𝑇𝑔𝑓 𝑦𝑖 − 𝑇𝑔𝑓 𝑦𝑖

2
enforces equivariance of 𝑓 ∘ 𝐴

• For noisy measurements replace ℒ𝑀𝐶 𝑓  with a SURE loss function: 

ℒSURE 𝑓

𝑓

Network-agnostic: applicable to any existing deep model!

+ ℒ𝐸𝐼 𝑓

Equivariant Imaging

ℒ𝑆𝑈𝑅𝐸 𝑓

How can we enforce invariance in practice?

Idea: we would like 𝑓 ∘ 𝐴 to be 𝐺-equivariant, i.e. 𝑓 𝐴𝑇𝑔𝑥 = 𝑇𝑔𝑓(𝐴𝑥)
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Gaussian noise  𝑦 ∼ 𝒩(𝑢, 𝐼𝜎2) 

ℒ𝑆𝑈𝑅𝐸 𝑓 = 

𝑖

𝑦𝑖 − 𝐴𝑓 𝑦𝑖
2 − 𝜎2𝑚 + 2𝜎2div(𝐴 ∘ 𝑓)(𝑦𝑖)

where  div ℎ(𝑥) = σ𝑗
𝛿ℎ𝑗

𝛿𝑥𝑗
 is approximated with a Monte Carlo estimate which only 

requires evaluations of ℎ [Ramani, 2008]

Theorem [Stein, 1981] Under mild differentiability conditions on the function 𝐴 ∘ 𝑓, 

the following holds

Can also be extended to Poisson noise, and mixed Poisson-Gaussian noise

Handling noise via SURE

𝔼𝑦,𝑢 ℒ𝑀𝐶 𝑓 = 𝔼𝑦 ℒ𝑆𝑈𝑅𝐸 𝑓



Equivariant Imaging

Example: Imaging Inpainting (MNIST)

𝑓

𝑓

𝑓(𝑦)

𝐓𝐠𝑓(𝑦) 𝒇 ∘ 𝐀 𝐓𝐠𝑓 𝑦

𝐀
𝑦

𝐀𝐓𝐠

𝐴𝑓 𝑦

Measurement Consistency Loss (MC)

Equivariance Loss (EQ)

Random rotation
(0~360∘)

reconstruction

“Equivariant Imaging: Learning Beyond the Range Space”, Chen, Tachella, and Davies, ICCV, 2021.

34

Done with 4 lines of code! 



Equivariant Imaging

Example: Imaging Inpainting (MNIST)

𝑓

𝑓

𝑓(𝑦)

𝐓𝐠𝑓(𝑦) 𝒇 ∘ 𝐀 𝐓𝐠𝑓 𝑦

𝐀
𝑦

𝐀𝐓𝐠

𝐴𝑓 𝑦

Measurement Consistency Loss (MC)

Equivariance Loss (EQ)

Random rotation
(0~360∘)

reconstruction

“Equivariant Imaging: Learning Beyond the Range Space”, Chen, Tachella, and Davies, ICCV, 2021.
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Done with 4 lines of code! 

𝑓

𝑓

𝑥(1)

𝑥(2) 𝑥(3)

𝐀

𝑦

𝐀𝐓𝐠

𝑦(1)

SURE Loss

𝑞𝑢

Equivariance Loss (EQ)

REI also possible:

Robust Equivariant Imaging
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Experiments
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Experiments

Network

• 𝑓 = 𝑔𝜃 ∘ 𝐴† where 𝑔𝜃 is a U-net CNN

Comparison

• Pseudo-inverse 𝐴†𝑦𝑖 (no training)

• Meas. consistency 𝐴𝑓 𝑦𝑖 = 𝑦𝑖

• Fully supervised loss: 𝑓 𝑦𝑖 = 𝑥𝑖

• Equivariant imaging (unsupervised) 

 𝐴𝑓 𝑦𝑖 = 𝑦𝑖 and equivariant 𝑓 ∘ 𝐴



Equivariant imaging Fully supervised𝐴†𝑦 Meas. consistency
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Magnetic resonance imaging

• Operator 𝐴 is a subset of Fourier measurements (x2 downsampling)

• Dataset is approximately rotation invariant

Signal 𝑥 Measurements 𝑦
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Magnetic resonance imaging

MRI with different noise levels: 

𝜎: Gaussian noise standard 

deviation 𝑦 ∼ 𝒩(𝑢, 𝜎2𝐼) with 𝑢 = 𝐀(𝑥).

EI REI

REI

However, EI degrades 

with measurement noise! 

(4x undersamping)
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Noisy 

measurements 𝑦

Robust EISupervised Clean signal 𝑥 Meas. consistency

Low Dose Computed tomography

• Operator 𝐴 is (non-linear variant) sparse radon transform (50 views)

• Mixed Poisson-Gaussian noise 

• Dataset is approximately rotation invariant
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Single-pixel camera

Training Images

Training 

Measurements

Measurement only training is avoids issues of distribution shift

Supervised 

Reconstruction

Unsupervised 

Reconstruction (EI)

(no ground truth images for 2,3,4)
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Conclusions

Novel unsupervised learning framework for imaging

Theory: Necessary & sufficient conditions for learning
• Number of measurements
• Exploiting either multiple measurements or equivariance
• Interplay between forward operator & data invariance

Practice: deep learning approach
• Unsupervised loss which can be applied to any model
• Can be made robust to noise through SURE loss
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Outlook

Ongoing/future work

• Extending the theory

• Nonlinear inverse problems

• Semi-group actions

• Approximate low-dimensional models

• Sample complexity for learning

• New applications…

• Links to other Self-Supervised Learning Techniques…
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image from noisy and partial measurements”, Chen, Tachella and Davies, CVPR 
2022

[3] “Unsupervised Learning From Incomplete Measurements for Inverse 
Problems”, Tachella, Chen and Davies, NeurIPS 2022.

[4] “Sensing Theorems for Unsupervised Learning in Inverse Problems”, Tachella, 
Chen and Davies, JMLR 2023. 

[5] “Imaging with Equivariant Deep Learning”, Chen, Davies, Ehrhardt, Schonlieb, 
Sherry and Tachella, IEEE SPM 2023.

[6] “Self-Supervised Learning for Image Super-Resolution and Deblurring”, Scanvic, 
Abry, Davies and Tachella, Submitted, 2023.



45

New PyTorch Library



46

Questions?
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