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Dedicated to: Professor Nick Kingsbury who died earlier this year
An early pioneer of sparse signal and image processing, rotation
Invariant wavelets, etc.



Computational & Compressed
Imaging




Imaging and Sensing Challenge

Insufficient Measurements
Complete measurements can be costly, time consuming
and sometimes just impossible!

Low-cost, fast, sensitive
optical detection

Image encoded by DMD
and random basis




The Inverse problem

Goal: estimate signal x from y scgnu\. c “,{'\

'Aeod\l“xw'“’g) y=Ax + €& neisc/e (cor

¢ & }

Physics

« We are particularly interested in the underdetermined case: n > m
« To invert, we need to restrict x to some low dimensional set, X ¢ R"



Examples

Magnetic resonance imaging Computed tomography Image inpainting Single-pixel camera
« A =subset of Fourier modes < A = 2D projections « A=diagonal matrix « A = binary matrix with
(k — space) of 2D/3D images (sinograms) of 2D/3D with 1’s and Os. iid Bernoulli entries

images

Coding Masks

ya||[F=

Spatial Light Modulator (SLM) Lens  Photo Detector

-2
y X




Compressed sensing
This is the principle behind Compressed Sensing

E. Candes, J. Romberg, and T. Tao, “Robust Ucertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Information Theory, 2006

D. Donoho, “Compressed sensing,”
IEEE Trans. Information Theory, 2006

Compressible
set of interest

Compressed Sensing assumes a hand crafted low
dimensional signal models, e.g. approximately k-
sparse, low rank,...

Then using approximately nonlinear |

m=>0(k..) approximation

(reconstruction) random projection

(observatlon)

random measurements have little or no information
loss. Signal reconstruction by a nonlinear mapping, e.g.
L; min., OMP, CoSaMP, IHT, etc...




Machine Imaging




Machine Imaging

« State-of-the-art reconstructions fastMRI

* Once trained, f is easy to evaluate
Accelerating MR Imaging with Al

Total variation Deep network
Ground-truth (28.2 dB) (34.5 dB)

x8 accelerated MRI [Zbontar et al., 2019]



Learning approach

Main disadvantage: Obtaining training signals x; can be
expensive or impossible. {y} —> — {7}
« Medical and scientific imaging
* Only solves inverse problems which we already know —~ 4
what to expect ) \
| /[ -

* Risk of training with signals from a different distribution

« Raises the guestion: can Al be used for data-driven :g
knowledge discovery in imaging? Sy




The Challenge




Al for Knowledge Discovery?

The Event Horizon Telescope

The First Image of the Milky Way's
Black Hole: Sagittarius A*

12
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The Inverse problem (again)

Goal: estimate signal x from y

y=Ax + €

« We are interested In the underdetermined case: n > m
 To invert, we need to restrict x to some low dimensional set, X c R"
« However, X Is unknown and we need to learn it



A Simple Null(-space) Result

Can we learn from only the measurements, {y;}?

(Can we minimise the measurement consistency Y.;||v; — Af (y)]|*?)

Proposition: Any reconstruction function f(y) = ATy + g(y) is measurement
consistent for any g: R™ — N, whose image belongs to the nullspace of A.




Possible Solutions

How to learn from {y;}?

(1) We either need more measurement information, or

(2) We need more prior information




Multi-Operator &
Equivariant Imaging




Multiple Measurement Operators

more measurement information. ..

Multiple Operators: what if we observe the images through a set of multiple
different (known) operators? Can we learn from {y;, A,.} pairs where:

Vi = Ag,xi, gi €G
Example: accelerated MRI with different k-space (sub-)sampling.

Crameér-Wold Theorem: A Borel probability measure on R" is uniquely
determined by its one-dimensional projections.

Argument used in Ambient GAN [Bora et al. 2018] but in most settings we will
not have access to such a large set of projections. Can we use fewer?



Symmetry

more prior information...

Idea: Most natural image and signal distributions are invariant to certain
groups of transformations:

I
Vx € X, Vg € G, x —TngX

where T, is the group action for g € G

Example: natural images are invariant to...
( = group of translational shifts
G = group of 2D rotations




Exploiting Invariance

These two views are somewhat related...

Consider z!

1
y = Ax= AT, T; 'x= Agx’

A

- Implicitly invariance gives access to multiple operators A,
« Each operator may have a different nullspace




Model identification

When can we uniquely identify the set of signals X < R"
from the observed measurement sets {{, = A, X}?




Necessary conditions

Proposition [Tachella, Chen and D. "23]: Identifying X from multiple sets
{Y, = A,X} possible only if

4
rank :

Ajg|.

. ] . Ci
and thus, only if: m = I?nl or, for invariance, m > maxS—’_ where s; and ¢;
J

are dimension and multiplicity of the irreducible representations of T,.

Corollary [Tachella, Chen and D. °23]: For invariance, identifying X
requires that A Is not equivariant: AT, # TgA




Geometric intuition

Toy example (n = 3,m = 2): Signal setis X = span([1,1,1]") (note the permutation
symmetry). Forward operator A keeps first 2 coordinates.

X

A

A—l
=) _ mmp §

T3

! 0
1 0
L2 T L2

Y :={y =A4x,x € X}




Geometric intuition

Toy example (n = 3, m = 2): Signal setis X = span[1,1,1]T . Forward operator A keeps
first 2 coordinates. Now with explicit permutation symmetry

p ATMY (AT)™'Y (AT,)™Y




Suftficient conditions

Additional assumption: The signal set is low-dimensional (c.f. Compressed
Sensing)

The signal model has a box-counting dimension k < n

Examples: Sparse dictionaries, union of subspaces, manifold models, etc.

Theorem [Tachella, Chen and D. '22] (multi-operator imaging):
A k-dimensional model X' c R" Is identifiable from the sets Y,: =

Ay, X, g € G for almost every set of operators Ay, ..., A € R™™ if

n

m>k+-—
|G|



Suftficient conditions

Additional assumption: The signal set is low-dimensional (c.f. Compressed
Sensing)

The signal model has a box-counting dimension k < n

Examples: Sparse dictionaries, union of subspaces, manifold models, etc.

Theorem [Tachella, Chen and D. '22] (equivariant imaging): Let G
be a compact cyclic group. A k-dimensional model X is identifiable
from the sets Y,: = AT, X, g € G for almost every A € R™™™ |f

n
m>2k+maxcj+122k+m+1

where ¢; is the multiplicity of the representation and max ¢; = n/|G|.



Consequences

Magnetic Resonance Imaging Computed Tomography (CT)  Image inpainting
e A = subset of Fourier modes « A = 1D projections » A = diagonal matrix with 1's
« Equivariant to translations (sinograms) and 0s.
« Not equivariant to rotations, « Equivariant to translations * Not equivariant to
which have max ¢; ~ Vn « Not equivariant to rotations, translations, which have
m> 2k +yn+ 1 which have max ¢; ~Vn max ¢; = 1

m>2k++n+1 m > 2k + 2




Equivariant Imaging:
the Algorithm




Equivariant Imaging

How can we enforce invariance in practice?

Idea: we would like f o A to be G-equivariant, i.e. f(ATgx) = T, f (Ax)
Unsupervised training loss
argr?in Lyc(f) + Lg(f)

o Lyc(H) =Xillyi — Af (v)]? measurement consistency

© Le(f) =g || £ (AT f ) = Tyf )|

2
enforces equivariance of f o A

Network-agnostic: applicable to any existing deep model!



Equivariant Imaging

How can we enforce invariance in practice?

Idea: we would like f o A to be G-equivariant, i.e. f(ATgx) = T, f (Ax)

Unsupervised training loss

argr}rgin Lsyre(f) + L (f)

o Lyc(H) =Xillyi — Af (v)]? measurement consistency

© Le(f) =g || £ (AT f ) = Tyf )|
« For noisy measurements replace £y, (f) with a SURE loss function:

Lsyre(f)
Network-agnostic: applicable to any existing deep model!

2
enforces equivariance of f o A




Handling noise via SURE

Gaussian noise y ~ N (u,Ic?)

Lsure () = ) 11y = Af DI = 0%m + 20%div(A  f)(v1)

where div(h(x)) = ), j% IS approximated with a Monte Carlo estimate which only
J

requires evaluations of h [Ramani, 2008]

Theorem [Stein, 1981] Under mild differentiability conditions on the function A o f,
the following holds

Ey u{Lmc(f)} = Ey{Lsyre(f)}
Can also be extended to Poisson noise, and mixed Poisson-Gaussian noise



Equivariant Imaging

Example: Imaging Inpainting (MNIST) Algorithm 1 Pseudocode of EI in a PyTorch-like style,

# A.forw, A.pinv: forward and pseudo inverse operators
5: neural network

Measurement Consistency Loss (MC) LT renerommations gxour

a: alpha H H
............................................................................................... Done with 4 lines of code!
. . for y in loader: # load a minibatch y with N samples
" A\ # randomly select a transformation from T
. t = select (T)

E xl = G(A.pinv(y)) # reconstruct x from y
. x2 = t(xl) # transform x1
4 x3 = G(A.pinv(A.forw(x2))) # reconstruct x2

# training loss, Eqgn. (6)
loss = MSELoss(A.forw(xl), y) # data consistency
+ alpha+MSELoss (x3, x2) # equivariance

f)

# update G network
loss.backward()
update (G.params)

reconstruction

Random rotation
(0~360°)

Equivariance Loss (EQ)

“Equivariant Imaging: Learning Beyond the Range Space”, Chen, Tachella, and Davies, ICCV, 2021.



Equivariant Imaging

Example: Imaging Inpainting (MNIST) Algorithm 1 Pseudocode of EI in a PyTorch-like style,

# A.forw, A.pinv: forward and pseudo inverse operators
# G: neural network

Robust Equivariant maing

REI also possible:
SURE Loss

Equivariance Loss (EQ)

Equivariance Loss (EQ)

“Equivariant Imaging: Learning Beyond the Range Space”, Chen, Tachella, and Davies, ICCV, 2021.



Experiments




Experiments

Network .
f=gpoAT where gyisaU-netCNN | & “ T | i
Comparison - SN [N N YN
 Pseudo-inverse ATy; (no training)
 Meas. consistency Af(y;) = y; Vo 128 128
» Fully supervised loss: f(y;) = x;
258 256 256
. . . . . =) 3x3 Conv + BN + RelLu
« Equivariant imaging (unsupervised) 1!3". . g Copy
) = Vv ' I § 2x2 Max Pooling
Af (y1) = y; and equivariant f o 4 -—- 243 Up Gomy - 8- ReLs
256 =) 1x1 Conv



Magnetic resonance imaging

* Operator A is a subset of Fourier measurements (x2 downsampling)
* Dataset is approximately rotation invariant

Signal x Measurements y ATy Meas. consistency Equivariantimaging Fully supervised

i




Magnetic resonance imaging

REI

However, El| degrades
with measurement noise!
(4x undersamping)

MRI with different noise levels: _.---"~ .

34 -

—_— 91&,/:__,{1" — Sup

32 -

30 -

PSNR (dB)
MR MR R
S KN B O @

=
oo
1

16- 4 0.01 0.05 0.1 0.2

o: Gaussian noise standard .
deviation y ~ N (u, 021) with u = A(x).




Low Dose Computed tomography

* QOperator A4 is (non-linear variant) sparse radon transform (50 views)
* Mixed Poisson-Gaussian noise
* Dataset is approximately rotation invariant

Clean signal x Supervised Meas. consistency Robust El

Noisy
measurements y



Single-pixel camera

Measurement only training is avoids issues of distribution shift

Training Images E . (no ground truth images for 2,3,4)

Training
Measurements

Supervised
Reconstruction

Unsupervised
Reconstruction (El)




Conclusions

Novel unsupervised learning framework for imaging

Theory: Necessary & sufficient conditions for learning
« Number of measurements
« Exploiting either multiple measurements or equivariance
* Interplay between forward operator & data invariance

Practice: deep learning approach

« Unsupervised loss which can be applied to any model
« Can be made robust to noise through SURE loss



Outlook

Ongoing/future work

« Extending the theory

« Nonlinear inverse problems

« Semi-group actions

« Approximate low-dimensional models

« Sample complexity for learning

- New applications...

« Links to other Self-Supervised Learning Techniques...
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New PyTorch Library

;7 2L

i : unfolded| | models _
'mage & physics measurement | | | reconstruction
sensing
device(s) >
| test| [ metric|
uncertainty
loss train
supervised self-supervised
Wi v (e d@nos‘e
B ,
By B RS ... NE 0 e e oo L
den0|ser \sampllng

 [datasets|




Questions?
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